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An English Translation:

Linear Control Theory
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Consider the linear continuous-time system described by the transfer function
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where a and b are real constants. Answer the following questions.

(i) Let u(t) and y(f) be the input and output of this system at time {, respectively.
Find the value of a and b such that the impulse response has its maximum at the
time ¢ = w/4, and that y{l) converges to a sinusoid with the amplitude 1 when

u(t) = sint.

Figure 1 shows a control system, where P(s) is given as above, a and b are the values
obtained in (i), and K is a nonzero real constant. Let 7(s) be the transfer function of

the system with input r(¢) and output y(t).

(ii) Compute T'(s) and determine the range of X for which this system is stable.

(iii) Determine whether there exists K such that every pole of T(s) has the real part
less than or equal to —0.5. Determine whether there exists K such that every pole

of T'(s} has the real part less than —1. The derivation process should be shown.

T+ K Yy
— P(s)

Figure 1. Control system



