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An English Translation:

Ordinary Differential Equations
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Let a,b € R be constants and consider the real differential equation
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d“x dx
= — = 0. 1
tdt2+(at+b)dt+:v 0 (1)

Let X be the set of all rational expressions of rational functions of ¢, solutions to equation
(1) and their derivatives of any order. In particular, X contains the second-order derivative
of any solution to equation (1). Let o : X — X be a bijective map satisfying the following

conditions:

(Al) For any f,g € X, o(f +g) = o(f) +o(g) and o(fg) = o(f)o(9);

(A2) For any rational function f, o(f) = f;

d d
(A3) For any f € X, %U(f) =0 (d—{;)

Let G denote the set of all such maps. Assume that = = e’ is a solution to equation (1).

Answer the following questions.
(i) Determine the constants a and b.
(ii) Obtain a solution x = ¢(¢) which is linearly independent of x = €.
(iii) Show that o(x(t)) is a solution if () is so.

(iv) Let ¢(t) be the solution obtained in (ii). From (iii) we see that for any ¢ € G there

exist some constants a;;(c) € R (¢, 7 = 1,2) such that

U(et) = an(a)et +an(0)o(t), o(o(t)) = G21(U>et + axn(0)o(t).

Let A(o) be a 2 x 2 matrix whose (4, j)-element is a;;(o) for 4, j = 1,2. Then show
that A(o1)A(02) = A(02)A(0y) for any 01,09 € G.



