制御理論

4

以下の問いに理由とともに答えよ.

(i) 図1の制御系を考える. ただし、P(s) は

$$P(s) = \frac{1 - s}{(s+1)^2}$$

で与えられる. またrは参照入力, dは外乱, uは制御入力, yは出力である.

- (a) P(s) のインパルス応答を求め、ゲイン線図の概略を描け.
- (b) r から y までの伝達関数が $\frac{1}{s^2+2s+2}$ となるような C(s) を求めよ. また、この C(s) を用いる場合の制御系の内部安定性を判定せよ.
- (ii) 状態方程式

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \ y(t) = Cx(t)$$

により与えられる線形システムを考える。ただし、 $x(t) \in \mathbb{R}^n$ は状態、 $u(t) \in \mathbb{R}$ は制御入力、 $y(t) \in \mathbb{R}$ は観測出力であり、 T は転置をあらわす。

(a) 任意のt > 0 に対して可制御性グラミアン

$$\int_0^t e^{-As} B B^{\top} e^{-A^{\top} s} ds$$

が正定値ならば、このシステムは可制御であることを証明せよ.

(b) u から y までの伝達関数が $\frac{1}{s^2}$ となるような,最小実現 (A,B,C) を 1 つ求めよ.

図1:制御系

An English Translation:

Control Theory

4

Answer the following questions. Show the derivation process.

(i) Figure 1 shows a control system, where P(s) is given by

$$P(s) = \frac{1 - s}{(s+1)^2}.$$

Here, r is the reference input, d is the disturbance, u is the control input, and y is the observation.

- (a) Find the impulse response of P(s) and sketch the gain diagram of P(s).
- (b) Find C(s) such that the transfer function from r to y is $\frac{1}{s^2 + 2s + 2}$. Determine the internal stability of the control system when the obtained C(s) is applied.
- (ii) Consider a linear dynamical system given by the state equation

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \ y(t) = Cx(t)$$

where $x(t) \in \mathbb{R}^n$ is a state vector, $u(t) \in \mathbb{R}$ is a control input, $y(t) \in \mathbb{R}$ is an observation output, and \top denotes transposition.

(a) Prove that the system is controllable if the controllability Gramian

$$\int_0^t e^{-As} B B^{\mathsf{T}} e^{-A^{\mathsf{T}} s} ds$$

is positive definite for arbitrary t > 0.

(b) Find a minimal realization (A,B,C) such that the transfer function from u to y is $\frac{1}{s^2}$.

Figure 1: Control system