凸最適化

3

 $f: \mathbb{R}^n \to \mathbb{R}$ を連続的微分可能な凸関数とする. さらに、 \mathbf{A} を $m \times n$ の行列とし、 \mathbf{b} を m 次元ベクトルとする.

次の凸最適化問題 (P) を考える.

(P) Minimize
$$f(x)$$

subject to $Ax = b$
 $x \ge 0$

ただし、決定変数は $x \in \mathbb{R}^n$ である. 問題 (P) は最適解をもつと仮定する. さらに、 X^* を問題 (P) の最適解の集合とする.

以下の問いに答えよ.

(i) 任意の $x, y \in \mathbb{R}^n$ に対して、次の不等式が成り立つことを示せ、

$$(\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}))^{\top} (\boldsymbol{x} - \boldsymbol{y}) \ge 0$$

- (ii) 問題 (P) のカルーシュ・キューン・タッカー (Karush-Kuhn-Tucker) 条件を書け.
- (iii) $x^* \in X^*$ とする.次の線形計画問題 (Q) を考える.

(Q) Minimize
$$\nabla f(\boldsymbol{x}^*)^{\top} \boldsymbol{y}$$

subject to $\boldsymbol{A} \boldsymbol{y} = \boldsymbol{b}$
 $\boldsymbol{y} \geq \boldsymbol{0}$

ただし、決定変数は $\mathbf{y} \in \mathbb{R}^n$ である. 問題 (\mathbf{Q}) の双対問題を書け、さらに、問題 (\mathbf{Q}) が最適解を持つことを示せ、

(iv) 任意の $x^*, y^* \in X^*$ に対して、以下の式が成り立つことを示せ、

$$(\nabla f(\boldsymbol{x}^*) - \nabla f(\boldsymbol{y}^*))^{\top} (\boldsymbol{x}^* - \boldsymbol{y}^*) = 0$$

An English Translation:

Convex Optimization

3

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable convex function. Moreover, let \boldsymbol{A} and \boldsymbol{b} be an $m \times n$ matrix and an m-dimensional vector, respectively.

Consider the following convex optimization problem (P):

(P) Minimize
$$f(x)$$

subject to $Ax = b$
 $x \ge 0$,

where the decision variable is $\boldsymbol{x} \in \mathbb{R}^n$. Suppose that problem (P) has an optimal solution. Let X^* be the set of optimal solutions of problem (P).

Answer the following questions.

(i) Show that the following inequality holds for any $x, y \in \mathbb{R}^n$.

$$(\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}))^{\top} (\boldsymbol{x} - \boldsymbol{y}) \ge 0.$$

- (ii) Write out Karush-Kuhn-Tucker conditions of problem (P).
- (iii) Let $x^* \in X^*$. Consider the following linear programming problem (Q):

(Q) Minimize
$$\nabla f(\boldsymbol{x}^*)^{\top} \boldsymbol{y}$$

subject to $\boldsymbol{A} \boldsymbol{y} = \boldsymbol{b}$
 $\boldsymbol{y} \geq \boldsymbol{0},$

where the decision variable is $\mathbf{y} \in \mathbb{R}^n$. Write out a dual problem (Q). Moreover, show that problem (Q) has an optimal solution.

(iv) Show that the following equation holds for any $x^*, y^* \in X^*$:

$$(\nabla f(\boldsymbol{x}^*) - \nabla f(\boldsymbol{y}^*))^{\top} (\boldsymbol{x}^* - \boldsymbol{y}^*) = 0.$$