線形制御理論

4

図1で示す筒型の撹拌タンクを考える.左の管からは,定数濃度 c_1 [mol/m³] の溶液が流量 q_1 [m³/sec] で,右の管からは,定数濃度 c_2 [mol/m³] の溶液が流量 q_2 [m³/sec] で,それぞれタンクに流れ込んで,瞬時に撹拌され,一様な濃度 c [mol/m³] をもつものとする.筒型タンクの底面積は A [m²] であり,流出口の断面積は S [m²] とする.流出口での流量 f [m³/sec] はトリチェリの定理に従っており, $f = S\sqrt{2gh}$ を満たすものとする.ただし h [m] は液面位,g [m/sec²] は重力加速度である.

流量を一定値 $q_1=q_{1,0},\ q_2=q_{2,0}$ とするとき,液面位は $h=h_0$,タンク内濃度は $c=c_0$ で平衡状態にあるものとする.各定数は表1の値をとるものとして,以下の問いに 答えよ.

- (i) 平衡液面位 ho と平衡濃度 co を求めよ.
- (ii) 流量が $q_1 = q_{1,0} + u$, $q_2 = q_{2,0} + v$ と変化したとき,液面位が $h = h_0 + x$, 濃度が $c = c_0 + y$ と変化するものとする. (i) で求めた平衡状態周りの線形近似モデルを考えるとき,u から x, u から y, v から x, およびv から y への伝達関数をそれぞれ求めよ.
- (iii) (ii) の線形近似モデルに対して、 $u = -k_1 x$, $v = -k_2 y$ と線形フィードバック則を与えるとき、閉ループ系を安定にするゲイン (k_1, k_2) の集合を求めよ.

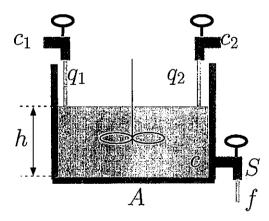


図 1: 撹拌タンク

表 1: 各定数の値 g 9.8 c_1 100 c_2 800 0.01 A 2

 $q_{1,0}$

 $q_{2,0}$

0.05

0.02

Linear Control Theory

4

Fig. 1 shows a stirred tank. The tank is fed with two incoming flows with time-varying flow rates q_1 [m³/sec] and q_2 [m³/sec]. Both feeds contain dissolved material with constant concentrations c_1 and c_2 . Assume that the material is stirred instantaneously and the time-varying concentration c [mol/m³] of the solution in the tank is uniform. The cylinder-shaped tank has constant cross-sectional area A [m²]. Assume further that the outgoing flow f [m³/sec] obeys the Torricelli's theorem, namely, $f = S\sqrt{2gh}$, where S [m²] is the cross-sectional area of the flow, g [m/sec²] is the gravitational acceleration, and h [m] is the height of the liquid.

Let $h = h_0$ and $c = c_0$ be the height and concentration of the solution in equilibrium when the incoming flows $q_1 = q_{1,0}$ and $q_2 = q_{2,0}$ are constant. The values of the constants are given in Table 1. Answer the following questions.

- (i) Calculate the height and the concentration of the solution in equilibrium.
- (ii) When the constant incoming flows $q_{1,0}$ and $q_{2,0}$ are perturbed by u and v, *i.e.*, $q_1 = q_{1,0} + u$ and $q_2 = q_{2,0} + v$, the height and the concentration of the solution become $h = h_0 + x$ and $c = c_0 + y$, respectively. Consider the approximated linear model around the equilibrium point calculated in (i). Derive the transfer functions from u to x, u to y, v to x, and v to y.
- (iii) Determine the set of stabilizing gains (k_1, k_2) when the linear feedback control law $u = -k_1 x$ and $v = -k_2 y$ is applied to the approximated linear model derived in (ii).

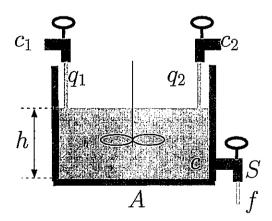


Fig.1: Stirred tank

Table 1: Constants

g	9.8
c_1	100
c_2	800
S	0.01
A	2
$q_{1,0}$	0.05
$q_{2,0}$	0.02