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Abstract In this paper, we consider the stochastic mathematical programs with equilibrium
constraints, which includes two kinds of models called here-and-now and lower-level wait-and-
see problems. We present a combined smoothing implicit programming and penalty method for
the problems with a finite sample space. Then, we suggest a quasi-Monte Carlo approximation
method for solving a problem with continuous random variables. A comprehensive convergence
theory is included as well. We further report numerical results with the so-called picnic vender
decision problem.
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1 Introduction

Mathematical program with equilibrium constraints (MPEC) is a constrained optimization prob-
lem in which the essential constraints are defined by a parametric variational inequality. This
problem can be regarded as a generalization of a bilevel programming problem and it therefore
plays an important role in many fields such as engineering design, economic equilibrium, multi-
level game, and mathematical programming itself. For more details, see the monograph of Luo
et al [12] and the references therein.

In [9], the authors considered stochastic mathematical programs with equilibrium constraints
(SMPECs). As the bilevel nature of MPECs allows the uncertainty to enter at different levels,
the authors give two formulations of SMPECs in [9]. In the first formulation, only the upper-
level decision is made under an uncertain circumstance, and the lower-level decision is made
after the random event ω is observed. This results in the following problem, which is called the
lower-level wait-and-see model:

minimize Eω[f(x, y(ω), ω)]

subject to x ∈ X, (1.1)

y(ω) solves VI(F (x, ·, ω), C(x, ω)), ω ∈ Ω a.e.,
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where X ⊆ <n, f : <n+m × Ω → <, F : <n+m × Ω → <m, C : <n × Ω → 2<
m

, Eω means
expectation with respect to the random variable ω ∈ Ω, “a.e.” is the abbreviation for “almost
everywhere”, and VI(F (x, ·, ω), C(x, ω)) denotes the variational inequality defined by the pair
(F (x, ·, ω), C(x, ω)). Note that the wait-and-see model [18] in the classical stochastic program-
ming study is not an optimization problem. However, the lower-level wait-and-see model (1.1)
is an optimization problem in which essential variables consist of the upper-level decision x.

When C(x, ω) ≡ <m
+ for any x ∈ X and almost every ω ∈ Ω in problem (1.1), the variational

inequality constraints reduce to the complementarity constraints and problem (1.1) is equivalent
to the following stochastic mathematical program with complementarity constraints:

minimize Eω[f(x, y(ω), ω)]

subject to x ∈ X, (1.2)

y(ω) ≥ 0, F (x, y(ω), ω) ≥ 0,

y(ω)TF (x, y(ω), ω) = 0, ω ∈ Ω a.e.

On the other hand, if the set-valued function C in problem (1.1) is defined by C(x, ω) := {y ∈
<m| c(x, y, ω) ≤ 0}, where c(·, ·, ω) is continuously differentiable, then, under some suitable
conditions, VI(F (x, ·, ω), C(x, ω)) has an equivalent Karush-Kuhn-Tucker representation

F (x, y(ω), ω) +∇yc(x, y(ω), ω)λ(x, ω) = 0,

λ(x, ω) ≥ 0, c(x, y(ω), ω) ≤ 0, λ(x, ω)T c(x, y(ω), ω) = 0,

where λ(x, ω) is the Lagrange multiplier vector [14]. As a result, problem (1.1) can be reformu-
lated as a program like (1.2) under some conditions, see [12] for more details. Hence, problem
(1.2) constitutes an important subclass of SMPECs.

Another formulation that we are particularly interested in is the following problem that
requires us to make all decisions at once, before ω is observed:

minimize Eω[f(x, y, ω) + dT z(ω)]

subject to x ∈ X,
y ≥ 0, F (x, y, ω) + z(ω) ≥ 0, (1.3)

yT (F (x, y, ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.e.

Here, both the decisions x and y are independent of the random variable ω, z(ω) is called a
recourse variable, and d ∈ <m is a vector with positive elements. We call (1.3) a here-and-now
model. Compared with the lower-level wait-and-see model (1.2), the here-and-now model (1.3)
involves more variables and hence seems more difficult to deal with. Moreover, a feasible vector
y in (1.3) is required to satisfy the complementarity condition for almost all ω ∈ Ω, which
is different from the ordinary complementarity condition if Ω has more than one realization.
Because of this restriction, some results for MPECs cannot be applied to (1.3) directly. Special
new treatment has to be developed.

In [9], the authors proposed a smoothing implicit programming approach for solving the
SMPECs with a finite sample space. Subsequently, there have been a number of attempts
[2, 10, 11, 16, 17, 19] to deal with various models of SMPECs. In particular, Lin and Fukushima
[10, 11] suggested a smoothing penalty method and a regularization method, respectively, for
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a special class of here-and-now problems. Shapiro and Xu [16, 17, 19] discussed the sample
average approximation and implicit programming approaches for the lower-level wait-and-see
problems. In addition, Birbil et al [2] considered an SMPEC in which both the objective and
constraints involve expectations.

In this paper, we will mainly consider the here-and-now model (1.3). Especially, unlike our
past work [9, 10, 11], we will also deal with an SMPEC with continuous random variables. In
Section 3, we describe the combined smoothing implicit programming and penalty method pro-
posed in [9] for the discrete SMPECs and, in Section 4, we suggest a quasi-Monte Carlo method
to discretize the here-and-now problem with continuous random variables. Comprehensive con-
vergence theory is established as well. In Section 5, we give some numerical experiments with
the so-called picnic-vender decision problem. This appears to be the first attempt to report
numerical results for SMPECs in the literature.

Notation used in the paper: Throughout, all vectors are thought as column vectors and x[i]
stands for the ith coordinate of x ∈ <n. For a matrix M and an index set K, we let M [K]
be the principal submatrix of M whose elements consist of those of M indexed by K. For
any vectors u and v of the same dimension, we denote u⊥v to mean uT v = 0. For a given
function F : <n → <m and a vector x ∈ <n, ∇F (x) is the transposed Jacobian of F at x and
IF (x) := {i | Fi(x) = 0} stands for the active index set of F at x. In addition, I and O denote
the identity matrix and the zero matrix with suitable dimension, respectively.

2 Preliminaries

In this section, we recall some basic concepts and properties that will be used later on. First we
consider the standard smooth nonlinear programming problem:

minimize f(z)

subject to ci(z) ≤ 0, i = 1, · · · , t, (2.1)

ci(z) = 0, i = t+ 1, · · · , ν.

We will use the standard definition of stationarity, i.e., a feasible point z is said to be stationary
to (2.1) if there exists a Lagrange multiplier vector λ ∈ <ν satisfying the Karush-Kuhn-Tucker
conditions

∇f(z) +∇c(z)λ = 0,

λ[i] ≥ 0, λ[i]ci(z) = 0, i = 1, · · · , t.

We next consider the mathematical program with complementarity constraints:

minimize f(z)

subject to g(z) ≤ 0, h(z) = 0, (2.2)

G(z) ≥ 0, H(z) ≥ 0,

G(z)TH(z) = 0,

where f : <s → <, g : <s → <s1 , h : <s → <s2 , and G,H : <s → <s3 are all continuously
differentiable functions. Let Z denote the feasible region of the MPEC (2.2).

It is well-known that the MPEC (2.2) fails to satisfy a standard constraint qualification (CQ)
at any feasible point [5], which causes a difficulty in dealing with MPECs by a conventional

3



nonlinear programming approach. The following special CQ turns out to be useful in the study
of MPECs.

Definition 2.1 The MPEC-linear independence constraint qualification (MPEC-LICQ) is said
to hold at z̄ ∈ Z if the set of vectors{

∇gl(z̄),∇hr(z̄),∇Gi(z̄),∇Hj(z̄)
∣∣∣ l ∈ Ig(z̄), r = 1, · · · , s2, i ∈ IG(z̄), j ∈ IH(z̄)

}
is linearly independent.

Definition 2.2 [15] (1) z̄ ∈ Z is called a Clarke or C-stationary point of problem (2.2) if there
exist multiplier vectors λ̄ ∈ <s1 , µ̄ ∈ <s2 , and ū, v̄ ∈ <s3 such that λ̄ ≥ 0 and

∇f(z̄) +
∑

i∈Ig(z̄)

λ̄[i]∇gi(z̄) +
s2∑

i=1

µ̄[i]∇hi(z̄)−
∑

i∈IG(z̄)

ū[i]∇Gi(z̄)−
∑

i∈IH(z̄)

v̄[i]∇Hi(z̄) = 0, (2.3)

ū[i]v̄[i] ≥ 0, i ∈ IG(z̄) ∩ IH(z̄). (2.4)

(2) z̄ ∈ Z is called a strongly or S-stationary point of problem (2.2) if there exist multiplier
vectors λ̄, µ̄, ū, and v̄ such that (2.3) holds with

ū[i] ≥ 0, v̄[i] ≥ 0, i ∈ IG(z̄) ∩ IH(z̄).

It is easy to see that S-stationarity implies C-stationarity. Moreover, under the strict com-
plementarity condition (namely, IG(z̄) ∩ IH(z̄) = ∅), they are equivalent.

Definition 2.3 [6] Suppose that M is an m×m matrix.
(1) We call M a P-matrix if all the principal minors of M are positive, or equivalently,

max
1≤i≤m

y[i](My)[i] > 0, 0 6= ∀y ∈ <m,

and we call M a P0-matrix if all the principal minors of M are nonnegative, or equivalently,

max
1≤i≤m

y[i](My)[i] ≥ 0, ∀y ∈ <m.

(2) We call M is a nondegenerate matrix if all of its principal submatrices are nonsingular.
(3) We call M an R0-matrix if

y ≥ 0, My ≥ 0, yTMy = 0 =⇒ y = 0.

Obviously a P-matrix is a P0-matrix and a nondegenerate matrix. Moreover, it is easy to
see that a P-matrix is an R0-matrix. If M is a P0-matrix and µ is any positive number, then
the matrix M + µI is a P-matrix.

For given N ∈ <m×n, M ∈ <m×m, q ∈ <m, and two positive scalars ε and µ, we define

Φε,µ(x, y, w;N,M, q) :=


Nx+ (M + εI)y + q − w

φµ(y[1], w[1])
...

φµ(y[m], w[m])

 , (2.5)

where φµ : <2 → < is the perturbed Fischer-Burmeister function defined by φµ(a, b) := a+ b−√
a2 + b2 + 2µ2. Then we have the following well-known result [4].
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Theorem 2.1 Suppose that M is a P0-matrix. Then, for given x ∈ <n, ε > 0, and µ > 0, we
have the following statements:

(i) The function Φε,µ defined by (2.5) is continuously differentiable with respect to (y, w)
and the Jacobian matrix ∇(y,w)Φε,µ(x, y, w;N,M, q) is nonsingular everywhere;

(ii) The equation Φε,µ(x, y, w;N,M, q) = 0 has a unique solution (y(x, ε, µ), w(x, ε, µ)), which
is continuously differentiable with respect to x and satisfies

y(x, ε, µ) > 0, w(x, ε, µ) > 0,

y(x, ε, µ)[i]w(x, ε, µ)[i] = µ2, i = 1, · · · ,m.

In the rest of the paper, to mitigate the notational complication, we assume ε = µ and denote
Φε,µ, y(x, ε, µ), and w(x, ε, µ) by Φµ, y(x, µ), and w(x, µ), respectively. Our analysis will remain
valid, however, even though the two parameters are treated independently.

Suppose that M is a P0-matrix and µ > 0. Theorem 2.1 indicates that the smooth equation

Φµ(x, y, w;N,M, q) = 0 (2.6)

gives two smooth functions y(·, µ) and w(·, µ). Note that

φµ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = µ2.

As a result, the equation (2.6) is equivalent to the system

y ≥ 0, Nx+ (M + µI)y + q ≥ 0, (2.7)

y[i]
(
Nx+ (M + µI)y + q

)
[i] = µ2, i = 1, · · · ,m

in the sense that y(x, µ) solves (2.7) if and only if

Φµ(x, y(x, µ), w(x, µ);N,M, q) = 0,

where w(x, µ) := Nx + (M + µI)y(x, µ) + q. Since (2.7) with µ = 0 reduces to the linear
complementarity problem

y ≥ 0, Nx+My + q ≥ 0, yT (Nx+My + q) = 0, (2.8)

we see that y(x, µ) tends to a solution of (2.8) as µ→ 0, provided that it is convergent.
In our analysis, we will assume that y(x, µ) is bounded as µ → 0. In particular, if M is a

P-matrix, then (2.8) has a unique solution for any x and it can be shown that y(x, µ) actually
converges to it as µ→ 0, even without using the regularization term µI in (2.7), see [4].

3 Combined Smoothing Implicit Programming and Penalty Method
for Discrete Here-and-Now Problems

In this section, we consider the following here-and-now problem:

minimize
L∑

`=1

p`

(
f(x, y, ω`) + dT z`

)
subject to g(x) ≤ 0, h(x) = 0,

y ≥ 0, N`x+M`y + q` + z` ≥ 0, (3.1)

yT (N`x+M`y + q` + z`) = 0,

z` ≥ 0, ` = 1, · · · , L,
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which corresponds to the discrete case where Ω := {ω1, ω2, · · · , ωL}. The problem with continu-
ous random variables will be considered in the next section. In (3.1), p` denotes the probability
of the random event ω` ∈ Ω, the functions f : <n+m → <, g : <n → <s1 , h : <n → <s2 are
all continuously differentiable, N` ∈ <m×n, M` ∈ <m×m, q` ∈ <m are realizations of the ran-
dom coefficients, d is a constant vector with positive elements, and z` is the recourse variable
corresponding to ω`. Throughout we assume p` > 0 for all ` = 1, · · · , L.

It is easy to see that problem (3.1) can be rewritten as

minimize
L∑

`=1

p`

(
f(x, y, ω`) + dT z`

)
subject to g(x) ≤ 0, h(x) = 0, z` ≥ 0,

N`x+M`y + q` + z` ≥ 0, ` = 1, · · · , L, (3.2)

y ≥ 0, Nx+My + q +
∑L

l=1zl ≥ 0,

yT (Nx+My + q +
∑L

l=1zl) = 0

with N :=
∑L

l=1Nl,M :=
∑L

l=1Ml, and q :=
∑L

l=1 ql, or equivalently,

minimize
L∑

`=1

p`f(x, y, ω`) + dTz

subject to g(x) ≤ 0, h(x) = 0,

y −Dy = 0, z ≥ 0, (3.3)

y ≥ 0, Nx+ My + q + z ≥ 0,

yT (Nx+ My + q + z) = 0,

where

y :=

 y1
...
yL

 , z :=

 z1
...
zL

 , d :=

 p1d
...

pLd

 , D :=

 I
...
I

 , (3.4)

and

N :=

N1
...
NL

 , M :=

M1 O
. . .

O ML

 , q :=

 q1
...
qL

 .

Note that both problems (3.2) and (3.3) are different from ordinary MPECs, because they
require y1 = y2 = · · · = yL. This restriction makes the problems harder to deal with than
ordinary MPECs. In particular, for any feasible point (x, y, z1, · · · , zL) of problem (3.2), (Nx+
My + q +

∑L
l=1zl)[i] = 0 implies that (N`x + M`y + q` + z`)[i] = 0 holds for every `. This

indicates that the MPEC-LICQ does not hold for problem (3.2) in general. On the other hand,
since L is usually very large in practice, problem (3.3) is a large-scale program with variables
(x, y,y, z) ∈ <n+(1+2L)m so that some methods for MPECs may cause more computational
difficulties.

In this section, we describe a combined smoothing implicit programming and penalty method
for solving the ill-posed MPEC (3.2) directly. This method was originally presented in an
unpublished paper [9]. For a complete analysis of the method, we give a somewhat detailed
presentation of the method in this paper. It is worth mentioning that a similar smoothing

6



method for ordinary MPECs with linear complementarity constraints has been considered in
[4]. However, several differences should be emphasized here: (a) In [4], the matrix M is assumed
to be a P-matrix, whereas in this paper, it is assumed to be a P0-matrix only; (b) In order to
make the new method applicable, in addition to smoothing, we employ a regularization technique
and a penalty technique.

As mentioned above, the MPEC-LICQ does not hold for problem (3.2) in general. From
now on, the MPEC-LICQ means the one for problem (3.3). On the other hand, because the
complementarity constraints in problem (3.2) are lower dimensional, we use them to generate
the subproblems.

3.1 SIPP method

Suppose that the matrix M in problem (3.2) is a P0-matrix. We denote by Λ the matrix
(I, · · · , I) ∈ <m×mL. For each (x, z) and µk > 0, let y(x,Λz, µk) and w(x,Λz, µk) solve

Φµk

(
x, y(x,Λz, µk), w(x,Λz, µk);N,M, q + Λz

)
= 0. (3.5)

The existence and differentiability of the above implicit functions follow from Theorem 2.1. Note
that the implicit functions are denoted by y(x,Λz, µk) and w(x,Λz, µk), rather than y(x, z, µk)
and w(x, z, µk), respectively. We then obtain an approximation of problem (3.2)

minimize
L∑

`=1

p`

(
f(x, y(x,Λz, µk), ω`) + dT z`

)
subject to g(x) ≤ 0, h(x) = 0, (3.6)

N`x+M`y(x,Λz, µk) + q` + z` ≥ 0,

z` ≥ 0, ` = 1, · · · , L.

Since the feasible region of problem (3.6) is dependent on µk, (3.6) may not be easy to solve.
Therefore, we apply a penalty technique to this problem and have the following approximation:

minimize θk(x, z) (3.7)

subject to g(x) ≤ 0, h(x) = 0, z ≥ 0,

where

θk(x, z) :=
L∑

`=1

p`f(x, y(x,Λz, µk), ω`) + dTz + ρk

L∑
`=1

ψ
(
− (N`x+M`y(x,Λz, µk) + q` + z`)

)
,

ρk is a positive parameter, ψ : <m → [0,+∞) is a smooth penalty function, and z` := (z[(` −
1)m+ 1], · · · , z[`m])T for each `. Some specific penalty functions will be given later. Note that,
unlike problem (3.6), the feasible region of problem (3.7) is common for all k.

Now we present our method, called the combined smoothing implicit programming and penalty
method (SIPP), for problem (3.2): Choose two sequences {µk} and {ρk} of positive numbers
satisfying

lim
k→∞

µk = 0, lim
k→∞

ρk = +∞, lim
k→∞

µkρk = 0. (3.8)

We then solve the problems (3.7) to get a sequence {(x(k), z(k))} and let

y(k) := y(x(k),Λz(k), µk).
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Note that, by Theorem 2.1, problem (3.7) is a smooth mathematical program. Moreover,
under some suitable conditions, (3.7) is a convex program, see [4] for details. Therefore, we may
expect that problem (3.7) may be relatively easy to deal with, provided the evaluation of the
function y`(x, µk) is not very expensive.

In what follows, we denote by F and X the feasible regions of problems (3.2) and (3.7), respec-
tively. Moreover, particular sequences generated by the method will be denoted by {x(k)}, {y(k)},
etc., while general sequences will be denoted by {xk}, {yk}, etc. Also, we use (3.4) to generate
some related vectors such as y(k),y∗, z(k), z∗, and so on.

3.2 Convergence results

We investigate the limiting behavior of a sequence generated by SIPP in this subsection. The
following lemma will be used later.

Lemma 3.1 [9] Suppose the matrix M in (3.2) is a P0-matrix and, for any bounded sequence
{(xk, zk)} in X , {y(xk,Λzk, µk)} is bounded. If (x∗, y∗, z∗) ∈ F and the submatrix M [K∗] is
nondegenerate, where K∗ := { i | (Nx∗+My∗+q+Λz∗)[i] = 0}, then there exist a neighborhood
U∗ of (x∗, y∗, z∗) and a positive constant π∗ such that

‖y(x,Λz, µk)− y‖ ≤ µkπ
∗(‖y‖+

√
m) (3.9)

holds for any (x, y, z) ∈ U∗ ∩ F and any k.
We first discuss the limiting behavior of local optimal solutions of problems (3.7).

Theorem 3.1 Let the matrix M in (3.2) be a P0-matrix, ψ : <m → [0,+∞) be a continuously
differentiable function satisfying

ψ(0) = 0, ψ(u) ≤ ψ(u′) for any u′ ≥ u in <m, (3.10)

and, for each bounded sequence {(xk, zk)} in X , {y(xk,Λzk, µk)} be bounded. Suppose that the
sequence {(x(k), y(k), z(k))} generated by SIPP with (x(k), z(k)) being a local optimal solution of
problem (3.7) is convergent to (x∗, y∗, z∗) ∈ F . If there exists a neighborhood V ∗ of (x∗, y∗, z∗)
such that (x(k), z(k)) minimizes θk over V ∗|X := {(x, z) ∈ X | ∃ y s.t. (x, y, z) ∈ V ∗} for all k
large enough and the submatrix M [K∗] is nondegenerate with K∗ being the same as in Lemma
3.1, then (x∗, y∗, z∗) is a local optimal solution of problem (3.2).

Proof. By Lemma 3.1, there exist a closed sphere B ⊆ V ∗ centered at the point (x∗, y∗, z∗)
with positive radius and a positive number π∗ such that (3.9) holds for any (x, y, z) ∈ F ∩ B
and every k. Since F ∩ B is a nonempty compact set, the problem

minimize
L∑

`=1

p`f(x, y, ω`) + dTz (3.11)

subject to (x, y, z) ∈ F ∩ B

has an optimal solution, say (x̄, ȳ, z̄).
Suppose (x, y, z) ∈ F ∩ B. We then have from the mean-value theorem that

θk(x, z) =
L∑

`=1

p`

(
f(x, y, ω`) + (y(x,Λz, µk)− y)T∇yf(x, (1− t)y(x,Λz, µk) + ty, ω`)

)

+dTz + ρk

L∑
`=1

ψ
(
− (N`x+M`y(x,Λz, µk) + q` + z`)

)
, (3.12)
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where t ∈ [0, 1]. Note that, by (3.9),

‖(1− t)y(x,Λz, µk) + ty‖ = ‖(1− t)(y(x,Λz, µk)− y) + y‖
≤ ‖y(x,Λz, µk)− y‖+ ‖y‖
≤ µkπ

∗(‖y‖+
√
m) + ‖y‖.

This indicates that the set

{(x, (1− t)y(x,Λz, µk) + ty)
∣∣∣ (x, y, z) ∈ F ∩ B, t ∈ [0, 1], k = 1, 2, · · ·}

is bounded. Similarly, we see that

{(x, tM`(y − y(x,Λz, µk)))
∣∣∣ (x, y, z) ∈ F ∩ B, ` = 1, · · · , L, t ∈ [0, 1], k = 1, 2, · · ·}

is also bounded. Then, by the continuous differentiability of both f and ψ, there exists a constant
τ > 0 such that, for ` = 1, · · · , L,

‖∇yf(x, (1− t)y(x,Λz, µk) + ty, ω`)‖ ≤ τ, (3.13)

‖∇ψ
(
tM`(y − y(x,Λz, µk))

)
‖ ≤ τ (3.14)

hold for any (x, y, z) ∈ F ∩ B, t ∈ [0, 1], and every k. Noticing that (x, y, z) ∈ F ∩ B implies
N`x+M`y + q` + z` ≥ 0 for each `, we have from (3.10) and (3.14) that

ψ
(
− (N`x+M`y(x,Λz, µk) + q` + z`)

)
≤ ψ

(
M`(y − y(x,Λz, µk))

)
= ψ

(
M`(y − y(x,Λz, µk))

)
− ψ(0)

= ∇ψ
(
t′M`(y − y(x,Λz, µk))

)T
M`

(
y − y(x,Λz, µk)

)
≤ τ‖M`‖ ‖y − y(x,Λz, µk)‖,

where t′ ∈ [0, 1] and the second equality follows from the mean-value theorem. This, together
with (3.12)–(3.13) and (3.9), yields

∣∣∣θk(x, z)−
L∑

`=1

p`f(x, y, ω`)− dTz
∣∣∣ ≤ τ‖y(x,Λz, µk)− y‖+

(
τρk

L∑
`=1

‖M`‖
)
‖y − y(x,Λz, µk)‖

≤ π∗τ
(
µk + µkρk

L∑
`=1

‖M`‖
)
(‖y‖+

√
m)

for any (x, y, z) ∈ F ∩ B and k. In particular,

∣∣∣θk(x̄, z̄)−
L∑

`=1

p`f(x̄, ȳ, ω`)− dT z̄
∣∣∣ ≤ π∗τ

(
µk + µkρk

L∑
`=1

‖M`‖
)
(‖ȳ‖+

√
m). (3.15)

Moreover, since ψ is always nonnegative, we have from the continuity of f that

lim
k→∞

θk(x(k), z(k)) ≥ lim
k→∞

( L∑
`=1

p`f(x(k), y(k), ω`) + dTz(k)
)

=
L∑

`=1

p`f(x∗, y∗, ω`) + dTz∗. (3.16)
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Note that, by the fact that F ∩ B ⊆ V ∗, (x(k), z(k)) is an optimal solution of the problem

minimize θk(x, z)

subject to (x, z) ∈ X1 := { (x, z) ∈ X | ∃ y s.t. (x, y, z) ∈ F ∩ B },

provided k is large enough, and (x̄, z̄) is a feasible point of this problem. We then have from
(3.15) that, for every k sufficiently large,

θk(x(k), z(k)) ≤ θk(x̄, z̄)

≤
L∑

`=1

p`f(x̄, ȳ, ω`) + dT z̄ + π∗τ
(
µk + µkρk

L∑
`=1

‖M`‖
)
(‖ȳ‖+

√
m). (3.17)

Therefore, taking into account the equality (3.16) and the assumption (3.8), we have by letting
k →∞ in (3.17) that

L∑
`=1

p`f(x∗, y∗, ω`) + dTz∗ ≤
L∑

`=1

p`f(x̄, ȳ, ω`) + dT z̄,

while the converse inequality immediately follows from the fact that (x̄, ȳ, z̄) is an optimal
solution of problem (3.11). As a result, we have

L∑
`=1

p`f(x∗, y∗, ω`) + dTz∗ =
L∑

`=1

p`f(x̄, ȳ, ω`) + dT z̄,

namely, (x∗, y∗, z∗) is an optimal solution of problem (3.11) and hence it is a local optimal
solution of problem (3.2). This completes the proof. 2

It is not difficult to see that the function

ψ(u) :=
m∑

i=1

(
max(u[i], 0)

)σ
, (3.18)

where σ ≥ 2 is a positive integer, satisfies the conditions assumed in Theorem 3.1. This function
is often employed for solving constrained optimization problems. For more details, see [1].

Note that, in practice, it may not be easy to obtain an optimal solution, whereas computation
of stationary points may be relatively easy. Therefore, it is necessary to study the limiting
behavior of stationary points of subproblems (3.7).

Theorem 3.2 Suppose the matrix M in (3.2) is a P0-matrix, the function ψ : <m → [0,+∞)
is given by (3.18) with σ = 2, and (x(k), z(k)) is a stationary point of (3.7) for each k. Let
(x∗, y∗, z∗) ∈ F be an accumulation point of the sequence {(x(k), y(k), z(k))} generated by SIPP.
If the MPEC-LICQ is satisfied at (x∗, y∗,y∗, z∗) in the MPEC (3.3), then (x∗, y∗, z∗) is a C-
stationary point of problem (3.2). Furthermore, if y∗ satisfies the strict complementarity condi-
tion, then (x∗, y∗, z∗) is S-stationary to (3.2).

Although the results established in this theorem are interesting and important, its proof is
somewhat lengthy and technical. To avoid disturbing the readability, we refer the readers to see
[9] for a detailed proof of the theorem.
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Remark 3.1 For the lower-level wait-and-see problems, we may consider a similar but some-
what simpler approach. In particular, for the discrete model

minimize
L∑

`=1

p`f(x, y`)

subject to g(x) ≤ 0, h(x) = 0, (3.19)

y` ≥ 0, N`x+M`y` + q` ≥ 0,

yT
` (N`x+M`y` + q`) = 0, ` = 1, · · · , L

with p`, N`,M`, and q` being the same as in (3.1), the subproblem corresponding to (3.7) becomes

minimize
L∑

`=1

p`f(x, y`(x, µk))

subject to g(x) ≤ 0, h(x) = 0,

where y`(x, µ) satisfies the equation Φµ(x, y`(x, µ), w`(x, µ);N`,M`, q`) = 0 with w`(x, µ) =
N`x+(M` +µI)y`(x, µ)+ q` for each `. Therefore, we do not need the penalty steps for problem
(3.19). See [9] for more details.

4 Discretization of Here-and-Now Problems with Continuous
Random Variable

In this section, we consider the here-and-now problem

minimize Eω[f(x, y, ω) + dT z(ω)]

subject to g(x) ≤ 0, h(x) = 0,

0 ≤ y ⊥ (N(ω)x+M(ω)y + q(ω) + z(ω)) ≥ 0, (4.1)

z(ω) ≥ 0, ∀ω ∈ Ω,

x ∈ <n, y ∈ <m, z(·) ∈ C(Ω),

where Ω := [a1, b1] × · · · × [aν , bν ] ⊂ <ν , g, h, d are the same as in Section 3, the functions
f : <n+m × Ω → <, N : Ω → <m×n, M : Ω → <m×m, and q : Ω → <m are all continuous.
In addition, C(Ω) denotes the family of continuous functions from Ω into <m. Without loss of
generality, we assume that Ω := [0, 1]ν . Let ζ : Ω → [0,+∞) be the continuous probability
density function of ω. Then we have

Eω[f(x, y, ω) + dT z(ω)] =
∫
Ω

(
f(x, y, ω) + dT z(ω)

)
ζ(ω)dω.

We next employ a quasi-Monte Carlo method [13] for numerical integration to discretize
problem (4.1). Roughly speaking, given a function φ : Ω → <, the quasi-Monte Carlo estimate
for Eω[φ(ω)] is obtained by taking a uniformly distributed sample set ΩL := {ω1, · · · , ωL} from
Ω and letting Eω[φ(ω)] ≈ 1

L

∑
ω∈ΩL

φ(ω). Therefore, the following problem is an appropriate
discrete approximation of problem (4.1):

minimize
1
L

∑
ω∈ΩL

ζ(ω)
(
f(x, y, ω) + dT z(ω)

)
subject to g(x) ≤ 0, h(x) = 0, (4.2)

0 ≤ y ⊥ (N(ω)x+M(ω)y + q(ω) + z(ω)) ≥ 0,

z(ω) ≥ 0, ω ∈ ΩL.
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This problem has been discussed in the last section. Note that the sample set ΩL is chosen to
be asymptotically dense in Ω.

In order to prove our convergence result, we first give some lemmas.

Lemma 4.1 Suppose the function ξ : Ω → < is continuous. Then we have

lim
L→∞

1
L

∑
ω∈ΩL

ξ(ω)ζ(ω) =
∫
Ω
ξ(ω)ζ(ω)dω.

It is not difficult to prove this lemma by the results given in Chapter 2 of [13]. We then have
from Lemma 4.1 immediately that, for any z(·) ∈ C(Ω),

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)
(
f(x, y, ω) + dT z(ω)

)
=

∫
Ω

(
f(x, y, ω) + dT z(ω)

)
ζ(ω)dω (4.3)

and particularly,

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω) =
∫
Ω
ζ(ω)dω = 1. (4.4)

Lemma 4.2 Let M̄ ∈ <m×m and {ML} ⊂ <m×m be convergent to M̄ . Suppose M̄ is an R0-
matrix. Then, there exists an integer L0 > 0 such that ML is an R0-matrix for every L ≥ L0.

Proof. Suppose the conclusion is not true. Taking a subsequence if necessary, we may assume
that {ML} is not an R0-matrix for every L. From Definition 2.3, there exists a vector yL ∈ <m

such that

0 ≤ yL ⊥ ML y
L ≥ 0, ‖yL‖ = 1. (4.5)

We may further assume that the sequence {yL} is convergent to a vector ȳ. Letting L → +∞
in (4.5), we get

0 ≤ ȳ ⊥ M̄ȳ ≥ 0, ‖ȳ‖ = 1.

This contradicts the fact that M̄ is an R0-matrix and hence the conclusion is valid. 2

Theorem 4.1 Let the set X := {x ∈ <n | g(x) ≤ 0, h(x) = 0} be nonempty and bounded, and
the function f be bounded and uniformly continuous with respect to (x, y, ω). Let

M̄ :=
∫
Ω
M(ω)ζ(ω)dω

be an R0-matrix. Then, the following statements are true.
(i) Problem (4.2) has at least one optimal solution when L is large enough.
(ii) Let (xL, yL, zL(ω))ω∈ΩL

be a solution of (4.2) for each L large enough. Then the sequence
{(xL, yL)} is bounded.

(iii) Let (x∗, y∗) be an accumulation point of the sequence {(xL, yL)} and z∗(·) be defined by

z∗(ω) := max
{
− (N(ω)x∗ +M(ω)y∗ + q(ω)), 0

}
, ω ∈ Ω. (4.6)

Then (x∗, y∗, z∗(·)) is an optimal solution of problem (4.1).
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Proof. (i) For each L, let ML := 1
L

∑
ω∈ΩL

ζ(ω)M(ω). It then follows from Lemma 4.1 that
M̄ = limL→∞ML. Since M̄ is an R0-matrix, by Lemma 4.2, there exists an integer L0 > 0 such
that ML is an R0-matrix for every L ≥ L0.

Let L ≥ L0 be fixed. We denote by FL the feasible region of problem (4.2). It is easy to see
that FL is a nonempty and closed set and the objective function of problem (4.2) is bounded
below on FL. Then, there exists a sequence {(xk, yk, zk(ω))ω∈ΩL

} ⊆ FL such that

lim
k→∞

1
L

∑
ω∈ΩL

ζ(ω)
(
f(xk, yk, ω) + dT zk(ω)

)
= inf

(x,y,z(ω))ω∈ΩL
∈FL

1
L

∑
ω∈ΩL

ζ(ω)
(
f(x, y, ω) + dT z(ω)

)
.

(4.7)

Since the function f is bounded, it follows that the sequence
{

1
L

∑
ω∈ΩL

ζ(ω)dT zk(ω)
}

is bounded.

Note that the elements of d are positive. Thus, the sequence
{

1
L

∑
ω∈ΩL

ζ(ω)zk(ω)
}

is also

bounded. Moreover, we have from the boundedness of X that the sequence {xk} is bounded.
On the other hand, noting that (xk, yk, zk(ω))ω∈ΩL

∈ FL for each k, we have

0 ≤ yk ⊥
( 1
L

∑
ω∈ΩL

ζ(ω)N(ω)xk +MLy
k +

1
L

∑
ω∈ΩL

ζ(ω)q(ω) +
1
L

∑
ω∈ΩL

ζ(ω)zk(ω)
)
≥ 0. (4.8)

Suppose the sequence {yk} is unbounded. Taking a subsequence if necessary, we assume that

lim
k→∞

‖yk‖ = +∞, lim
k→∞

yk

‖yk‖
= ȳ, ‖ȳ‖ = 1. (4.9)

Then, dividing (4.8) by ‖yk‖ and letting k → +∞, we obtain 0 ≤ ȳ ⊥ ML ȳ ≥ 0. Since ML is an
R0-matrix, by Definition 2.3, we have ȳ = 0. This contradicts (4.9) and hence {yk} is bounded.

The boundedness of
{

1
L

∑
ω∈ΩL

ζ(ω)zk(ω)
}

implies that the sequence {zk(ω)} is bounded for

each ω ∈ ΩL with ζ(ω) > 0. For any ω ∈ ΩL with ζ(ω) = 0, we re-define zk(ω) by

zk(ω) := max{−(N(ω)xk +M(ω)yk + q(ω)), 0}.

In consequence, the sequence
{
(xk, yk, zk(ω))ω∈ΩL

}
is bounded and (4.7) remains valid. Since

FL is closed, any accumulation point of
{
(xk, yk, zk(ω))ω∈ΩL

}
must be an optimal solution of

problem (4.2). This completes the proof of (i).

(ii) Let (xL, yL, zL(ω))ω∈ΩL
be a solution of (4.2) for each sufficiently large L. The bounded-

ness of {xL} follows from the boundedness of the set X immediately. We next prove that {yL}
is also bounded. To this end, we let x̄ ∈ X and define

z̄(ω) := max
{
− (N(ω)x̄+ q(ω)), 0

}
, ω ∈ Ω.

Then, (x̄, 0, z̄(ω))ω∈ΩL
is feasible to problem (4.2). Since (xL, yL, zL(ω))ω∈ΩL

is an optimal
solution of (4.2), we have

1
L

∑
ω∈ΩL

ζ(ω)
(
f(xL, yL, ω) + dT zL(ω)

)
≤ 1
L

∑
ω∈ΩL

ζ(ω)
(
f(x̄, 0, ω) + dT z̄(ω)

)
(4.10)

and

0 ≤ yL ⊥
(
N(ω)xL +M(ω)yL + q(ω) + zL(ω)

)
≥ 0, ω ∈ ΩL. (4.11)
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It follows from (4.10) that

1
L

∑
ω∈ΩL

ζ(ω)dT zL(ω) ≤ 1
L

∑
ω∈ΩL

ζ(ω)
(
f(x̄, 0, ω)− f(xL, yL, ω)

)
+

1
L

∑
ω∈ΩL

ζ(ω)dT z̄(ω).

Note that, from (4.4) and the boundedness of f , the sequence
{

1
L

∑
ω∈ΩL

ζ(ω)
(
f(x̄, 0, ω) −

f(xL, yL, ω)
)}

is bounded and, by Lemma 4.1,

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)dT z̄(ω) =
∫
Ω
ζ(ω)dT z̄(ω)dω.

In consequence, the sequence
{

1
L

∑
ω∈ΩL

ζ(ω)dT zL(ω)
}

is bounded. Since the elements of d are

positive, the sequence
{

1
L

∑
ω∈ΩL

ζ(ω)zL(ω)
}

is bounded. Moreover, we have from (4.11) that

0 ≤ yL⊥
( 1
L

∑
ω∈ΩL

ζ(ω)N(ω)xL +
1
L

∑
ω∈ΩL

ζ(ω)M(ω)yL +
1
L

∑
ω∈ΩL

ζ(ω)q(ω) +
1
L

∑
ω∈ΩL

ζ(ω)zL(ω)
)
≥ 0.

Note that both {xL} and
{

1
L

∑
ω∈ΩL

ζ(ω)zL(ω)
}

are bounded and

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)M(ω) = M̄,

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)N(ω) =
∫
Ω
N(ω)ζ(ω)dω,

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)q(ω) =
∫
Ω
q(ω)ζ(ω)dω.

In a similar way to (i), we can show that {yL} is bounded.

(iii) By the assumptions, the sequence {(xL, yL)} contains a subsequence converging to
(x∗, y∗). Without loss of generality, we suppose limL→∞(xL, yL) = (x∗, y∗).

(iiia) We first prove that (x∗, y∗, z∗(·)) is feasible to problem (4.1). To this end, we define

z̃L(ω) := max
{
− (N(ω)xL +M(ω)yL + q(ω)), 0

}
, ω ∈ ΩL. (4.12)

It is obvious that (xL, yL, z̃L(ω))ω∈ΩL
is feasible in problem (4.2) for each L. Since z∗(·) ∈ C(Ω)

and N(ω)x∗ +M(ω)y∗ + q(ω) + z∗(ω) ≥ 0 by the definition (4.6), it is sufficient to show that

(y∗)T
(
N(ω)x∗ +M(ω)y∗ + q(ω) + z∗(ω)

)
= 0, ω ∈ Ω. (4.13)

Let ω̄ ∈ Ω be fixed. Since the sample set ΩL is chosen to be asymptotically dense in Ω, there
exists a sequence {ωL} of samples such that ωL ∈ ΩL for each L and limL→∞ ωL = ω̄. We then
have

(yL)T
(
N(ωL)xL +M(ωL)yL + q(ωL) + z̃L(ωL)

)
= 0, L = 1, 2, · · · .

Letting L→ +∞ and taking the continuity of the functions N(·),M(·), q(·) on the compact set
Ω into account, we obtain

(y∗)T
(
N(ω̄)x∗ +M(ω̄)y∗ + q(ω̄) + z∗(ω̄)

)
= 0. (4.14)
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By the arbitrariness of ω̄ in Ω, we have (4.13) immediately. This completes the proof of the
feasibility of (x∗, y∗, z∗(·)) in (4.1).

(iiib) Let (x, y, z(·)) be an arbitrary feasible solution of (4.1). It is obvious that (x, y, z(ω))ω∈ΩL

is feasible to problem (4.2) for any L. Moreover, we have

1
L

∑
ω∈ΩL

ζ(ω)
(
f(xL, yL, ω) + dT zL(ω)

)
− 1
L

∑
ω∈ΩL

ζ(ω)
(
f(xL, yL, ω) + dT z̃L(ω)

)
=

1
L

∑
ω∈ΩL

ζ(ω)dT min
{
N(ω)xL +M(ω)yL + q(ω) + zL(ω), zL(ω)

}
≥ 0,

where the equality follows from (4.12) and the inequality follows from the feasibility of (xL, yL,

zL(ω))ω∈ΩL
in (4.2). Thus, (xL, yL, z̃L(ω))ω∈ΩL

is also an optimal solution of problem (4.2). We
then have

1
L

∑
ω∈ΩL

ζ(ω)
(
f(x∗, y∗, ω) + dT z∗(ω)

)
− 1
L

∑
ω∈ΩL

ζ(ω)
(
f(x, y, ω) + dT z(ω)

)
≤ 1

L

∑
ω∈ΩL

ζ(ω)
(
f(x∗, y∗, ω) + dT z∗(ω)

)
− 1
L

∑
ω∈ΩL

ζ(ω)
(
f(xL, yL, ω) + dT z̃L(ω)

)
≤ 1

L

∑
ω∈ΩL

ζ(ω)
(∣∣∣f(x∗, y∗, ω)− f(xL, yL, ω)

∣∣∣ +
∣∣∣dT

(
z∗(ω)− z̃L(ω)

)∣∣∣). (4.15)

Note that f is uniformly continuous with respect to (x, y, ω) and, by (4.4), the sequence
{ 1

L

∑
ω∈ΩL

ζ(ω)} is bounded. This yields

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)
∣∣∣f(x∗, y∗, ω)− f(xL, yL, ω)

∣∣∣ = 0. (4.16)

On the other hand, it is easy to see from the definitions (4.6) and (4.12) that∣∣∣dT
(
z∗(ω)− z̃L(ω)

)∣∣∣ ≤ ∣∣∣dT
(
N(ω)(x∗ − xL) +M(ω)(y∗ − yL)

)∣∣∣, ω ∈ ΩL.

By the boundedness of the sequence { 1
L

∑
ω∈ΩL

ζ(ω)} and the functions N(·) and M(·) on Ω, we
have

lim
L→∞

1
L

∑
ω∈ΩL

ζ(ω)
∣∣∣dT

(
z∗(ω)− z̃L(ω)

)∣∣∣ = 0. (4.17)

Thus, by letting L→ +∞ in (4.15) and taking (4.3) and (4.16)–(4.17) into account, we obtain∫
Ω

(
f(x∗, y∗, ω) + dT z∗(ω)

)
ζ(ω)dω ≤

∫
Ω

(
f(x, y, ω) + dT z(ω)

)
ζ(ω)dω, (4.18)

which implies that (x∗, y∗) together with z∗(·) constitutes an optimal solution of (4.1). 2

5 Numerical Examples

The following example illustrates the here-and-now and lower-level wait-and-see models.

Example 5.1 [9] There are a food company who makes picnic lunches and several venders who
sell lunches to hikers on every Sunday at different spots. The company and the venders have
the following contract:
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C1: The venders buy lunches from the company at the price x ∈ [a, b] determined by the
company, where a and b are two positive constants.

C2: The ith vender decides the amount si of lunches that he buys from the company. Every
vender must buy no less than the minimum amount c > 0.

C3: Every vender pays the company for the whole lunches he buys, i.e., the ith vender pays
xsi to the company.

C4: The ith vender sells lunches to hikers at the price κix and gets the proceeds for the total
number of lunches actually sold, where κi > 1 is a constant.

C5: Even if there are any unsold lunches, the venders cannot return them to the company but
they can dispose of the unsold lunches with no cost.

We suppose that the demands of lunches depend on the price and the weather on that day. Since
the weather is uncertain, we may treat it as a random variable. Suppose there are m venders
located at different spots. Assume the demand at the ith spot is given by the function di(x, ω).
Then, the actual amount of lunches sold at the ith spot is given by min(si, di(x, ω)), which also
depends on the weather on that day.

The decisions by the company and the ith vender are x and si, respectively. The com-
pany’s objective is to maximize its total earnings

∑m
i=1 xsi, while the ith vender’s objective is

to maximize its total earnings κixmin(si, di(x, ω))− xsi. We first consider the latter problem:

maximizesi κixmin(si, di(x, ω))− xsi

subject to si ≥ c.

It is not difficult to show that its solution is si = max{di(x, ω), c}, irrespective of the value of
κi > 1. Therefore, by letting yi = si− c for each i, we may formulate the company’s problem as
the following stochastic MPEC:

minimize −
∑m

i=1 x(yi + c)
subject to a ≤ x ≤ b,

0 ≤ yi ⊥ (−di(x, ω) + yi + c) ≥ 0,
i = 1, . . . ,m, a.e. ω ∈ Ω.

Now there are two cases.
Here-and-now model: Suppose that both the company and the venders have to make decisions
on Saturday, without knowing the weather of Sunday. In this case, there may be no yi satisfying
the complementarity constraints for almost all ω ∈ Ω in general. So, by introducing the recourse
variables, the company’s problem is represented as the following model:

minimize
∑m

i=1(−x(yi + c) + τEω[ zi(ω) ])
subject to a ≤ x ≤ b, zi(ω) ≥ 0,

0 ≤ yi ⊥ (−di(x, ω) + yi + c+ zi(ω)) ≥ 0,
i = 1, . . . ,m, a.e. ω ∈ Ω,

where τ > 0 is a weight constant.
Lower-level wait-and-see model: Suppose that the company makes a decision on Saturday,
but the venders can make their decisions on Sunday morning after knowing the weather of that
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day. In this case, the decisions of the venders may depend on the observation of ω, which are
given by yi(ω), i = 1, · · · ,m, that satisfies

0 ≤ yi(ω) ⊥ (−di(x, ω) + yi(ω) + c) ≥ 0

for each ω ∈ Ω. Therefore the company’s problem is represented as the following model:

minimize
∑m

i=1Eω[−x(yi(ω) + c) ]
subject to a ≤ x ≤ b,

0 ≤ yi(ω) ⊥ (−di(x, ω) + yi(ω) + c) ≥ 0,
i = 1, . . . ,m, a.e. ω ∈ Ω.

Below we report our numerical experience with these two models. We consider the case
where m = 4 and assume that the weather parameter ω is normally distributed with N (0, 1)
and the demand function for the ith vender is given by

di(x, ω) := ui(ω)− vi(ω)x,

where ui(ω) and vi(ω) are random variables. Moreover, we assume that ui(ω) and vi(ω) are
linear functions of ω such that

ui(ω) := ui0 + ui1ω, vi(ω) := vi0 + vi1ω

with constants (ui0, ui1, vi0, vi1), i = 1, · · · , 4, given as in Table 1.

Table 1: Data for the Demand Functions

ui0 ui1 vi0 vi1

i = 1 165 20 12 3
i = 2 218 13.5 18 2
i = 3 131 12 8 1.75
i = 4 195 13 9 2

In our implementation, we used the classical constructions method in [13] to approximate
the continuous distributions by discrete ones.

• Generate ωk, k = 1, · · · ,K, from the 99% confidence interval I := [−3, 3] with sample size
K = 106.

• Divide I into L subintervals with equal length, which represent different conditions of
weather such as bad, fair, good, and so on.

• For each subinterval I`, estimate the probability by the relative frequency p` = k`/K,
where k` is the number of samples contained in I`.

• For every subinterval I` and every vender i, calculate

ui` =
1
k`

∑
ωk∈I`

ui(ωk), vi` =
1
k`

∑
ωk∈I`

vi(ωk).

The data for the testing problem with L = 3 are listed in Table 2.
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Table 2: Data for Testing Problem with L = 3

p u1 v1 u2 v2 u3 v3 u4 v4
good 0.1589 195.5213 16.5782 238.6019 21.0521 149.3128 10.6706 214.8388 12.0521
fair 0.6821 165.0092 12.0014 218.0062 18.0009 131.0055 8.0008 195.0060 9.0009
bad 0.1590 134.4962 7.4244 197.4100 14.9496 112.6977 5.3309 175.1726 5.9496

We set a = 1, b = 14, c = 15, τ = 1, and employed the MATLAB 6.5 built-in solver fmincon to
solve the subproblems. When we solved (3.7), we used the same penalty function ψ as in Theorem
3.2. Moreover, we set µ0 = 10−2, ρ0 = 102, and updated the parameters by µk+1 = 10−2µk and
ρk+1 = 10ρk, respectively. In addition, the initial point is chosen to be (x, z) = (6, · · · , 6) in the
here-and-now problems and x = 6 in the lower-level wait-and-see problems, respectively, and
the computed solution at the kth iteration is used as the starting point in the next (k + 1)th
iteration. The computational results for the here-and-now and lower-level wait-and-see cases
with L = 3 are shown in Tables 3 and 4, respectively.

Table 3: Computational Results for Here-and-Now Case with L = 3

µk ρk x(k) (y(k)
1 , y

(k)
2 , y

(k)
3 , y

(k)
4 ) Obj Res Ite

10−2 102 6.8603 (66.5927,78.9393,60.9143,116.7923) 2.6291e+003 3.2324 20
10−4 103 6.8502 (67.9593,79.3917,61.1821,117.2787) 2.6360e+003 0.0397 17
10−6 104 6.8497 (66.9665,79.4023,61.1834,117.2863) 2.6360e+003 0.0062 17
10−8 105 6.8499 (66.9630,79.3981,61.1819,117.2837) 2.6360e+003 6.4550e-004 20

Table 4: Computational Results for Lower-Level Wait-and-See Case with L = 3

µk x(k) (ȳ(k)
1 , ȳ

(k)
2 , ȳ

(k)
3 , ȳ

(k)
4 ) Obj Res Ite

10−2 7.5489 (58.8243,66.4546,55.0579,110.9502) 2.6518e+003 8.7385 3
10−4 7.5426 (59.4825,67.2262,55.6535,112.1053) 2.6736e+003 0.0883 2
10−6 7.5426 (59.4891,67.2339,55.6595,112.1170) 2.6738e+003 8.8349e-004 2

In Tables 3 and 4, Obj means the company’s earnings, Ite stands for the number of iterations
spent by fmincon to solve the subproblems, and Res denotes the residual at the current point
defined by

Res(x(k), y(k), z(k)) :=
m∑

i=1

L∑
`=1

∣∣∣ min
(
y

(k)
i , −d(k)

i` + y
(k)
i + c+ z

(k)
i`

)∣∣∣
for the here-and-now case, or

Res(x(k),y(k)) :=
m∑

i=1

L∑
`=1

∣∣∣ min
(
y

(k)
i` , −d

(k)
i` + y

(k)
i` + c

)∣∣∣
for the lower-level wait-and-see case, where d(k)

i` := ui`−vi` x
(k). Moreover, in Table 4, we denote

ȳ
(k)
i :=

∑L
`=1 p` y

(k)
i` for each i.

18



Table 5: Values of price xL

here-and-now wait-and-see
L = 3 6.8499 7.5426
L = 5 6.7500 7.5454
L = 7 6.7500 7.5452
L = 9 6.7500 7.5453
L = 11 6.7500 7.5452

We have also computed the solutions of the two models with various values of L. Table 5
shows the values of the price xL for L = 3, 5, 7, 9, 11. As shown in Table 5, the prices set by
the company in the lower-level wait-and-see model are consistently higher than the ones in the
here-and-now model. This seems reasonable because, in the lower-level wait-and-see case, the
company has to take higher risk.

6 Concluding Remarks

We have presented a combined smoothing implicit programming and penalty method for an
SMPEC with a finite sample space and suggested a quasi-Monte Carlo method to discretize
an SMPEC with continuous random variables. We may extend the approaches to the lower-
level wait-and-see problems. Recall that SMPECs contain the ordinary MPECs as a special
subclass. In consequence, the conclusions given in Section 3 remain true for standard MPECs.
Comparing with the results given in the literature, the assumptions employed in Section 3 are
relatively weak.
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