応用数学

1

複素数平面上の関数 f を, 原点以外の相異なる点 $b_k\,(k=1,2,\cdots)$ に 1 位の極を持つ有理形関数とする . 任意の有界領域において , 極は高々有限個しかないものとする . この f に対し , 適当な正数列 $\{r_n\}_{n=0}^\infty$ と正数 M が存在し ,

- $r_n \le r_{n+1}, \quad r_n \to \infty \quad (n \to +\infty)$
- 任意の n に対して円周 $\{z \mid |z| = r_n\}$ 上で $|f(z)| \leq M$

が成り立つとする.このとき,以下の問いに答えよ.

1. C_r を原点を中心とした,反時計周りの向きをもつ半径 r の円周とする. C_r は関数 f の極 b_k $(k=1,2,\cdots)$ を通らないものとし, C_r の内側にある極を $b_{k_1},b_{k_2},\cdots,b_{k_N}$ とする.このとき C_r の内側の任意の点 $z(\neq b_{k_l})$ において

$$f(z) = \frac{1}{2\pi i} \oint_{C_r} \frac{f(\zeta)}{\zeta - z} d\zeta + \sum_{l=1}^N \frac{\operatorname{Res} f(b_{k_l})}{z - b_{k_l}}$$

が成り立つことを示せ、ここで、 $\operatorname{Res} f(b_{k_l})$ は関数 f の点 b_{k_l} における留数を表す、

2. 関数 f の部分分数展開

$$f(z) = f(0) + \sum_{j=1}^{\infty} \left(\frac{\operatorname{Res} f(b_j)}{z - b_j} + \frac{\operatorname{Res} f(b_j)}{b_j} \right)$$

が成り立つことを示せ.

3. 関数 $g(z) = \cot z - \frac{1}{z}$ の部分分数展開を求めよ.