常微分方程式

6

 $a,b \in \mathbb{R}$ を定数として次の実微分方程式を考える.

$$t\frac{d^2x}{dt^2} + (at+b)\frac{dx}{dt} + x = 0 \tag{1}$$

X を t の有理関数,式 (1) の解およびそれらの高階導関数の有理式全体からなる集合とする.特に,X は式 (1) の任意の解の 2 階導関数を含む.次の条件を満たす全単射写像 $\sigma: X \to X$ 全体の集合を G で表す.

- (A1) 任意の $f,g \in X$ に対して $\sigma(f+g) = \sigma(f) + \sigma(g)$ および $\sigma(fg) = \sigma(f)\sigma(g)$ が成立
- (A2) 任意の有理関数 f に対して $\sigma(f) = f$ が成立
- (A3) 任意の $f \in X$ に対して $\frac{d}{dt}\sigma(f) = \sigma\left(\frac{df}{dt}\right)$ が成立

 $x = e^t$ が式 (1) の解であるとき、以下の問いに答えよ.

- (i) 定数 *a*, *b* を定めよ.
- (ii) $x = e^t$ と 1 次独立な解 $x = \phi(t)$ を一つ求めよ.
- (iii) x(t) が解のとき $\sigma(x(t))$ も解であることを示せ.
- (iv) $\phi(t)$ を (ii) で求めた解とする. (iii) により、任意の $\sigma \in G$ に対して、ある定数 $a_{ij}(\sigma) \in \mathbb{R}$ (i,j=1,2) が存在して

$$\sigma(e^t) = a_{11}(\sigma)e^t + a_{12}(\sigma)\phi(t), \quad \sigma(\phi(t)) = a_{21}(\sigma)e^t + a_{22}(\sigma)\phi(t)$$

が成立する.各 i,j=1,2 に対して (i,j) 成分が $a_{ij}(\sigma)$ の 2 次正方行列を $A(\sigma)$ と表す.このとき,任意の $\sigma_1,\sigma_2\in G$ に対して $A(\sigma_1)A(\sigma_2)=A(\sigma_2)A(\sigma_1)$ が成立することを示せ.

An English Translation:

Ordinary Differential Equations

6

Let $a, b \in \mathbb{R}$ be constants and consider the real differential equation

$$t\frac{d^2x}{dt^2} + (at+b)\frac{dx}{dt} + x = 0.$$

$$\tag{1}$$

Let X be the set of all rational expressions of rational functions of t, solutions to equation (1) and their derivatives of any order. In particular, X contains the second-order derivative of any solution to equation (1). Let $\sigma: X \to X$ be a bijective map satisfying the following conditions:

- (A1) For any $f, g \in X$, $\sigma(f+g) = \sigma(f) + \sigma(g)$ and $\sigma(fg) = \sigma(f)\sigma(g)$;
- (A2) For any rational function f, $\sigma(f) = f$;

(A3) For any
$$f \in X$$
, $\frac{d}{dt}\sigma(f) = \sigma\left(\frac{df}{dt}\right)$.

Let G denote the set of all such maps. Assume that $x = e^t$ is a solution to equation (1). Answer the following questions.

- (i) Determine the constants a and b.
- (ii) Obtain a solution $x = \phi(t)$ which is linearly independent of $x = e^t$.
- (iii) Show that $\sigma(x(t))$ is a solution if x(t) is so.
- (iv) Let $\phi(t)$ be the solution obtained in (ii). From (iii) we see that for any $\sigma \in G$ there exist some constants $a_{ij}(\sigma) \in \mathbb{R}$ (i, j = 1, 2) such that

$$\sigma(e^t) = a_{11}(\sigma)e^t + a_{12}(\sigma)\phi(t), \quad \sigma(\phi(t)) = a_{21}(\sigma)e^t + a_{22}(\sigma)\phi(t).$$

Let $A(\sigma)$ be a 2×2 matrix whose (i, j)-element is $a_{ij}(\sigma)$ for i, j = 1, 2. Then show that $A(\sigma_1)A(\sigma_2) = A(\sigma_2)A(\sigma_1)$ for any $\sigma_1, \sigma_2 \in G$.