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Let G = (V, E) denote a simple connected undirected graph with a vertex set ¥ and an

edge set I, and let N(u) denote the set of neighbors of a vertex u in G. For a subgraph
H of G, let distg(u,v) denote the number of edges in a shortest path from a vertex u to
a vertex v in H, and let oy(u,v) denote the number of shortest paths from a vertex u to
a vertex v in f. For a start vertex s € V, let T" denote a spanning tree of G obtained by

the breadth-first search executed from s. Answer the following questions.

(i) Show how to compute in O(|V|} time dmax = max{distg(s,u) | v € V} and V; =
{u eV |distg(s,u) =i},i=0,1,..., dpax from T

(ii) Show how to compute in O(|E|) time all values in {og(s,u) | u € V}.

(iif) A vertex t € V' — {s} and a subset A & V — {s,t} are given. Show how to compute
in O(|E]) time the number of shortest paths from s to ¢ in G which pass through

at least one vertex in A.

(iv) A vertex t € V — {s} and a subset A C V — {s,¢} are given. Show how to test in
O(|Z]) time whether there is a shortest path from s to ¢ in G’ which passes through

at least two vertices in A.



