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Abstract. In this paper, we consider a new formulation for stochastic mathematical pro-
grams with complementarity constraints and recourse. We show that the new formulation is
equivalent to a smooth semi-infinite program. Then, we propose a Monte Carlo sampling and
penalty method for solving the problem. Comprehensive convergence analysis and numerical
examples are included as well.
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1 Introduction

Recently, stochastic mathematical programs with equilibrium constraints (SMPECs) have been
receiving much attention in the optimization world [1, 9, 10, 11, 13, 16, 18, 19, 20]. In particular,
Lin et al. [9] introduced two kinds of SMPECs: One is the lower-level wait-and-see model,
in which the upper-level decision is made before a random event is observed, while a lower-
level decision is made after a random event is observed. The other is the here-and-now model
that requires us to make all decisions before a random event is observed. Lin and Fukushima
[10, 11, 13] suggested a smoothing penalty method and a regularization method, respectively,
for a special class of here-and-now problems. Shapiro and Xu [18, 19, 20] discussed the sample
average approximation and implicit programming approaches for the lower-level wait-and-see
problems. In addition, Birbil et al. [1] considered an SMPEC in which both the objective and
constraints involve expectations.

In [9], the here-and-now problem is formulated as follows:

min E[f(x, y, ω) + dT z(ω)]

s.t. g(x) ≤ 0, h(x) = 0, (1.1)

0 ≤ y ⊥ (F (x, y, ω) + z(ω)) ≥ 0,

z(ω) ≥ 0, ω ∈ Ω a.e.,
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where f : <n+m × Ω → <, g : <n → <s1 , h : <n → <s2 , and F : <n+m × Ω → <m are functions,
E means expectation with respect to the random variable ω ∈ Ω, the symbol ⊥ means the two
vectors are perpendicular to each other, “a.e.” is the abbreviation for “almost everywhere” under
the given probability measure, z(ω) is a recourse variable, and d ∈ <m is a constant vector with
positive elements. Moreover, x denotes the upper-level decision, y represents the lower-level
decision, and both the decisions x and y need to be made at once, before ω is observed.

Lin et al. [9, 11, 13] considered the case where the function F is affine and the underlying
sample space Ω is discrete and finite. In this paper, we consider a general case, i.e., F is
nonlinear and Ω is a compact subset of <l. A general strategy for SMPECs with infinitely many
samples is to discretize the problem by some kind of sampling selection methods, which means
the approximation problems are still MPECs. The strategy of this paper is, in contrast, to solve
some standard nonlinear programs as approximations of the original SMPEC.

We suppose that all functions involved are continuous and, particularly, f and F are continu-
ously differentiable with respect to (x, y), g and h are continuously differentiable with respect to
x. The main contributions of the paper can be stated as follows. In problem (1.1), dT z(ω) actu-
ally serves as a penalty term caused by the possible violation of the complementarity constraint
0 ≤ y ⊥ F (x, y, ω) ≥ 0. In this paper, we consider another penalty formulation of stochastic
mathematical program with complementarity constraints and recourse:

min E[f(x, y, ω) + σ‖z(ω)‖2]

s.t. g(x) ≤ 0, h(x) = 0, (1.2)

0 ≤ y ⊥ (F (x, y, ω) + z(ω)) ≥ 0,

z(ω) ≥ 0, ω ∈ Ω a.e.,

where σ > 0 is a weight constant. We can show that problem (1.2) is equivalent to

min E[f(x, y, ω) + σ‖u(x, y, ω)‖2]

s.t. g(x) ≤ 0, h(x) = 0, y ≥ 0, (1.3)

y ◦ F (x, y, ω) ≤ 0, ω ∈ Ω a.e.,

where u : <n+m × Ω → <m is defined by

u(x, y, ω) := max{−F (x, y, ω), 0} (1.4)

and ◦ denotes the Hadamard product, i.e., y ◦F (x, y, ω) := (y1F1(x, y, ω), · · · , ymFm(x, y, ω))T .

See the appendix for a proof of the equivalence between (1.2) and (1.3). Note that problem (1.3)
does no longer contain complementarity constraints and recourse variables. However, problem
(1.3) is actually a semi-infinite programming problem with a large number of complementarity-
like constraints and hence it is generally very complicated. We will employ a Monte Carlo
sampling method and a penalty technique to get approximations of problem (1.3) and investigate
the limiting behavior of optimal solutions and stationary points of the approximations.

The following notations are used in the paper. For any vectors a and b of the same dimension,
both max{a, b} and min{a, b} are understood to be taken componentwise. For a given function
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c : <s → <s′ and a vector t ∈ <s, ∇c(t) is the transposed Jacobian of c at t and Ic(t) :=
{i | ci(t) = 0} stands for the active index set of c at t.

2 Optimality Conditions

We consider problem (1.3). In the literature on semi-infinite programming, it is often assumed
that there are a finite number of active constraints at a solution (see e.g. [8]). However, the above
assumption does not hold in problem (1.3) in general. For example, if yi = 0 for some index
i, there must be infinitely many active constraints at the point. This indicates that problem
(1.3) is difficult to deal with than an ordinary semi-infinite programming problem. We define
the stationarity for problem (1.3) as follows.

Definition 2.1 We say (x∗, y∗) is stationary to (1.3) if there exist Lagrangian multiplier vectors
α∗ ∈ <s1 , β∗ ∈ <s2 , γ∗ ∈ <m, and a Lagrangian multiplier function δ∗ : Ω → <m such that

0 = E[∇xf(x∗, y∗, ω)− 2σ∇xF (x∗, y∗, ω)u(x∗, y∗, ω)] (2.1)

+∇g(x∗)α∗ +∇h(x∗)β∗ + E[∇x(y∗ ◦ F (x∗, y∗, ω))δ∗(ω)],

0 = E[∇yf(x∗, y∗, ω)− 2σ∇yF (x∗, y∗, ω)u(x∗, y∗, ω)] (2.2)

− γ∗ + E[∇y(y∗ ◦ F (x∗, y∗, ω))δ∗(ω)],

0 ≤ α∗ ⊥ − g(x∗) ≥ 0, (2.3)

0 ≤ γ∗ ⊥ y∗ ≥ 0, (2.4)

β∗ : free, h(x∗) = 0, (2.5)

0 ≤ δ∗(ω) ⊥ − y∗ ◦ F (x∗, y∗, ω) ≥ 0, ω ∈ Ω a.e. (2.6)

Note that, for any (x, y) ∈ <n+m and any ω ∈ Ω,

∇x(y ◦ F (x, y, ω)) = ∇xF (x, y, ω)diag(y1, · · · , ym), (2.7)

∇y(y ◦ F (x, y, ω)) = ∇yF (x, y, ω)diag(y1, · · · , ym) + diag(F1(x, y, ω), · · · , Fm(x, y, ω)). (2.8)

3 Monte Carlo Sampling and Penalty Approximations

Let φ : Ω → < be a function. The Monte Carlo sampling estimate for E[φ(ω)] is obtained
by taking independently and identically distributed random samples {ω1, · · · , ωk} from Ω and
letting E[φ(ω)] ≈ 1

k

∑k
`=1 φ(ω`). The strong law of large numbers guarantees that this procedure

converges with probability one (abbreviated by “w.p.1” below), i.e.,

lim
k→∞

1
k

k∑
`=1

φ(ω`) = E[φ(ω)] :=
∫

Ω
φ(ω)dζ(ω) w.p.1, (3.1)

where ζ(ω) is the distribution function of ω. See [15, 17] for more details about the Monte Carlo
sampling method.
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Applying the above method and using a penalty technique, we obtain the problem

min
1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2 + ρk ‖y ◦ v(x, y, ω`)‖2

)
(3.2)

s.t. g(x) ≤ 0, h(x) = 0, y ≥ 0,

which is a smooth approximation of problem (1.3). Here, ρk > 0 is a penalty parameter,
u : <n+m × Ω → <m is defined by (1.4), and v : <n+m × Ω → <m is given by

v(x, y, ω) := max{F (x, y, ω), 0}. (3.3)

Problem (3.2) is neither a semi-infinite program nor an MPEC and it is generally not difficult
to deal with in practice.

4 Convergence Analysis

In this section, we investigate convergence properties of the Monte Carlo sampling and penalty
method. Throughout, we denote by F the feasible region of problem (3.2) and for each k, we
let {ω1, · · · , ωk} be independently and identically distributed random samples drawn from Ω.

4.1 Limiting behavior of optimal solutions

We first study the convergence of optimal solutions of problems (3.2).

Theorem 4.1 Suppose that both f and F are Lipschitz continuous in (x, y) with Lipschitz
constants independent of ω and lim

k→∞
ρk → +∞. Assume that (xk, yk) solves problem (3.2)

for each k and the sequence {(xk, yk)} is bounded. Let (x∗, y∗) be an accumulation point of
{(xk, yk)}. Then (x∗, y∗) is an optimal solution of problem (1.3) with probability one.

Proof. Without loss of generality, we suppose lim
k→∞

(xk, yk) = (x∗, y∗).

(a) We first prove that (x∗, y∗) is almost surely feasible to (1.3). It is obvious that (x∗, y∗)
satisfies the constraints of problem (3.2). Therefore, it is sufficient to show that there holds

y∗ ◦ F (x∗, y∗, ω) ≤ 0, ω ∈ Ω a.e. (4.1)

with probability one. In fact, since (xk, yk) is an optimal solution of problem (3.2) and (x∗, 0)
is a feasible point of (3.2), we have

1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2 + ρk‖yk ◦ v(xk, yk, ω`)‖2

)

≤ 1
k

k∑
`=1

(
f(x∗, 0, ω`) + σ‖u(x∗, 0, ω`)‖2

)
.

It then follows from the Lipschitz continuity of f and the boundedness of the functions f(x∗, 0, ·)
and u(x∗, 0, ·) on Ω that the sequence

{
ρk
k

∑k
`=1 ‖yk ◦ v(xk, yk, ω`)‖2

}
is bounded. As a result,
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{
ρk
k

∑k
`=1(y

k
i )2 (Fi(xk, yk, ω`) + ui(xk, yk, ω`))2

}
is bounded for each i and, since yk ≥ 0 and

F (xk, yk, ω`)+u(xk, yk, ω`) = v(xk, yk, ω`) ≥ 0 for every k and `,
{

ρk
k

∑k
`=1(y

k)T (F (xk, yk, ω`)+

u(xk, yk, ω`))
}

is also bounded. Noting that lim
k→∞

ρk = +∞, we have

lim
k→∞

1
k

k∑
`=1

(yk)T
(
F (xk, yk, ω`) + u(xk, yk, ω`)

)
= 0. (4.2)

Moreover, by the assumptions of the theorem, there exists a constant κ > 0 such that

‖F (x, y, ω)− F (x′, y′, ω)‖ ≤ κ(‖x− x′‖+ ‖y − y′‖) (4.3)

holds for any x, x′ ∈ <n, y, y′ ∈ <m, and ω ∈ Ω. Therefore, for any k and `, we have

‖(F (xk, yk, ω`) + u(xk, yk, ω`))− (F (x∗, y∗, ω`) + u(x∗, y∗, ω`))‖
≤ 2‖F (xk, yk, ω`)− F (x∗, y∗, ω`)‖
≤ 2κ (‖xk − x∗‖+ ‖yk − y∗‖)

and then

lim
k→∞

∣∣∣1
k

k∑
`=1

(yk)T
(
(F (xk, yk, ω`) + u(xk, yk, ω`))− (F (x∗, y∗, ω`) + u(x∗, y∗, ω`))

)∣∣∣

≤ lim
k→∞

2κ ‖yk‖ (‖xk − x∗‖+ ‖yk − y∗‖)
= 0. (4.4)

It follows from (4.2) and (4.4) that

0 = lim
k→∞

1
k

k∑
`=1

(yk)T
(
F (xk, yk, ω`) + u(xk, yk, ω`)

)

= lim
k→∞

1
k

k∑
`=1

(yk)T
(
F (x∗, y∗, ω`) + u(x∗, y∗, ω`)

)

=
∫

Ω
(y∗)T (F (x∗, y∗, ω) + u(x∗, y∗, ω`))dζ(ω) w.p.1, (4.5)

where the last equality follows from (3.1). Noting that both (y∗)T (F (x∗, y∗, ·)+u(x∗, y∗, ·)) and
(y∗)T u(x∗, y∗, ·) are nonnegative on Ω, we obtain (4.1) from (4.5) immediately.

(b) Let (x, y) be an arbitrary feasible solution of problem (1.3). It is obvious that (x, y) is
feasible to problem (3.2). Moreover, if yi > 0 for some i, there must hold Fi(x, y, ω) ≤ 0 for
almost all ω ∈ Ω and so ui(x, y, ω) = −Fi(x, y, ω) for almost all ω ∈ Ω. This means

y ◦ v(x, y, ω) = y ◦ (F (x, y, ω) + u(x, y, ω)) = 0, ω ∈ Ω a.e. (4.6)
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Since (xk, yk) is an optimal solution of problem (3.2), we have almost surely that

1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2

)

=
1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2 + ρk‖y ◦ v(x, y, ω`)‖2

)

≥ 1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2 + ρk‖yk ◦ v(xk, yk, ω`)‖2

)

≥ 1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2

)
.

As a result, we have

1
k

k∑
`=1

(
f(x∗, y∗, ω`) + σ‖u(x∗, y∗, ω`)‖2

)
− 1

k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2

)

≤ 1
k

k∑
`=1

(
f(x∗, y∗, ω`) + σ‖u(x∗, y∗, ω`)‖2

)
− 1

k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2

)

≤ 1
k

k∑
`=1

(
|f(x∗, y∗, ω`)− f(xk, yk, ω`)|

+ σ‖u(x∗, y∗, ω`)− u(xk, yk, ω`)‖ (‖u(x∗, y∗, ω`)‖+ ‖u(xk, yk, ω`)‖)
)

w.p.1. (4.7)

Note that f is Lipschitz continuous in (x, y) with Lipschitz constants independent of ω. This
yields

lim
k→∞

1
k

k∑
`=1

|f(x∗, y∗, ω`)− f(xk, yk, ω`)| = 0. (4.8)

On the other hand, it follows from (1.4) and (4.3) that

‖u(x∗, y∗, ω`)− u(xk, yk, ω`)‖ ≤ ‖F (x∗, y∗, ω`)− F (xk, yk, ω`)‖
≤ κ (‖xk − x∗‖+ ‖yk − y∗‖), ` = 1, · · · , k.

By the boundedness of the sequence
{

1
k

∑k
`=1(‖u(x∗, y∗, ω`)‖+ ‖u(xk, yk, ω`)‖)

}
, we have

lim
k→∞

σ

k

k∑
`=1

‖u(x∗, y∗, ω`)− u(xk, yk, ω`)‖
(
‖u(x∗, y∗, ω`)‖+ ‖u(xk, yk, ω`)‖

)
= 0. (4.9)

Letting k → +∞ in (4.7) and taking (4.8)–(4.9) and (3.1) into account, we obtain

E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2] ≤ E[f(x, y, ω) + σ‖u(x, y, ω)‖2] w.p.1,

which indicates that (x∗, y∗) is an optimal solution of (1.3) with probability one.

We next discuss the existence conditions of solutions of problem (3.2). Let F be affine with
respect to (x, y) and given by

F (x, y, ω) := N(ω)x + M(ω)y + q(ω), (4.10)

where N : Ω → <m×n, M : Ω → <m×m, and q : Ω → <m are all continuous.
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Definition 4.1 Suppose that M̄ is an m×m matrix. We call M̄ an R0-matrix if

y ≥ 0, M̄y ≥ 0, yT M̄y = 0 =⇒ y = 0.

It is well-known that any P-matrix must be an R0-matrix [4]. We have the following result.

Lemma 4.1 Let {Mk} ⊂ <m×m be convergent to M̄ ∈ <m×m and M̄ be an R0-matrix. Then,
there exists an integer k0 > 0 such that Mk is an R0-matrix for every k ≥ k0.

Theorem 4.2 Suppose that the set X := {x ∈ <n | g(x) ≤ 0, h(x) = 0} is nonempty and
bounded, the function f is bounded below, and lim

k→∞
ρk → +∞. Let F be defined by (4.10) and

M̄ :=
∫
Ω M(ω)dζ(ω) be an R0-matrix. We then have the following statements almost surely.

(i) Problem (3.2) has at least one optimal solution when k is sufficiently large.

(ii) Let (xk, yk) be a solution of (3.2) for each k sufficiently large. Then the sequence
{(xk, yk)} is bounded.

Proof. (i) For each k, let Mk := 1
k

∑k
`=1 M(ω`). It then follows from (3.1) that M̄ = lim

k→∞
Mk

with probability one. Since M̄ is an R0-matrix, by Lemma 4.1, there exists an integer k0 > 0
such that Mk is an R0-matrix for every k ≥ k0.

Let k ≥ k0 be fixed and suppose Mk is an R0-matrix. It is easy to see that F is a nonempty
and closed set and the objective function of problem (3.2) is bounded below on F . Then, there
exists a sequence {(xj , yj)} ⊆ F such that

lim
j→∞

1
k

k∑
`=1

(
f(xj , yj , ω`) + σ‖u(xj , yj , ω`)‖2 + ρk‖yj ◦ v(xj , yj , ω`)‖2

)

= inf
(x,y)∈F

1
k

k∑
`=1

(
f(x, y, ω`) + σ‖u(x, y, ω`)‖2 + ρk‖y ◦ v(x, y, ω`)‖2

)
. (4.11)

Since f is bounded below and ρk is a positive constant, it follows from (4.11) that the sequences

{1
k

k∑
`=1

‖u(xj , yj , ω`)‖2
}

j=0,1,···
and

{1
k

k∑
`=1

‖yj ◦ v(xj , yj , ω`)‖2
}

j=0,1,···

are bounded. This implies that

{1
k

k∑
`=1

u(xj , yj , ω`)
}

j=0,1,···
and

{1
k

k∑
`=1

(yj)T
(
N(ω`)xj + M(ω`)yj + q(ω`) + u(xj , yj , ω`)

)}
j=0,1,···

are also bounded. Note that the latter sequence can be rewritten as
{

(yj)T
(1

k

k∑
`=1

N(ω`)xj + Mky
j +

1
k

k∑
`=1

q(ω`) +
1
k

k∑
`=1

u(xj , yj , ω`)
)}

j=0,1,···
. (4.12)

Moreover, by the boundedness of the set X , the sequence {xj} is bounded. On the other hand,
it is obvious from the feasibility of (xj , yj) in (3.2) and the definition of u that, for each j,

yj ≥ 0,
1
k

k∑
`=1

N(ω`)xj + Mky
j +

1
k

k∑
`=1

q(ω`) +
1
k

k∑
`=1

u(xj , yj , ω`) ≥ 0. (4.13)

7



Suppose the sequence {yj} is unbounded. Taking a subsequence if necessary, we assume that

lim
j→∞

‖yj‖ = +∞, lim
j→∞

yj

‖yj‖ = ȳ, ‖ȳ‖ = 1. (4.14)

Then, dividing (4.12) and (4.13) by ‖yj‖2 and ‖yj‖, respectively, and letting j → +∞, we obtain

0 ≤ ȳ ⊥ Mk ȳ ≥ 0.

Since Mk is an R0-matrix, we have ȳ = 0. This contradicts (4.14) and hence {yj} is bounded.

Therefore, {(xj , yj)} is bounded. Since F is closed, we see from (4.11) that any accumulation
point of {(xj , yj)} must be an optimal solution of (3.2). This completes the proof of (i).

(ii) Let (xk, yk) be a solution of (3.2) for each sufficiently large k. The boundedness of {xk}
follows from the boundedness of the set X immediately. We next prove that {yk} is almost
surely bounded. To this end, we choose a vector x̄ ∈ X arbitrarily. Then, (x̄, 0) is feasible to
problem (3.2). Since (xk, yk) is an optimal solution of (3.2), we have

1
k

k∑
`=1

(
f(xk, yk, ω`) + σ‖u(xk, yk, ω`)‖2 + ρk‖yk ◦ v(xk, yk, ω`)‖2

)

≤ 1
k

k∑
`=1

(
f(x̄, 0, ω`) + σ‖u(x̄, 0, ω`)‖2

)
(4.15)

and, by the definitions (1.4) and (4.10),

1
k

k∑
`=1

N(ω`)xk +
1
k

k∑
`=1

M(ω`)yk +
1
k

k∑
`=1

q(ω`) +
1
k

k∑
`=1

u(xk, yk, ω`) ≥ 0, yk ≥ 0. (4.16)

It follows from (4.15) that

0 ≤ σ

k

k∑
`=1

‖u(xk, yk, ω`)‖2 +
ρk

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2

≤ 1
k

k∑
`=1

(
f(x̄, 0, ω`)− f(xk, yk, ω`)

)
+

σ

k

k∑
`=1

‖u(x̄, 0, ω`)‖2.

Since f is bounded below, we have from (3.1) that

{1
k

k∑
`=1

(
f(x̄, 0, ω`)− f(xk, yk, ω`)

)}
and

{σ

k

k∑
`=1

‖u(x̄, 0, ω`)‖2
}

are almost surely bounded. In consequence, the sequences

{1
k

k∑
`=1

‖u(xk, yk, ω`)‖2
}

and
{ρk

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2
}

are almost surely bounded. By Cauchy inequality, we have

( k∑
`=1

ui(xk, yk, ω`)
)2
≤ k

k∑
`=1

(
ui(xk, yk, ω`)

)2
, i = 1, · · · ,m
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for each k and hence
∥∥∥1
k

k∑
`=1

u(xk, yk, ω`)
∥∥∥

2
=

1
k2

m∑
i=1

( k∑
`=1

ui(xk, yk, ω`)
)2

≤ 1
k

m∑
i=1

k∑
`=1

(
ui(xk, yk, ω`)

)2
=

1
k

k∑
`=1

‖u(xk, yk, ω`)‖2. (4.17)

Similarly, we have

∣∣∣1
k

k∑
`=1

(yk)T
(
N(ω`)xk + M(ω`)yk + q(ω`) + u(xk, yk, ω`)

)∣∣∣
2

=
1
k2

∣∣∣
m∑

i=1

k∑
`=1

yk
i vi(xk, yk, ω`)

∣∣∣
2

≤ m

k2

m∑
i=1

( k∑
`=1

yk
i vi(xk, yk, ω`)

)2

≤ m

k

m∑
i=1

k∑
`=1

(
yk

i vi(xk, yk, ω`)
)2

=
m

k

k∑
`=1

‖yk ◦ v(xk, yk, ω`)‖2. (4.18)

It follows from (4.17) and (4.18) that both
{

1
k

∑k
`=1 u(xk, yk, ω`)

}
and

{1
k

k∑
`=1

(yk)T
(
N(ω`)xk + M(ω`)yk + q(ω`) + u(xk, yk, ω`)

)}
(4.19)

are almost surely bounded. Suppose that the sequence {yk} is unbounded with probability one.
Taking a subsequence if necessary, we assume that

lim
k→∞

‖yk‖ = +∞, lim
k→∞

yk

‖yk‖ = ȳ, ‖ȳ‖ = 1. (4.20)

Note that the sequences {xk} and
{

1
k

∑k
`=1 u(xk, yk, ω`)

}
are bounded and

lim
k→∞

1
k

k∑
`=1

M(ω`) = M̄, lim
k→∞

1
k

k∑
`=1

N(ω`) =
∫

Ω
N(ω)dζ(ω), lim

k→∞
1
k

k∑
`=1

q(ω`) =
∫

Ω
q(ω)dζ(ω)

with probability one. Dividing (4.16) and (4.19) by ‖yk‖ and ‖yk‖2, respectively, and letting
k → +∞, we obtain 0 ≤ ȳ ⊥ M̄ ȳ ≥ 0. Since M̄ is an R0-matrix, we have ȳ = 0 with probability
one. This contradicts (4.20) and hence, the sequence {yk} is almost surely bounded. This
completes the proof of (ii).

4.2 Limiting behavior of stationary points

In general, it is difficult to obtain an optimal solution, whereas computation of stationary points
is relatively easy. Therefore, it is important to study the limiting behavior of stationary points
of problems (3.2). To this end, for any ε > 0, we denote

Eε :=
{

(x, y) ∈ <n+m
∣∣∣ g(x) ≤ 0, h(x) = 0, y ≥ 0, yiFi(x, y, ω) ≤ ε for each i and ω ∈ Ω a.e.

}

We can show that, for any fixed (x̃, ỹ) ∈ F \ Eε, there exists a constant ρ̃ > 0 such that (x̃, ỹ)
cannot serve as an optimal solution of problem (3.2) for any ρk ≥ ρ̃. In fact, since (x̃, ỹ) /∈ Eε,
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there are an index ĩ and a subset Ω̃ ⊆ Ω with nonzero measure such that ỹĩ Fĩ(x̃, ỹ, ω) > ε holds
for every ω ∈ Ω̃. It follows that

1
k

k∑
`=1

(
f(x̃, ỹ, ω`) + σ‖u(x̃, ỹ, ω`)‖2 + ρk ‖ỹ ◦ v(x̃, ỹ, ω`)‖2

)
−→ +∞ as ρk → +∞. (4.21)

Note that (x̃, 0) is feasible to (3.2) for any ρk. By (4.21), the value of the objective function of
(3.2) at (x̃, ỹ) must be larger than the value at (x̃, 0) when ρk is large enough. This means that
(x̃, ỹ) cannot serve as an optimal solution of problem (3.2) when ρk is sufficiently large.

Therefore, when the penalty parameter ρk is chosen sufficiently large, we may expect to get
a point (xk, yk) ∈ Eε by solving (3.2) for a given ε > 0. Noting that

0 ≤ a ⊥ b ≥ 0 ⇐⇒ min{a, b} = 0,

we define the approximate stationarity for (1.3) as follows.

Definition 4.2 Let ε > 0. We say (x∗, y∗) is an ε-stationary point of problem (1.3) if there
exist Lagrangian multiplier vectors α∗ ∈ <s1 , β∗ ∈ <s2 , γ∗ ∈ <m, and a Lagrangian multiplier
function δ∗ : Ω → <m satisfying (2.1)-(2.5) and

|min{δ∗i (ω), −y∗i Fi(x∗, y∗, ω)}| ≤ ε, ∀ i, ω ∈ Ω a.e. (4.22)

The main result can be stated as follows.

Theorem 4.3 Suppose ∇(x,y)f, F,∇(x,y)F are all Lipschitz continuous in (x, y) with Lipschitz
constants independent of ω and lim

k→∞
ρk → ρ̄, where ρ̄ > 0 is a sufficiently large number. Let

(xk, yk) be a Karush-Kuhn-Tucker point of (3.2) for each k and (xk, yk) ∈ Eε for each k large
enough, where ε > 0 is a given scalar. Suppose that (x∗, y∗) is an accumulation point of {(xk, yk)}
and the system {g(x) ≤ 0, h(x) = 0} satisfies the Mangasarian-Fromovitz constraint qualifica-
tion at x∗. Then (x∗, y∗) is ε-stationary to (1.3) with probability one.

Proof. Without loss of generality, we suppose that lim
k→∞

(xk, yk) = (x∗, y∗). It is obvious that

(x∗, y∗) ∈ Eε. Since (xk, yk) is a Karush-Kuhn-Tucker point of problem (3.2), there must exist
Lagrangian multiplier vectors αk ∈ <s1 , βk ∈ <s2 , and γk ∈ <m such that

0 =
1
k

k∑
`=1

(
∇xf(xk, yk, ω`)− 2σ∇xF (xk, yk, ω`)u(xk, yk, ω`) (4.23)

+ 2ρk∇xF (xk, yk, ω`)diag(yk
1 , · · · , yk

m)(yk ◦ v(xk, yk, ω`))
)

+∇g(xk)αk +∇h(xk)βk,

0 =
1
k

k∑
`=1

(
∇yf(xk, yk, ω`)− 2σ∇yF (xk, yk, ω`)u(xk, yk, ω`) (4.24)

+ 2ρk

(
∇yF (xk, yk, ω`)diag(yk

1 , · · · , yk
m)

+ diag(v1(xk, yk, ω`), · · · , vm(xk, yk, ω`))
)
(yk ◦ v(xk, yk, ω`))

)
− γk,

0 ≤ αk ⊥ − g(xk) ≥ 0, (4.25)

βk : free, h(xk) = 0, (4.26)

0 ≤ γk ⊥ yk ≥ 0. (4.27)
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We next show that there exist multiplier vectors α∗ ∈ <s1 , β∗ ∈ <s2 , γ∗ ∈ <m, and a multiplier
function δ∗ : Ω → <m such that there hold (2.1)-(2.5) and (4.22).

Recall that the functions ∇(x,y)f, F,∇(x,y)F are Lipschitz continuous in (x, y) with Lipschitz
constants independent of ω. Then, there exists a constant κ > 0 such that

‖∇(x,y)f(x, y, ω)−∇(x,y)f(x′, y′, ω)‖ ≤ κ (‖x− x′‖+ ‖y − y′‖‖),
‖F (x, y, ω)− F (x′, y′, ω)‖ ≤ κ (‖x− x′‖+ ‖y − y′‖),

‖∇(x,y)F (x, y, ω)−∇(x,y)F (x′, y′, ω)‖ ≤ κ (‖x− x′‖+ ‖y − y′‖)

hold for any x, x′ ∈ <n, y, y′ ∈ <m, and ω ∈ Ω. Therefore, for any k, we have

lim
k→∞

∥∥∥1
k

k∑
`=1

(
∇(x,y)f(xk, yk, ω`)−∇(x,y)f(x∗, y∗, ω`)

)∥∥∥

≤ lim
k→∞

1
k

k∑
`=1

∥∥∥∇(x,y)f(xk, yk, ω`)−∇(x,y)f(x∗, y∗, ω`)
∥∥∥

≤ lim
k→∞

κ
(
‖xk − x∗‖+ ‖yk − y∗‖

)

= 0.

It then follows that

lim
k→∞

1
k

k∑
`=1

∇(x,y)f(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

∇(x,y)f(x∗, y∗, ω`)

=
∫

Ω
∇(x,y)f(x∗, y∗, ω) dζ(ω) w.p.1, (4.28)

where the last equality follows from (3.1). Moreover, since

lim
k→∞

∥∥∥1
k

k∑
`=1

(
∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`)−∇(x,y)F (x∗, y∗, ω`)u(x∗, y∗, ω`)

)∥∥∥

≤ lim
k→∞

1
k

k∑
`=1

∥∥∥∇(x,y)F (xk, yk, ω`)
(
u(xk, yk, ω`)− u(x∗, y∗, ω`)

)

+
(
∇(x,y)F (xk, yk, ω`)−∇(x,y)F (x∗, y∗, ω`)

)
u(x∗, y∗, ω`)

∥∥∥

≤ lim
k→∞

1
k

k∑
`=1

(
‖∇(x,y)F (xk, yk, ω`)‖ ‖F (xk, yk, ω`)− F (x∗, y∗, ω`)‖

+ ‖∇(x,y)F (xk, yk, ω`)−∇(x,y)F (x∗, y∗, ω`)‖ ‖u(x∗, y∗, ω`)‖
)

≤ lim
k→∞

2κC
(
‖xk − x∗‖+ ‖yk − y∗‖

)

= 0,

where C > 0 is an upper bounded of {∇(x,y)F (xk, yk, ω`)} and {u(x∗, y∗, ω`)}, there holds

lim
k→∞

1
k

k∑
`=1

∇(x,y)F (xk, yk, ω`)u(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

∇(x,y)F (x∗, y∗, ω`)u(x∗, y∗, ω`)

=
∫

Ω
∇(x,y)F (x∗, y∗, ω)u(x∗, y∗, ω) dζ(ω) (4.29)
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with probability one. In a similar way, we can show that

lim
k→∞

ρk

k

k∑
`=1

∇(x,y)F (xk, yk, ω`) diag(yk
1 , · · · , yk

m) (yk ◦ v(xk, yk, ω`))

= lim
k→∞

ρk

k

k∑
`=1

∇(x,y)F (x∗, y∗, ω`) diag(y∗1, · · · , y∗m) (y∗ ◦ v(x∗, y∗, ω`))

= ρ̄

∫

Ω
∇(x,y)F (x∗, y∗, ω) diag(y∗1, · · · , y∗m) (y∗ ◦ v(x∗, y∗, ω)) dζ(ω) w.p.1 (4.30)

and

lim
k→∞

ρk

k

k∑
`=1

diag(v1(xk, yk, ω`), · · · , vm(xk, yk, ω`)) (yk ◦ v(xk, yk, ω`))

= lim
k→∞

ρk

k

k∑
`=1

diag(v1(x∗, y∗, ω`), · · · , vm(x∗, y∗, ω`)) (y∗ ◦ v(x∗, y∗, ω`))

= ρ̄

∫

Ω
diag(v1(x∗, y∗, ω), · · · , vm(x∗, y∗, ω)) (y∗ ◦ v(x∗, y∗, ω)) dζ(ω) w.p.1. (4.31)

It follows from (4.23)-(4.24) and (4.28)-(4.31) that both {∇g(xk)αk +∇h(xk)βk } and {γk} are
almost surely bounded. We next show that {αk} and {βk} are almost surely bounded. To this
end, let

τk :=
s1∑

i=1
αk

i +
s2∑

j=1
|βk

j |. (4.32)

Taking a subsequence if necessary, we may assume that the limits

ᾱ := lim
k→∞

αk

τk
, β̄ := lim

k→∞
βk

τk
(4.33)

exist. It is obvious from (4.32) that

s1∑
i=1

ᾱi +
s2∑

j=1
|β̄j | = 1. (4.34)

Suppose that {αk} or {βk} is unbounded with probability one. There almost surely holds
lim

k→∞
τk = +∞. Dividing (∇g(xk)αk +∇h(xk)βk) by τk and taking a limit, we get

∇g(x∗)ᾱ +∇h(x∗)β̄ = 0 w.p.1. (4.35)

Note that, if i /∈ Ig(x∗), then gi(xk) < 0 for all k sufficiently large and hence, by (4.25) and
(4.33), we have ᾱi = 0. Thus, (4.35) becomes

∑
i∈Ig(x∗)

ᾱi∇gi(x∗) +∇h(x∗)β̄ = 0 w.p.1.

This together with (4.34) almost surely contradicts the assumption that the system {g(x) ≤
0, h(x) = 0} satisfies the Mangasarian-Fromovitz constraint qualification at x∗. Therefore,
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both {αk} and {βk} are bounded with probability one. Recalling that {γk} is almost surely
bounded, we may assume without loss of generality that the following limits exist:

α∗ := lim
k→∞

αk, β∗ := lim
k→∞

βk, γ∗ := lim
k→∞

γk.

Furthermore, we define the function δ∗ : Ω → <m by

δ∗(ω) := 2 ρ̄ y∗ ◦ v(x∗, y∗, ω).

Note that, by the definition (3.3), (vi(x∗, y∗, ω))2 = vi(x∗, y∗, ω)Fi(x∗, y∗, ω) holds for each i and
ω. It then follows that∫

Ω
diag(v1(x∗, y∗, ω), · · · , vm(x∗, y∗, ω)) (y∗ ◦ v(x∗, y∗, ω)) dζ(ω)

=
∫

Ω
diag(F1(x∗, y∗, ω), · · · , Fm(x∗, y∗, ω)) (y∗ ◦ v(x∗, y∗, ω)) dζ(ω).

In consequence, taking a limit in (4.23) and (4.24), we obtain (2.1) and (2.2) from (4.28)-
(4.31) and (2.7)-(2.8) with probability one. Moreover, we have (2.3)-(2.5) from (4.25)-(4.27)
immediately. In addition, it is obvious that δ∗i (ω) ≥ 0 for any ω ∈ Ω. Since y∗i Fi(x∗, y∗, ω) ≤ ε

for each i and almost every ω ∈ Ω, we have (4.22) if y∗i Fi(x∗, y∗, ω) ≥ −ε. When y∗i Fi(x∗, y∗, ω) <

−ε, there must hold Fi(x∗, y∗, ω) < 0 and hence vi(x∗, y∗, ω) = 0 by (3.3), which in turn implies
δ∗i (ω) = 0 by the definition of δ∗. This indicates that the condition (4.22) is also valid.

Therefore, (α∗, β∗, γ∗, δ∗(·)) satisfies (2.1)-(2.5) and (4.22) with probability one and hence
(x∗, y∗) is almost surely ε-stationary to problem (1.3).

5 Numerical Examples

Given a mapping F : <m × Ω → <m, we consider the stochastic complementarity problem

0 ≤ y ⊥ F (y, ω) ≥ 0, ω ∈ Ω. (5.1)

In [12], by introducing a recourse variable, we reformulate (5.1) as an SMPEC (1.1) and propose
a smoothed penalty method for the case with a finite sample space. As an application of the
new model (1.2), we consider the following SMPEC formulation of (5.1):

min E[‖z(ω)‖2]

s.t. 0 ≤ y ⊥ F (y, ω) + z(ω) ≥ 0, (5.2)

z(ω) ≥ 0, ω ∈ Ω.

Thus, we may employ the method proposed in Section 3 to solve problem (5.2).

Example 5.1 Consider the stochastic complementarity problem (5.1) in which ω is uniformly
distributed on Ω := [0, 1] and F : <3 × Ω → <3 is given by

F (y, ω) :=




y1 − ωy2 + 3− 2ω
−ωy1 + 2y2 + ωy3 − 2− ω

ωy2 + 3y3 − 3− ω


 .

Problem (5.1) has a unique solution y∗ = (0, 1, 1) for each ω ∈ Ω.
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Example 5.2 Consider the stochastic complementarity problem (5.1) in which ω is uniformly
distributed on Ω := [0, 1] and F : <2 × Ω → <2 is given by

F (y, ω) :=
(

y1 + ωy2 − 2 + ω
ωy1 + 2y2 + 1 + ω

)
.

This problem has no common solution for all ω ∈ Ω. Note that the SMPEC formulation (5.2)
becomes

min E[‖z(ω)‖2]

s.t. 0 ≤
(

y1

y2

)
⊥

(
y1 + ωy2 − 2 + ω
ωy1 + 2y2 + 1 + ω

)
+ z(ω) ≥ 0, (5.3)

z(ω) ≥ 0, ω ∈ [0, 1].

Let (y1, y2, z(·)) be an arbitrary feasible point of (5.3). Since ωy1+2y2+1+ω > 0 for ω ∈ [0, 1], we
have y2 = 0. Let z∗(ω) :=

(
2−ω−y1

0

)
. Note that, if y1 6= 0, there must hold y1−2+ω+z1(ω) = 0.

It follows that (y1, y2, z
∗(·)) is feasible to problem (5.3) and z(ω) ≥ z∗(ω) ≥ 0 for any ω ∈ [0, 1].

Furthermore, we have

E[‖z(ω)‖2] ≥ E[‖z∗(ω)‖2] =
∫ 1

0
(2− ω − y1)2dω = y2

1 − 3y1 + 7
3 .

Recall that y1 ≤ 2− ω for any ω ∈ [0, 1]. Therefore, we must have y1 ∈ [0, 1]. Thus, we obtain
an optimal solution (1, 0, z∗(·)) of problem (5.3) with z∗(ω) :=

(
1−ω

0

)
.

Table 1: Computational Results for Examples 5.1-5.2

Parameters
Example 5.1 Example 5.2

yk Obj yk Obj
k = 102, ρk = 102 (0,1.0019,0.9489) 6.8918e-004 (1.1153,0) 0.7905
k = 103, ρk = 103 (0,0.9996,0.9982) 6.8476e-006 (1.0329,0) 0.4175
k = 104, ρk = 104 (0,0.9999,0.9985) 1.3156e-006 (1.0027,0) 0.3242
k = 105, ρk = 105 (0,1.0000,0.9995) 9.9033e-008 (1.0007,0) 0.3301

We apply the Monte Carlo sampling and penalty method to solve Examples 5.1 and 5.2. In
our experiments, we set the initial values of k and ρk as k := 102 and ρk := 102, respectively.
Then, we employed the random number generator rand in Matlab 6.5 to generate independently
and identically distributed random samples {ω1, · · · , ωk} from Ω and we solved the subproblems

min
y≥0

1
k

k∑
`=1

(
‖max(−F (y, ω`), 0)‖2 + ρk ‖y ◦max(F (y, ω`), 0)‖2

)
(5.4)

by the solver fmincon in Matlab 6.5 to get a point yk. The initial point was chosen to be
(0, · · · , 0) and the computed solution yk was used as the starting point in the next iteration. In
addition, the parameters were updated by k := 10k and ρk := min{10ρk, ρ̄} with ρ̄ = 105. The
computational results for Examples 5.1 and 5.2 are shown in Table 1, in which Obj denotes the
values of the objective function of (5.4) at the current point. The results shown in the table
reveal that the proposed method was able to solve the examples successfully.

14



6 Conclusions

We have presented a new formulation (1.2) for the SMPECs with recourse and shown that the
new formulation is actually equivalent to a smooth semi-infinite programming problem. We then
employed a Monte Carlo sampling method and a penalty technique to get some approximations
to the problem. Under appropriate assumptions, we have established convergence of the pro-
posed method. Recall that the sample space Ω is assumed to have infinitely many elements.
Actually, if Ω has only a finite number of elements, we may present a similar method without
resort to a Monte Carlo sampling approximation technique.
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Appendix: Equivalence between problems (1.2) and (1.3). If (x∗, y∗) solves prob-
lem (1.3), then (x∗, y∗, u(x∗, y∗, ·)) is an optimal solution of problem (1.2). Conversely, if
(x∗, y∗, z∗(·)) is an optimal solution of problem (1.2), then (x∗, y∗) solves problem (1.3).

Proof. (i) Suppose that (x∗, y∗) is an optimal solution of (1.3). We then have from (1.4) that

F (x∗, y∗, ω) + u(x∗, y∗, ω) ≥ 0, ∀ω ∈ Ω.
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Note that, if y∗i > 0 for some i, there must hold Fi(x∗, y∗, ω) ≤ 0 for almost all ω ∈ Ω and so
ui(x∗, y∗, ω) = −Fi(x∗, y∗, ω) for almost all ω ∈ Ω. Therefore, we have

(y∗)T (F (x∗, y∗, ω) + u(x∗, y∗, ω)) = 0, ω ∈ Ω a.e.

This indicates that (x∗, y∗, u(x∗, y∗, ·)) is feasible to problem (1.2). Let (x, y, z(·)) be an arbitrary
feasible point of problem (1.2). It then follows that, for almost every ω ∈ Ω,

z(ω)− u(x, y, ω) = min{F (x, y, ω) + z(ω), z(ω)} ≥ 0

and hence z(ω) ≥ u(x, y, ω) ≥ 0. This implies that E[ ‖z(ω)‖2−‖u(x, y, ω)‖2 ] ≥ 0. On the other
hand, it follows from the feasibility of (x, y, z(·)) in problem (1.2) that

y ◦ F (x, y, ω) = −y ◦ z(ω) ≤ 0, ω ∈ Ω a.e.,

and so the point (x, y) is a feasible point of problem (1.3). Thus, we have from the optimality
of (x∗, y∗) in (1.3) that

E[f(x, y, ω) + σ‖u(x, y, ω)‖2] ≥ E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2].

Therefore, there holds

E[f(x, y, ω) + σ‖z(ω)‖2]− E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2]

= E[f(x, y, ω) + σ‖u(x, y, ω)‖2]− E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2] + σE[‖z(ω)‖2 − ‖u(x, y, ω)‖2]

≥ 0.

This indicates that (x∗, y∗, u(x∗, y∗, ·)) is an optimal solution of problem (1.2).

(ii) Suppose that (x∗, y∗, z∗(·)) is an optimal solution of (1.2). Let (x, y) be an arbitrary
feasible point of (1.3). In a similar way to (i), we can show that (x, y, u(x, y, ·)) and (x∗, y∗) are
feasible to problems (1.2) and (1.3), respectively. Since (x∗, y∗, z∗(·)) solves (1.2), there holds

E[f(x, y, ω) + σ‖u(x, y, ω)‖2] ≥ E[f(x∗, y∗, ω) + σ‖z∗(ω)‖2].

Moreover, similarly to (a), we have from (1.4) that z∗(ω) ≥ u(x∗, y∗, ω) ≥ 0 for almost all ω ∈ Ω
and hence E[ ‖z∗(ω)‖2 − ‖u(x∗, y∗, ω)‖2 ] ≥ 0. Therefore,

E[f(x, y, ω) + σ‖u(x, y, ω)‖2]− E[f(x∗, y∗, ω) + σ‖u(x∗, y∗, ω)‖2]

= E[f(x, y, ω) + σ‖u(x, y, ω)‖2]− E[f(x∗, y∗, ω) + σ‖z∗(ω)‖2] + σE[‖z∗(ω)‖2 − ‖u(x∗, y∗, ω)‖2]

≥ 0,

which implies that (x∗, y∗) is an optimal solution of problem (1.3).
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