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Abstract

We consider the stochastic nonlinear complementarity problem (SNCP). We first formulate
the problem as a stochastic mathematical program with equilibrium constraints and then, in
order to develop efficient algorithms, we give some reformulations of the problem. Furthermore,
based on the reformulations, we propose a smoothed penalty method for solving SNCP. A
rigorous convergence analysis is also given.
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1 Introduction

The nonlinear complementarity problem (NCP) is to find a vector x ∈ <n such that

x ≥ 0, F (x) ≥ 0, xT F (x) = 0,

where F : <n → <n is a mapping. This problem is one of the fundamental problems

in the optimization theory and its applications can be found in many fields, see [4] for

details. Since in many practical problems, some elements may involve uncertain data,

the stochastic nonlinear complementarity problem and stochastic variational inequality

problem have been receiving much attention in the recent literature. In particular, Gürkan

et al. [5] consider the following stochastic variational inequality problem VI(f, C):

(x− x∗)T f(x∗) ≥ 0, ∀x ∈ C, (1.1)
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where f : <n → <n is an (unobservable) expectation or steady-state function and C ⊆ <n

is a convex polyhedron. Since the function f is usually difficult to evaluate exactly, the

authors assume that a sequence {fk}, converging to the function f in a certain sense,

can be observed. Then a solution of the problem VI(f, C) may be obtained by solving

the sequence of problems VI(fk, C). Haurie and Moresino [6] deal with a stochastic

oligopoly problem under the S-adapted information structure and formulate its optimality

conditions as a large scale variational inequality problem (VIP). A sampling technique to

reduce the size of the VIP is discussed as well. More recently, Chen and Fukushima [2]

consider the following stochastic linear complementarity problem (SLCP):

x ≥ 0, M(ω)x + q(ω) ≥ 0, xT (M(ω)x + q(ω)) = 0, a.e. ω ∈ Ω,

where Ω is the underlying sample space and, for each ω, M(ω) ∈ <n×n and q(ω) ∈ <n.

The authors formulate the SLCP as a problem of minimizing an expected residual defined

by an NCP function. Then, they employ a quasi-Monte Carlo method and give some

convergence results under suitable assumptions on the involved matrices.

In this paper, for a given mapping F : <n × Ω → <n, we consider the following

stochastic nonlinear complementarity problem (SNCP):

x ≥ 0, F (x, ω) ≥ 0, xT F (x, ω) = 0, a.e. ω ∈ Ω. (1.2)

We study problem (1.2) from another point of view. Note that, in general, there may

not exist a vector x satisfying the complementarity conditions for (almost) all ω ∈ Ω. In

order to get a reasonable resolution, we may introduce recourse variables z(ω) ≥ 0 to the

inequality F (x, ω) ≥ 0 and try to find a vector x ≥ 0 that minimizes the total recourse.

Thus, we obtain the following problem:

min Eω[dT z(ω)]

s.t. x ≥ 0, F (x, ω) + z(ω) ≥ 0, (1.3)

xT (F (x, ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω,

where Eω indicates the expectation with respect to the random variable ω ∈ Ω and d is

a constant vector with positive elements. Throughout, we assume that F is continuously

differentiable with respect to x and, if ω is a continuous random variable, F is continuous

with respect to ω. We still call problem (1.3) SNCP, although it is actually a stochastic

mathematical program with equilibrium constraints (SMPEC).

Mathematical programs with equilibrium constraints (MPECs) play an important role

in many fields such as engineering design, economic equilibrium, and multilevel games, see

the monograph [13] and some attached references. To go one step further, the stochastic

mathematical programs with equilibrium constraints have been studied [8, 9, 12, 15, 16, 17]

recently. There are two kinds of SMPECs discussed in the literature: One is the lower-level
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wait-and-see model, in which the upper-level decision is made at once while a lower-level

decision can be made after a random event is observed. The other is the here-and-now

model that requires us to make all decisions before a random event is observed. Therefore,

problem (1.3) is actually a special here-and-now SMPEC. Some approaches have been

proposed for solving here-and-now problems [8, 9, 12]. In particular, the authors [9]

presented a smoothing penalty method for the linear case. In this paper, we extend the

approach to the nonlinear case.

The following notations will be used later on: All vectors are column vectors, and x[i]

stands for the ith coordinate of vector x ∈ <n. For any vectors x and y of the same

dimension, x⊥y means xT y = 0. Given a function H : <n → <m and a vector x ∈ <n,

∇H(x) ∈ <n×m is the transposed Jacobian of H at x.

2 Reformulations

It is well known that SMPECs are very difficult to deal with. In order to look for effective

algorithms for solving (1.3), we try to reformulate the problem in this section. To this

end, we define Q : <n × Ω → [0, +∞] by

Q(x, ω) := sup{−(u + tx)T F (x, ω) | u + tx ≤ d, u ≥ 0, t ≤ 0}

and let F denote the feasible region of (1.3).

2.1 Properties of the function Q

First of all, we have from the duality theorem in linear programming that, for any x ∈ <n

and ω ∈ Ω, Q(x, ω) < +∞ if and only if the set

Z(x, ω) :=

{
z(ω)

∣∣∣∣∣ xT (F (x, ω) + z(ω)) ≤ 0

F (x, ω) + z(ω) ≥ 0, z(ω) ≥ 0

}

is nonempty and, if Z(x, ω) is nonempty, there holds

Q(x, ω) = inf{dT z(ω) | z(ω) ∈ Z(x, ω)}. (2.1)

Theorem 2.1 Let x ≥ 0 and ω ∈ Ω. Then Q(x, ω) < +∞ if and only if x[i]Fi(x, ω) ≤ 0

for every i.

Proof: (a) Suppose Q(x, ω) < +∞. We claim that x[i]Fi(x, ω) ≤ 0 holds for every i.

Otherwise, there must exist an index i such that both Fi(x, ω) and x[i] are positive. Let

t be a real number and u(t) ∈ <n be defined by u(t) := tx[i]ei − tx. Then, for any t ≤ 0,

we have

u(t) ≥ 0, u(t) + tx ≤ d.
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It follows from the definition of Q that

Q(x, ω) ≥ sup{−(u(t) + tx)T F (x, ω) | t ≤ 0}
= sup{−tx[i]Fi(x, ω) | t ≤ 0}
= +∞,

which is a contradiction.

(b) Suppose that x[i]Fi(x, ω) ≤ 0 holds for every i. Let

I1 := { i | x[i] = 0},
I2 := { i | x[i] > 0, Fi(x, ω) = 0},
I3 := { i | x[i] > 0, Fi(x, ω) < 0}.

It is easy to see that these sets are mutually disjoint and I1∪I2∪I3 = {1, · · · , n}. Denote

C := { (u, t) ∈ <n+1 | u + tx ≤ d, u ≥ 0, t ≤ 0}. Then, we have

Q(x, ω) = sup{−
m∑

i=1

(u + tx)[i]Fi(x, ω) | (u, t) ∈ C}. (2.2)

(b1) For any i ∈ I1 and (u, t) ∈ C, we have 0 ≤ u[i] ≤ d[i]. It follows that the term

−
∑
i∈I1

(u + tx)[i]Fi(x, ω) = −
∑
i∈I1

u[i]Fi(x, ω)

is bounded on C.

(b2) It is obvious that −
∑
i∈I2

(u + tx)[i]Fi(x, ω) = 0.

(b3) Let i ∈ I3. For any (u, t) ∈ C, we have

−
∑
i∈I3

(u + tx)[i]Fi(x, ω) ≤ −
∑
i∈I3

d[i]Fi(x, ω)

and so the term on the left-hand side is bounded above on C.

We then have from (b1)–(b3) and (2.2) that Q(x, ω) < +∞.

Corollary 2.1 Let x ≥ 0 and ω ∈ Ω. If Q(x, ω) < +∞, we have

Q(x, ω) = dT z(x, ω), (2.3)

where z(x, ω) := max{−F (x, ω), 0}.
Proof: It is obvious by the definition of z(x, ω) that

F (x, ω) + z(x, ω) ≥ 0, z(x, ω) ≥ 0.

Moreover, noting that (F (x, ω) + z(x, ω))[i] > 0 implies Fi(x, ω) > 0, we have from

Theorem 2.1 that x[i] = 0. It follows that

xT (F (x, ω) + z(x, ω)) = 0.
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Thus, we have z(x, ω) ∈ Z(x, ω). On the other hand, for any z(ω) ∈ Z(x, ω), since

z(ω) ≥ −F (x, ω), z(ω) ≥ 0,

we see from the definition of z(x, ω) that z(ω) − z(x, ω) ≥ 0, which implies dT z(ω) ≥
dT z(x, ω). Since z(ω) ∈ Z(x, ω) is arbitrary, we obtain (2.3) form (2.1) immediately.

We next show the equivalence between (1.3) and the following problem

min
x≥0

Eω[Q(x, ω)]. (2.4)

2.2 Continuous case

Let ω be a continuous random variable and p(ω) represent the probability density function

of ω. Suppose that the probability of any nonempty open set in Ω is positive and problem

(2.4) has a finite optimal value. We then have the following result.

Theorem 2.2 If x∗ solves problem (2.4), then there exists z∗(ω) ∈ Z(x∗, ω) for each

ω ∈ Ω such that (x∗, z∗(ω))ω∈Ω solves problem (1.3). Conversely, if (x∗, z∗(ω))ω∈Ω solves

problem (1.3), then x∗ solves problem (2.4).

Proof: (a) Suppose that x∗ solves (2.4). Then we claim that

Q(x∗, ω) < +∞, ∀ω ∈ Ω. (2.5)

In fact, if Q(x∗, ω̄) = +∞ for some ω̄ ∈ Ω, we then have from Theorem 2.1 that there

exists an index i such that

Fi(x
∗, ω̄) > 0, x∗[i] > 0.

It follows from the continuity of F (x∗, ·) that there is a neighborhood U(ω̄) of ω̄ such that

Fi(x
∗, ω) > 0, x∗[i] > 0

hold for any ω ∈ U(ω̄). Applying Theorem 2.1 again, we see that

Q(x∗, ω) = +∞, ∀ω ∈ U(ω̄).

Therefore,

Eω[Q(x∗, ω)] ≥
∫

U(ω̄)
Q(x∗, ω)p(ω)dω = +∞.

This contradicts the fact that problem (2.4) has a finite optimal value and hence (2.5)

must hold. As a result, we have from (2.1) and Corollary 2.1 that, for any ω ∈ Ω, there

exists z∗(ω) ∈ Z(x∗, ω) such that

Q(x∗, ω) = min{dT z(ω) | z(ω) ∈ Z(x∗, ω)} = dT z∗(ω).
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It then follows that, for any (x, z(ω))ω∈Ω ∈ F ,

Eω[dT z∗(ω)] = Eω[Q(x∗, ω)] ≤ Eω[Q(x, ω)] ≤ Eω[dT z(ω)], (2.6)

where the first inequality follows from the optimality of x∗ and the last inequality follows

from (2.1) and the fact that (x, z(ω))ω∈Ω ∈ F implies Z(x, ω) is nonempty (and hence

there holds (2.1)) for any ω ∈ Ω. The inequality (2.6) means that (x∗, z∗(ω))ω∈Ω is an

optimal solution of problem (1.3).

(b) Let (x∗, z∗(ω))ω∈Ω be an optimal solution of problem (1.3). Note that z∗(ω) ∈
Z(x∗, ω) for any ω ∈ Ω. It then follows from (2.1) that

Q(x∗, ω) ≤ dT z∗(ω), ω ∈ Ω. (2.7)

We next show that x∗ is a global optimal solution of problem (2.4), namely, for any x ≥ 0,

Eω[Q(x∗, ω)] ≤ Eω[Q(x, ω)]. (2.8)

Let x ≥ 0.

(b1) Suppose that Q(x, ω) < +∞ for every ω ∈ Ω and let z(x, ω) be the vector

defined in Corollary 2.1. By the same corollary, we see that z(x, ω) ∈ Z(x, ω`) and

Q(x, ω) = dT z(x, ω). It is not difficult to see that (x, z(x, ω))ω∈Ω ∈ F and

Eω[Q(x∗, ω)] ≤ Eω[dT z∗(ω)] ≤ Eω[dT z(x, ω)] = Eω[Q(x, ω)],

where the first inequality follows from (2.7) and the second inequality follows from the

optimality of (x∗, z∗(ω))ω∈Ω to problem (1.3). So, (2.8) is valid in this case.

(b2) If Q(x, ω̂) = +∞ for some ω̂ ∈ Ω, in a similar way to (a), we can show that there

exists a neighborhood U(ω̂) of ω̂ such that

Q(x, ω) = +∞, ∀ω ∈ U(ω̂).

It follows that Eω[Q(x, ω)] = +∞, which implies that (2.8) remains true.

Therefore, x∗ is a global optimal solution of problem (2.4) and hence the proof of the

theorem is completed.

2.3 Discrete case

Suppose that Ω = {ω1, ω2, · · · , ωL} and, for each ` = 1, · · · , L, the probability p` of the

random event ω` is positive. Also, for simplicity, we denote the functions F (·, ω`) and

Q(·, ω`) by F`(·) and Q`(·), respectively. Then, problems (1.3) and (2.4) reduce to

min
L∑

`=1

p`d
T z`

s.t. x ≥ 0, F`(x) + z` ≥ 0, (2.9)

xT (F`(x) + z`) = 0,

z` ≥ 0, ` = 1, · · · , L
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and

min
x≥0

θ(x) :=
L∑

`=1

p`Q`(x), (2.10)

respectively. In a similar way to Theorem 2.2, we can prove the following result.

Theorem 2.3 If x∗ solves problem (2.10), then there exist z∗` ∈ Z(x∗, ω`), ` = 1, · · · , L,

such that (x∗, z∗1 , · · · , z∗L) solves the SMPEC (2.9). Conversely, if (x∗, z∗1 , · · · , z∗L) solves

the SMPEC (2.9), then x∗ solves problem (2.10).

3 Smoothed Penalty Method for Discrete Problems

We continue to discuss the discrete problem (2.9) in this section. From Theorem 2.1 and

the positivity of every p`, we see that problem (2.10) (and hence (2.9) by Theorem 2.3)

is equivalent to the following problem:

min θ(x)

s.t. x ≥ 0, x[i]F`,i(x) ≤ 0, (3.1)

i = 1, · · · , n, ` = 1, · · · , L.

It follows from Corollary 2.1 that, for any x ∈ X ,

θ(x) =
L∑

`=1

p`d
T max(−F`(x), 0). (3.2)

In the following, we denote by X the feasible region of (3.1).

Note that, although (3.1) is no longer an SMPEC, this problem may not be easy to deal

with, because firstly the objective function is not differentiable everywhere, and secondly,

since L is usually very large in practice, problem (3.1) has a great many constraints. As

a remedy of these difficulties, we propose a smoothed penalty method for solving (3.1) in

this section.

3.1 Algorithm and convergence

Let ε be a nonnegative constant and the function φε : < → [0, +∞) be defined by

φε(t) :=

√
t2 + ε2 + t

2
.

Obviously, φε is differentiable everywhere for each ε > 0. In the following, we always

assume ε > 0. Then, by means of this differentiable function φε and with the help of a

smoothed penalty technique, we obtain the following smooth approximation of (3.1):

min
x≥0

ϑε(x) + ρδε(x), (3.3)
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where ρ > 0 is a penalty parameter and

ϑε(x) :=
L∑

`=1

n∑
i=1

p`d[i]φε(−F`,i(x)), (3.4)

δε(x) :=
L∑

`=1

n∑
i=1

φε(x[i]F`,i(x)). (3.5)

Let ρ̄ > 0 be a sufficiently large constant. When ε = 0 and ρ = ρ̄, (3.3) reduces to

min
x≥0

θ(x) + ρ̄δ0(x), (3.6)

where δ0(x) =
∑L

`=1

∑n
i=1 max{x[i]F`,i(x), 0}.

Definition 3.1 A point x∗ ∈ X is said to be stationary to problem (3.1) if there exist

Lagrange multiplier vectors λ∗ and µ∗` , ` = 1, · · · , L, such that

0 ∈ ∂θ(x∗)− λ∗ +
L∑

`=1

n∑
i=1

µ∗` [i](F`,i(x
∗)ei + x∗[i]∇F`,i(x

∗)), (3.7)

0 ≤ λ∗ ⊥ x∗ ≥ 0, (3.8)

0 ≤ µ∗` [i] ⊥ (−x∗[i]F`,i(x
∗)) ≥ 0, ∀i, ∀`. (3.9)

Here and later, ∂θ denotes the Clarke subdifferential operator [3] of θ.

For each ` and i, we let θ`,i(x) := max{−F`,i(x), 0}. It then follows that

∂θ`,i(x
∗) =


co{−∇F`(x

∗), 0}, F`,i(x
∗) = 0

{−∇F`(x
∗)}, F`,i(x

∗) < 0

{ 0 } , F`,i(x
∗) > 0

(3.10)

and

∂θ(x∗) =
L∑

`=1

n∑
i=1

p` d[i] ∂θ`,i(x
∗), (3.11)

where co stands for the convex hull.

Definition 3.2 We say x∗ ≥ 0 to be stationary to problem (3.6) if there exists a Lagrange

multiplier vector λ such that

0 ∈ ∂θ(x∗) + ρ̄∂δ0(x
∗)− λ, (3.12)

0 ≤ λ ⊥ x∗ ≥ 0. (3.13)

For any ` and i, let δ`,i(x) := max{x[i]F`,i(x), 0}. Then, since the functions δ`,i are

Clarke regular [3], we have

∂δ`,i(x) =


co{F`,i(x)ei + x[i]∇F`,i(x), 0}, x[i]F`,i(x) = 0

{F`,i(x)ei + x[i]∇F`,i(x)}, x[i]F`,i(x) > 0

{ 0 } , x[i]F`,i(x) < 0

(3.14)
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and

∂δ0(x) =
L∑

`=1

n∑
i=1

∂δ`,i(x). (3.15)

Theorem 3.1 Let x∗ be a stationary point of problem (3.1). Then, x∗ is a stationary

point of problem (3.6) for any ρ̄ sufficiently large. Conversely, if x∗ is a stationary point

of problem (3.6), and δ0(x
∗) = 0, i.e., x∗ ∈ X , then x∗ is stationary to (3.1).

Proof: (a) Suppose x∗ is a stationary point of problem (3.1). We will show that,

when ρ̄ is sufficiently large, x∗ is a stationary point of problem (3.6). By the stationarity

of x∗ to problem (3.1), there exist multiplier vectors λ∗ and µ∗` , ` = 1, · · · , L, satisfying

conditions (3.7)–(3.9).

Let λ := λ∗. Then (3.13) follows from (3.8) immediately. Comparing (3.12) with (3.7),

in order to complete the proof of the first part of the theorem, we only need to show that,

when ρ̄ is sufficiently large,

L∑
`=1

n∑
i=1

µ∗` [i](F`,i(x
∗)ei + x∗[i]∇F`,i(x

∗)) ∈ ρ̄∂δ0(x
∗).

By (3.14) and (3.15), it is sufficient to show that, when ρ̄ is sufficiently large,

∀`, ∀i,


µ∗` [i] ∈ [0, ρ̄], x∗[i]F`,i(x

∗) = 0,

µ∗` [i] = ρ̄ , x∗[i]F`,i(x
∗) > 0,

µ∗` [i] = 0 , x∗[i]F`,i(x
∗) < 0.

Indeed, as long as the constant ρ̄ is larger than all µ∗` [i] and taking into account the fact

that x∗[i]F`,i(x
∗) ≤ 0 for each ` and i, we can readily obtain the above results from (3.9).

(b) Suppose x∗ is a stationary point of problem (3.6) and δ0(x
∗) = 0. Then, there

exists a multiplier vector λ satisfying (3.12)–(3.13). Note that x∗ ∈ X implies

x∗[i]F`,i(x
∗) ≤ 0, ∀`, ∀i. (3.16)

It then follows that

∂δ`,i(x
∗) =

{
co{F`,i(x

∗)ei + x∗[i]∇F`,i(x
∗), 0}, x∗[i]F`,i(x

∗) = 0

{ 0 } , x∗[i]F`,i(x
∗) < 0

for any ` and i, and

∂δ0(x
∗) =

L∑
`=1

n∑
i=1

∂δ`,i(x
∗).

Condition (3.12) means that there exist multiplier vectors µ`, ` = 1, · · · , L, such that

∀`, ∀i,
{

µ`[i] ∈ [0, ρ̄], x∗[i]F`,i(x
∗) = 0

µ`[i] = 0 , x∗[i]F`,i(x
∗) < 0

(3.17)
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and

0 ∈ ∂θ(x∗)− λ +
L∑

`=1

n∑
i=1

µ`[i](F`,i(x
∗)ei + x∗[i]∇F`,i(x

∗)). (3.18)

Let λ∗ := λ and

µ∗` := µ`, ` = 1, · · · , L.

Then (3.7)–(3.8) follow from (3.18) and (3.13), and (3.9) follows from (3.16)–(3.17).

Therefore, x∗ is a stationary point of problem (3.1).

We then have the following algorithm for problem (3.1).

Algorithm SP:

Step 1: Choose ε0 > 0 and ρ0 > 0. Set k := 0.

Step 2: Solve problem (3.3) with ε = εk and ρ = ρk to get a stationary point xk and go

to Step 3.

Step 3: If a stopping rule is satisfied, then terminate. Otherwise, choose εk+1 ∈ (0, εk)

and ρk+1 ≥ ρk. Go to Step 2 with k := k + 1.

In what follows, we suppose that the sequences {εk} and {ρk} satisfy

lim
k→∞

εk = 0, lim
k→∞

ρk = ρ̄, (3.19)

where ρ̄ is a sufficiently large constant. We next investigate the limiting behavior of

the sequence {xk} generated by Algorithm SP. The convergence result can be stated as

follows.

theorem Suppose that Algorithm SP generates a sequence {xk} of stationary points of

(3.3) with ε = εk and ρ = ρk. Then any accumulation point x∗ of the sequence {xk} must

be a stationary point of problem (3.6). Furthermore, if δ0(x
∗) = 0, then x∗ is a stationary

point of problem (3.1).

Proof: Assume without loss of generality that limk→∞ xk = x∗. We will show that x∗ is

stationary to problem (3.6), i.e., there exists a multiplier vector λ such that (3.12)–(3.13)

hold.

First of all, by the stationarity of xk for problem (3.3) with ε = εk and ρ = ρk, there

exists some Lagrange multiplier vector λk such that

∇ϑεk
(xk) + ρk∇δεk

(xk)− λk = 0, (3.20)

0 ≤ λk ⊥ xk ≥ 0. (3.21)

Note that, by (3.4) and (3.5),

∇ϑεk
(xk) = −

L∑
`=1

n∑
i=1

p`d[i]φ′εk
(−F`,i(x

k))∇F`,i(x
k), (3.22)

∇δεk
(xk) =

L∑
`=1

n∑
i=1

φ′εk
(xk[i]F`,i(x

k))(F`,i(x
k)ei + xk[i]∇F`,i(x

k)), (3.23)
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where

φ′εk
(t) =

1

2

(
t√

t2 + ε2
k

+ 1
)
, ∀ t ∈ <. (3.24)

We can then rewrite (3.20) as

λk =
L∑

`=1

n∑
i=1

µk
` [i](F`,i(x

k)ei + xk[i]∇F`,i(x
k))−

L∑
`=1

n∑
i=1

p`d[i]σk
` [i]∇F`,i(x

k), (3.25)

where, for any ` and any i,

µk
` [i] := ρkφ

′
εk

(xk[i]F`,i(x
k)), (3.26)

σk
` [i] := φ′εk

(−F`,i(x
k)). (3.27)

Since both {ρk} and {xk} are bounded, we see that {µk
`} and {σk

` } are bounded for every

`. It further follows from (3.25) that the sequence {λk} is also bounded. Without loss of

generality, we may assume that the following limits exist:

λ := lim
k→∞

λk, µ` := lim
k→∞

µk
` , σ` := lim

k→∞
σk

` , ∀`.

Taking a limit in (3.21) and (3.25), we obtain (3.13) and

λ =
L∑

`=1

n∑
i=1

µ`[i](F`,i(x
∗)ei + x∗[i]∇F`,i(x

∗))−
L∑

`=1

n∑
i=1

p`d[i]σ`[i]∇F`(x
∗). (3.28)

Thus, in order to show that x∗ is a stationary point of problem (3.6), we only need to

prove that the vector on the right-hand side of (3.28) belongs to the set ρ̄∂δ0(x
∗)+∂θ(x∗).

(i) We first prove that

L∑
`=1

n∑
i=1

µ`[i](F`,i(x
∗)ei + x∗[i]∇F`,i(x

∗)) ∈ ρ̄∂δ0(x
∗). (3.29)

By (3.15), it is sufficient to show that, for any ` and i,

µ`[i](F`,i(x
∗)ei + x∗[i]∇F`,i(x

∗)) ∈ ρ̄∂δ`,i(x
∗),

which, by (3.14), is equivalent to showing
µ`[i] ∈ [0, ρ̄], x∗[i]F`,i(x

∗) = 0,

µ`[i] = ρ̄ , x∗[i]F`,i(x
∗) > 0,

µ`[i] = 0 , x∗[i]F`,i(x
∗) < 0.

(3.30)

In fact, we can obtain (3.30) immediately from (3.19) and the facts that

lim
k→∞

xk = x∗
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and

µk
` [i] =

ρk

2

(
xk[i]F`,i(x

k)√
(xk[i]F`,i(xk))2 + ε2

k

+ 1
)
.

This completes the proof of (3.29).

(ii) We next prove that

−
L∑

`=1

n∑
i=1

p`d[i]σ`[i]∇F`,i(x
∗) ∈ ∂θ(x∗).

By (3.11), it is enough to show

−σ`[i]∇F`,i(x
∗) ∈ ∂θ`,i(x

∗), ∀`, ∀i. (3.31)

There are three cases:

(iia) Suppose F`,i(x
∗) = 0. We then have from (3.24) and (3.27) that

0 ≤ σk
` [i] ≤ 1, ∀k.

Passing to the limit yields 0 ≤ σ`[i] ≤ 1 and hence

−σ`[i]∇F`,i(x
∗) ∈ co{−∇F`,i(x

∗), 0} = ∂θ`,i(x
∗),

where the equality follows from (3.10).

(iib) Suppose F`,i(x
∗) < 0. Note that

σk
` [i] =

1

2

( −F`,i(x
k)√

(F`,i(xk))2 + ε2
k

+ 1
)
, ∀k.

Taking a limit in the above equality, we obtain σ`[i] = 1 immediately and so

−σ`[i]∇F`,i(x
∗) = −∇F`,i(x

∗) ∈ ∂θ`,i(x
∗).

(iic) Suppose F`,i(x
∗) > 0. It is easy to show that, for any k,

0 ≤ σk
` [i] ≤ εk

2(
√

(F`,i(xk))2 + ε2
k + F`,i(xk))

.

Letting k →∞, we see that σ`[i] = 0 and so

−σ`[i]∇F`,i(x
∗) = 0 ∈ ∂θ`,i(x

∗).

Consequently, (3.31) holds in each case. (i) and (ii) indicate that the vector on the

right-hand side of (3.28) belongs to the set ρ̄∂δ0(x
∗) + ∂θ(x∗). This completes the proof

of the first part of the theorem. The second half readily follows from Theorem 3.1.
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3.2 Preliminary numerical results

We have tested the proposed method on the following example.

Example 3.1 Consider the following SMPEC formulation of an SLCP:

min p(z1[1] + z1[2]) + (1− p)(z2[1] + z2[2])

s.t. z1[1] ≥ 0, z1[2] ≥ 0, z2[1] ≥ 0, z2[2] ≥ 0,

0 ≤
(

x[1]

x[2]

)
⊥
(

2x[2]− 5 + z1[1]

x[1] + x[2]− 5 + z1[2]

)
≥ 0, (3.32)

0 ≤
(

x[1]

x[2]

)
⊥
(

3x[1] + 2x[2]− 18 + z2[1]

x[1]− 4 + z2[2]

)
≥ 0,

where p is a constant such that 0 < p < 1. For this problem, problem (3.1) becomes

min p(max{5− 2x[2], 0}+ max{5− x[1]− x[2], 0})
+(1− p)(max{18− 3x[1]− 2x[2], 0}+ max{4− x[1], 0})

s.t. x[1] ≥ 0, x[2] ≥ 0, (3.33)

x[1](2x[2]− 5) ≤ 0, x[2](x[1] + x[2]− 5) ≤ 0,

x[1](3x[1] + 2x[2]− 18) ≤ 0, x[2](x[1]− 4) ≤ 0.

We tested two cases: p = 0.2 and p = 0.8. The corresponding solutions are x = (4, 1) and

x = (2.5, 2.5), respectively. It is easy to verify that the linear independence constraint

qualification holds at the solutions. This indicates that problem (3.33) has ordinary con-

straints, unlike the original SMPEC (3.32) that does not satisfy any standard constraint

qualification at any feasible point.

In our experiments, we employed the MATLAB 6.5 built-in solver fmincon to solve

the subproblems (3.3). We set ρ0 = 103, ρ̄ = 105, and updated the parameter by ρk+1 =

min{10ρk, ρ̄}. In addition, the initial point is chosen to be x0 = (0, 0) and the computed

solution xk at the kth iteration is used as the starting point in the next iteration.

The computational results are reported in Tables 1 and 2. In the table, Ite stands for

the number of iterations spent by fmincon to solve the subproblems. The results shown

in the tables reveal that the proposed method is able to solve the example successfully.

Table 1: Computational Results for p = 0.2 Table 2: Computational Results for p = 0.8

εk ρk xk Ite

10−2 103 (3.8338,1.0710) 26

10−3 104 (3.9521,1.0153) 7

10−4 105 (3.9853,1.0041) 10

10−6 105 (3.9999,1.0000) 21

10−8 105 (4.0000,1.0000) 12

εk ρk xk Ite

10−2 103 (2.4847,2.4359) 15

10−3 104 (2.4954,2.4796) 6

10−4 105 (2.4986,2.4935) 6

10−6 105 (2.5000,2.4999) 9

10−8 105 (2.5000,2.5000) 7
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4 Conclusions

We have shown that the stochastic nonlinear complementarity problem can be formulated

as a stochastic mathematical program with equilibrium constraints. In order to develop

some efficient methods for solving the problem, some reformulations of the problem have

been given. Based on these reformulations, a smoothed penalty method has been proposed

and a rigorous convergence analysis has also been presented.
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