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An English Translation:

Graph Theory
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Let G = (V, E) be a simple directed graph with a vertex set V' and an edge set E. Let

R(u; G) denote the set of vertices reachable from a vertex u by a directed path in G and
dist(u, v; G) denote the shortest length of a path from a vertex u to a vertex v in G, where
we set dist(u,v;G) 2 |V|if v € R(u; G). Let G — e denote the directed graph obtained
from G by removing a directed edge e € E. Let s and t be two vertices in V. Assume

that G is stored in adjacency lists. Answer the following questions.

(i) Assume that ¢t € R(s;G). Give an O(|V| + |E|)-time algorithm that computes a
directed path with the shortest length from s to ¢.

(ii) Give an O(|V|+ |E|)-time algorithm that tests whether there exists a directed edge
e € F such that dist(s, ;G — e) > dist(s, t; G).

(iii) Construct an example of a directed graph G = (V, E) that contains two vertices
s,t € V and a directed edge e € E such that dist(s,t;G) = dist(t,s;G) = 3 <
dist(s,t; G — e) = dist(t, s; G — e).



