アルゴリズム基礎

2

 $\overline{\mathbb{R}}$ $\overline{$

- (i) A の要素を $A[1] \le A[2] \le \cdots \le A[n]$ となるように整列するマージソート (Merge Sort) を与えよ. これの最悪計算時間を示し、理由も述べよ.
- (ii) A の要素がすでに $A[1] \le A[2] \le \cdots \le A[n]$ となるように整列されているとする. このとき,A[i] + 2A[j] = A[i] + 3A[k] = 0 を満たす i, j, k $(1 \le i, j, k \le n)$ が存在 するかどうかを O(n) 時間で判定するアルゴリズムを示せ.

An English Translation:

Data Structures and Algorithms

2

 $\overline{\text{Given}}$ an array A of n integers, answer the following questions.

- (i) Show a Merge Sort algorithm that sorts the elements in A in such a way that $A[1] \leq A[2] \leq \cdots \leq A[n]$ after sorting. Evaluate its worst-case running time.
- (ii) Assume that the elements in A are already sorted so that $A[1] \leq A[2] \leq \cdots \leq A[n]$ holds. Show an O(n)-time algorithm that determines whether or not there exist indices i, j and k $(1 \leq i, j, k \leq n)$ such that A[i] + 2A[j] = A[i] + 3A[k] = 0.