グラフ理論

2

G=(V,E) を節点集合 V,枝集合 E から成る単純有向グラフとする. R(u;G) を G において節点 u から有向路で到達できる節点の集合と定め, $\operatorname{dist}(u,v;G)$ を節点 u から節点 v へ至る G の有向路の最短の長さとする. $v \notin R(u;G)$ のときは $\operatorname{dist}(u,v;G) \triangleq |V|$ と定める. 有向グラフ G から有向枝 $e \in E$ を削除した有向グラフを G-e と記す. s,t を V の二つの節点とする. G は隣接リストにより貯えられているとする. 以下の問いに答えよ.

- (i) $t \in \mathbf{R}(s;G)$ と仮定する. 節点 s から節点 t へ至る有向路で最短のものを求める O(|V|+|E|) 時間アルゴリズムを与えよ.
- (ii) $\operatorname{dist}(s,t;G-e)>\operatorname{dist}(s,t;G)$ を満たす有向枝 $e\in E$ が存在するかどうかを判定する O(|V|+|E|) 時間アルゴリズムを与えよ.
- (iii) $\operatorname{dist}(s,t;G) = \operatorname{dist}(t,s;G) = 3 < \operatorname{dist}(s,t;G-e) = \operatorname{dist}(t,s;G-e)$ である二節点 $s,t \in V$,有向枝 $e \in E$ をもつ有向グラフ G = (V,E) の例を作成せよ.

An English Translation:

Graph Theory

2

Let G = (V, E) be a simple directed graph with a vertex set V and an edge set E. Let R(u; G) denote the set of vertices reachable from a vertex u by a directed path in G and dist(u, v; G) denote the shortest length of a path from a vertex u to a vertex v in G, where we set $dist(u, v; G) \triangleq |V|$ if $v \notin R(u; G)$. Let G - e denote the directed graph obtained from G by removing a directed edge $e \in E$. Let s and t be two vertices in V. Assume that G is stored in adjacency lists. Answer the following questions.

- (i) Assume that $t \in R(s; G)$. Give an O(|V| + |E|)-time algorithm that computes a directed path with the shortest length from s to t.
- (ii) Give an O(|V| + |E|)-time algorithm that tests whether there exists a directed edge $e \in E$ such that $\operatorname{dist}(s, t; G e) > \operatorname{dist}(s, t; G)$.
- (iii) Construct an example of a directed graph G = (V, E) that contains two vertices $s, t \in V$ and a directed edge $e \in E$ such that $\operatorname{dist}(s, t; G) = \operatorname{dist}(t, s; G) = 3 < \operatorname{dist}(s, t; G e) = \operatorname{dist}(t, s; G e)$.