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An English Translation:

Graph Theory
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Let G = (V, E) denote a simple undirected graph with a vertex set V and an edge set

E, and let each edge ¢ € E be weighted by a real number w(e). A cut-set of G is a
minimal subset F' of E such that (V, E — F) is disconnected. Prove or disprove each of

the following propositions in (i)-(iv), giving a proof or a counterexample.

(i) Let K be a cut-set in G, and let a be an edge in K which has the minimum weight.

Then any minimum spanning tree of G contains edge a.

(ii) Let A be a cut-set in G, and let a be an edge in K which has the minimum weight.

Then G has a minimum spanning tree which contains edge a.

(iii) Let K be a cut-set in G, and let b be an edge in K which has the maximum weight.

Then G has a minimum spanning tree which does not contain edge b.

(iv) Let C be a cycle in G, and let a be an edge in C' which has the minimum weight.

Then G has a minimum spanning tree which contains edge a.



