力学系数学

6

n を自然数，$i j$ 成分が

$$
a_{i j}(t)= \begin{cases}1 & (i=j \text { のとき }) ; \\ t & (i=j+1 \text { のとき }) ; \\ 0 & (\text { 上記以外 })\end{cases}
$$

の n 次正方行列を $A(t)$ として，$t>0$ において n 元連立線形微分方程式

$$
\frac{d x}{d t}=\frac{1}{t} A(t) x, \quad x \in \mathbb{R}^{n}
$$

を考える。以下の問いに答えよ。
（i）$n=1$ のとき一般解を求めよ．
（ii）$n=2$ のとき一般解を求めよ．
（iii）任意の自然数 n に対して一般解を求めよ。

An English Translation:

Mathematics for Dynamical Systems

6

Let n be a positive integer and let $A(t)$ be an $n \times n$ matrix whose $i j$-component is given by

$$
a_{i j}(t)= \begin{cases}1 & (\text { for } i=j) \\ t & \text { (for } i=j+1) \\ 0 & \text { (otherwise) }\end{cases}
$$

Consider the n-dimensional system of differential equations

$$
\frac{d x}{d t}=\frac{1}{t} A(t) x, \quad x \in \mathbb{R}^{n} .
$$

Here $t>0$. Answer the following questions.
(i) Obtain a general solution when $n=1$.
(ii) Obtain a general solution when $n=2$.
(iii) Obtain a general solution when n is an arbitrary positive integer.

