• The added line is THIS COLOR.
  • The deleted line is THIS COLOR.
#ref(outline.gif,nowrap,nolink);
RIGHT:&size(9){[[[Japanese>http://www.amp.i.kyoto-u.ac.jp/pukiwiki/amptest/index.php?%BF%F4%CD%FD%B9%A9%B3%D8%C0%EC%B9%B6%A4%CE%B3%B5%CD%D7]]]};

#ref(logo_outline.jpg,nowrap,nolink);
#ref(intro.gif,nowrap,nolink);

-[[数理解析分野>http://www-is.amp.i.kyoto-u.ac.jp/]]: 応用可積分系:可積分系によるアルゴリズム開発
-[[離散数理分野:http://www-or.amp.i.kyoto-u.ac.jp/index.html]]: 離散数学の問題の複雑さの解明とアルゴリズムの開発
-[[最適化数理分野:http://www-optima.amp.i.kyoto-u.ac.jp/index.html]]: 最適化は問題解決のキーワード
-[[制御システム論分野:http://www.bode.amp.i.kyoto-u.ac.jp/]]: 制御とモデリングへの数理的アプローチ
-[[物理統計学分野:http://amech.amp.i.kyoto-u.ac.jp/index.php]]: 多要素結合系におけるダイナミクスの数理と情報処理
-[[力学系理論分野:http://yang.amp.i.kyoto-u.ac.jp/]]: 力学系を通してシステムを考える
-数理ファイナンス(協力講座): 金融市場の数理モデルの構成・解析
-[[応用数理モデル分野:http://www.bode.amp.i.kyoto-u.ac.jp/amm/]](連携ユニット): 情報システムに知を吹きこむ

高度情報化社会とよばれる現代においては、大規模で複雑なシステムをモデル化し、解析、計画、制御し、そして運用するという状況がいたるところに現れます。そこでは、情報、電気、機械、化学など個々の専門知識を身に付けるだけでなく、一見異なるように見える様々な問題に共通する数理的な構造を解明し、さらに問題解決のための数理的な手法を開発することが非常に重要となります。このような観点に立ち、私たち数理工学専攻の8つの研究室では、 数理解析・離散数理・最適化数理・制御システム論・物理統計学・力学系理論・応用数理モデル(連携ユニット)・数理ファイナンス(協力講座) の最先端の研究を進めています。

Research and education in this Department deal with modeling, analysis, and control of complicated and large-scaled systems, not necessarily confined to artificial ones, and optimization of their performances together with basic methodologies such as discrete and applied mathematics, dynamical system theory, and statistical physics. The aim of the Department is to bring up scientists or engineers who can cope with various problems encountered in highly organized and informatized modern societies, based on flexible conception, sharp insight, and high competence for searching solutions, resulting from profound attainments in mathematics and mathematical physics and from a general background in computer sciences. 

#br
#ref(image-en-201402.jpg,nowrap,nolink);
-----
#br

The Department has 3 divisions, each with 2 or 3 sub-divisions, and consists of  7 chairs. 21 graduate students are accepted into the Master's Program annually and 7 into the Doctoral program.

**&size(21){Applied Mathematical Analysis};   &size(12){ - Developing algorithms from integrable systems };[#sc84cb37]
#ref(01.gif,nolink,around,nowrap,left);
&br;
We carry out research in the areas of contemporary soliton research
and integrable system research, not only regarding the applied analysis of
orthogonal polynomials and special functions that are closely associated
with integrable systems, but also regarding the application of the mathematical
methods developed by integrable system studies to the solution of
various problems hitherto thought to be unrelated to integrable systems
(such as numerical calculation and algorithm development). Our Group is
a pioneer in this research field, and conducts studies into the applied
analysis of integrable systems in the development of algorithms and other
new branches of mathematics from the perspective of computer science.&br;
(Professor: Yoshimasa NAKAMURA, Associate Professor: Satoshi TSUJIMOTO,  
Assistant Professor: Shuhei KAMIOKA, Hiroto SEKIDO)
#clear
**&size(21){Discrete Mathematics};   &size(12){ -Exploring the complexity of discrete mathematics problems and developing algorithms}; [#w71aad75]
#ref(02.gif,nolink,around,nowrap,right);
&br;
Topics in discrete mathematics, such as the graphs and network used
to represent systems, schedules to enhance the efficiency of production,
and the logical analysis of large volumes of data, are closely related to
applications of research results. We explore the complexity of the calculations
used to solve these problems; design logical approximation algorithms;
develop taboo search algorithms, genetic algorithms and other
metaheuristic algorithms; and apply them to solving actual problems.
&br;
(Professor: Hiroshi NAGAMOCHI, Assistant Professor: Aleksandar SHURBEVSKI)
#clear
**&size(21){System Optimization};   &size(12){ - Optimization is the keyword for solving problems}; [#ab315b65]
#ref(03.gif,nolink,around,nowrap,left);
&br;
We conduct education and research regarding the theory and methodology
of system optimization, which plays an important role as a mathematical
approach that is used to resolve many different kinds of practical
problems. In particular, we develop efficient mathematical optimization
approaches to actual large-scale systems, complex nonlinear systems, and
systems with uncertainty, as well as basic research regarding mathematical
programming.
&br;
(Professor: Nobuo YAMASHITA, Assistant Professor: Ellen Hidemi FUKUDA)
#clear
**&size(21){Control Systems Theory};   &size(12){ - Mathematical approaches to modeling and control }; [#o9515ff3]
#ref(04.gif,nolink,around,nowrap,right);
&br;
We carry out teaching and research regarding the mathematical
methodologies of modeling, analysis and design of control systems, and
their application with the aim of developing practical and expansive control
theories. Our main research themes are robust control, control systems
with input/output constraints, networked control systems, algebraic
system theory, mathematical optimization in control, stochastic realization
and system identification.
&br;
(Professor: Yoshito OHTA, Associate Professor: Kenji KASHIMA, 
Assistant Professor: Kentaro OHKI)
#clear
**&size(21){Physical Statistics}; &size(12){ - The mathematical studies on dynamics of coupled multi-element systems and information processing}; [#p5eb59df]
#ref(06.gif,nolink,around,nowrap,left);
&br;
We aim to gain a mathematical and unified understanding of the complex
and diverse phenomena that arise out of the intense mutual interactions
of multiple elements (units) in a system and apply this understanding
to information processing. For example, we will use stochastic process theory,
statistical physics, computer simulations, dynamical system theory,
agent models, and large-scale data processing techniques to analyze information
processing in simple threshold systems, neurons, and their networks;
the structure of the Internet and other complex networks, and the
propagation of information within them; and the dynamical properties of
price change, stock markets and other economic phenomena.
&br;
(Professor: Ken UMENO, Associate Professor: Aki-Hiro SATO)
#clear
**&size(20){Dynamical Systems};   &size(12){ - Looking into systems through dynamical systems theory }; [#j17f08be]
#ref(outline07c.gif,nolink,around,nowrap,right);
&br;
Our research purpose is that we analyze complicated phenomena such as chaos and bifurcations in various systems appearing in science, engineering and other disciplines using dynamical systems approaches, and apply them to develop novel engineering technologies. For this purpose, we not only use standard approaches but also establish new innovative theories in dynamical systems. Moreover, we utilize numerical approaches such as verifiable computation and large-scale numerical simulation, and study nonintegrability of dynamical systems and differential equations, nonlinear waves in partial differential equations, periodic motions in the n-body problem of classical mechanics and kinetic theory of many-body systems, design of spacecraft transfer trajectories and dynamics and control of flying objects such as quadrocopters.
&br;
(Professor: Kazuyuki YAGASAKI, Associate Professor: Mitsuru SHIBAYAMA, Assistant Professor: Yoshiyuki YAMAGUCHI)
&br;
#clear
**&size(21){Applied Mathematical Modeling Adjunct Unit}; (in collaboration with Hitachi, Ltd.)   &size(12){ -  Infusing information systems with intelligence}; [#ca90345d]
#ref(outline05.gif,nolink,around,nowrap,left);
&br;
To make information systems useful to our day-to-day lives and
industry at large, we need to be able to mathematically model both the
behavior of people and the movements of objects that these systems deal
with. The form of these models ranges from the conceptual to the numerically
precise. We will examine case studies from industry in our research
of modeling technology, including methods of using human knowledge
(structural modeling) and methods using actual data (multivariate analysis).
&br;
(Professor: Akira YAMAMOTO (Hitachi, Ltd.), Associate Professor: Tatsuhiro SATO (Hitachi, Ltd.)
)

**&size(21){数理解析分野};   &size(12){ - 応用可積分系:可積分系によるアルゴリズム開発 };[#sc84cb37]

従来からアルゴリズムは主にコンピュータサイエンスの対象でしたが、 1990年代になって様々のアルゴリズムに共通して可積分系の構造が見いだされるようになりました。「応用可積分系」として、可積分系とそのアルゴリズムへの応用、とりわけ、高速高精度な行列特異値分解、可積分系の離散化の手法、直交多項式や特殊関数など可積分系の古典解析学を研究しています。

**&size(21){離散数理分野};   &size(12){ - 離散数学の問題の複雑さの解明とアルゴリズムの開発 }; [#w71aad75]

システムを表現するグラフ・ネットワーク、生産の効率化を計るスケジューリング、大量のデータの論理的解析など、離散数学の話題は応用と密着しています。これらの問題の計算の複雑さの解明と、タブー探索、遺伝アルゴリズム、アニーリング法などのメタ・ヒューリスティクスを含めた、新しいアルゴリズムの開発を目指しています。

**&size(21){最適化数理分野};   &size(12){ - 最適化は問題解決のキーワード }; [#ab315b65]

現実の様々な問題を解決するための数理的な方法論として非常に重要な役割を果たしている最適化の理論と手法について教育・研究します。特に、数理計画や待ち行列理論などの基礎研究とともに、現実の大規模システム、複雑な非線形システム、不確実性を含むシステムなどに対する新しい数理最適化のアプローチの開発を行ないます。

**&size(21){制御システム論分野};   &size(12){ - 制御とモデリングへの数理的アプローチ }; [#o9515ff3]

発展性と実用性を重視した制御の理論を構築することを目標として、制御システムのモデリング、解析、設計における数理的手法とその応用に関する教育・研究を行います。主なテーマは、ロバスト制御、デスクリプタシステムの最適制御、スペクトル分解、リカッチ方程式、確率実現、システム同定です。さらに化学プロセスを対象としたモデリングと制御に関する企業との共同研究も実施しています。

**&size(21){物理統計学分野};   &size(12){ - 多要素結合系におけるダイナミクスの数理と情報処理 }; [#md7b67b7]

多くの要素が強く相互作用することにより生起する複雑多様な現象の数理的、統一的な理解と情報処理への応用を目標とします。例えば、生体高分子の折り畳みや分子モーター・脳を構成するニューロンによる情報処理・熱雑音による拡散や化学反応等に対する多要素強結合系モデルの動的性質を、(非)平衡統計力学、計算機実験、確率過程理論、力学系理論等を用いて解析します。

**&size(21){力学系理論分野};   &size(12){ - 力学系を通してシステムを考察する }; [#j17f08be]

力学系の数学や微分幾何学を応用して、ダイナミカルシステムの数理物理学的構造を解明します。例えば、力学系の分岐理論や、多体系の微分幾何学的構造、古典力学と量子力学の対応、力学系への変換群の作用などがあげられます。また、工学的応用研究として、非ホロノーム拘束をもつ力学系の制御問題を微分幾何学の概念を利用して解析します。

**&size(21){数理ファイナンス}; (協力講座)   &size(12){ - 金融市場の数理モデルの構成・解析 }; [#m9a45de9]

金融市場の数理モデルを構成し、その解析を通して金融市場の現象の説明や意思決定のための指標を与えることを試みます。その際重要な武器になるのは、確率微分・積分(方程式)といった確率解析(stochastic calculus; 伊藤解析とも呼ばれる)の諸概念・道具です。

**&size(21){応用数理モデル分野}; (連携ユニット)   &size(12){ -  情報システムに知を吹きこむ }; [#ca90345d]

情報システムをくらしや産業に役立たせるには,システムが扱う人々の行動やモノの運動特性を数理的にモデル化することが不可欠です.モデルの形は,概念的なものから精緻な数値モデルまで多岐にわたりますが,人間の知識の活用方法(構造化モデリング)や実データの活用方法(多変量解析)など,さまざまなモデル作りの方法論を産業界の実例で研究しています.