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This paper considers the worst-case CVaR in the case where only partial information on the

underlying probability distribution is given. The minimization of worst-case CVaR under

the mixture distribution uncertainty, componentwise bounded uncertainty and ellipsoidal

uncertainty are investigated. The application of worst-case CVaR to robust portfolio op-

timization is proposed, and the corresponding problems are cast as linear programs and

second-order cone programs which can be efficiently solved. Market data simulation and

Monte Carlo simulation examples are presented to illustrate the methods. Our approaches

can be applied in many situations, including those outside of financial risk management.

Subject Classifications: Finance, portfolio: conditional VaR, portfolio optimization; Pro-

gramming, linear, nonlinear: robust optimization, second-order cone programming.

1 Introduction

Generally, two types of decision making frameworks are adopted in financial optimization.
One is the return-risk trade-off, and the other is utility maximization. The former is widely
applied both in practice and in the theoretical study, while the latter is mainly used in the
theoretical study.

Markowitz (1952) paved the foundation for modern portfolio theory. His mean-variance
analysis is a representative methodology in the framework of return-risk trade-off, where
variance is adopted as the measure of risk. Since the middle of 1990s, Value-at-Risk (VaR,
see RiskMetricsTM 1996), a new measure of downside risk, has become popular in financial risk
management. It has even been recommended as a standard on banking supervision by Basel
Committee. However, VaR is criticized in recent years, especially in three aspects. First,
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VaR is not sub-additive in the general distribution case, consequently it is not a coherent risk
measure in the sense of Artzner et al. (1999). Next, as a function of the portfolio positions,
VaR may exhibit multiple local extrema for discrete distributions. Therefore VaR is hard to
be optimized in this case. Finally, VaR is just a percentile of a probability distribution, and it
does not fully grasp the information of the uncertainty beyond itself. Philippe (1996) presents
some details of risk management using VaR. One can find plenty of materials on the theory,
modeling, algorithms, and applications related to VaR at http://www.gloriamundi.org which
is updated on-line.

Conditional Value-at-Risk (CVaR), defined as the mean of the tail distribution exceeding
VaR, has attracted much attention in recent years. As a measure of risk, CVaR exhibits
some better properties than VaR. Rockafellar and Uryasev (2000, 2002) showed that min-
imizing CVaR can be achieved by minimizing a more tractable auxiliary function without
predetermining the corresponding VaR first, and at the same time, VaR can be calculated
as a by-product. The CVaR minimization formulation given by Rockafellar and Uryasev
(2000, 2002) usually results in convex programs, and even linear programs. Thus, their work
opened the door to applying CVaR to financial optimization and risk management in practice.
Pflug (2000) and Acerbi and Tasche (2002) proved that CVaR is a coherent risk measure.
Rockafellar and Uryasev (2002) further explained the coherence of CVaR, and showed that
CVaR is stable in the sense of continuity with respect to the confidence level β. Pflug (2000)
and Ogryczak and Ruszczyński (2002) showed that CVaR is in harmony with the stochas-
tic dominance principles which are closely related to the utility theory. Konno, Waki and
Yuuki (2002) illustrated the significance of using CVaR in reducing downside risk in portfolio
optimization. All these stimulate the application of CVaR in practice. It is evidenced that
CVaR is becoming more and more popular in financial management (Andersson et al. 2001,
Bogentoft, Romeijn and Uryasev 2001, Topaloglou, Vladimirou and Zenios 2002).

As pointed out by Black and Litterman (1992), for the classical mean-variance model,
the portfolio decision is very sensitive to the mean and the covariance matrix, especially to
the mean. They showed that a small change in the mean can produce a large change in the
optimal portfolio position. Thus the modeling risk arises due to the uncertainty of the un-
derlying probability distribution. The uncertainty of the distribution can readily be observed
in the case where enough data samples are not available, or the data samples are unstable.
Moreover, it occurs in many other situations, such as portfolio selection with uncertain time
of exit (Martellini and Uroševió 2001). Another typical example is the decentralized invest-
ment management system (Mulvey and Erkan 2003), where each decision maker might have
personal views on the future markets and cannot agree with each other.

Recently, a few researchers have paid more attention to the issue of lack of robustness.
Ben-Tal, Margalit and Nemirovski (1999) formulated a robust multi-stage portfolio problem
using a robust linear programming approach. Lobo and Boyd (2000), Costa and Paiva (2002),
Goldfarb and Iyengar (2003) studied the robust portfolio in the mean-variance framework. In-
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stead of the precise information on the mean and the covariance matrix of asset returns, they
introduced some types of uncertainties, such as polytopic uncertainty, box uncertainty and
ellipsoidal uncertainty, in the parameters involved in the mean and the covariance matrix, and
then translated the problem into semidefinite programs or second-order cone programs, which
can efficiently be solved by interior-point algorithms developed in recent years. Halldórsson
and Tütüncü (2003) applied their interior-point method for saddle-point problems to the ro-
bust mean-variance portfolio selection under the box uncertainty in the elements of the mean
vector and the covariance matrix. El Ghaoui, Oks and Oustry (2003) investigated the robust
portfolio optimization using worst-case VaR, where only partial information on the distribu-
tion is known. Several formulations corresponding to various partial information structures
have extensively been exploited to formulate the problems as semidefinite programs. Goldfarb
and Iyengar (2003) also considered the robust VaR portfolio selection problem by assuming
a normal distribution.

Robust optimization is not a new field in operations research. However, it is the break-
through of the research in conic programming that has greatly stimulated the state-of-the-art
of the robust optimization. The reader interested in robust optimization is referred to Ben-Tal
and Nemirovski (2002) and the references therein.

In this paper, we consider the the worst-case CVaR in the situation where the information
on the underlying probability distribution is not exactly known. The paper is outlined as
follows: In the next section, we introduce the concept of worst-case CVaR and discuss the
minimization of worst-case CVaR in detail. Three types of uncertainties in the distributions,
mixture distribution uncertainty, box uncertainty and ellipsoidal uncertainty are investigated.
In Section 3, we present the application of worst-case CVaR to robust portfolio optimization,
together with some illustrative numerical examples. Finally, we give some concluding remarks
and discuss some future directions in this topic in Section 4.

2 Minimization of Worst-Case CVaR

Let f(x,y) denote the loss associated with decision vector x ∈ X ⊆ Rn and random vector
y ∈ Rm (We use boldface letters to denote vectors and capital letters to denote matrices).
For the sake of simple formulation and clear understanding, we assume that y follows a
continuous distribution in the first part of this section, and denote its density function as
p(·). However all the results remain true for general distributions (see Remark 1). We also
assume E(|f(x,y)|) < +∞ for each x ∈ X , so that CVaR and worst-case CVaR will be
properly defined.

Given a decision x ∈ X , the probability of f(x,y) not exceeding a threshold α is repre-
sented as

Ψ(x, α) ,
∫

f(x,y)≤α
p(y)dy.
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Given a confidence level β (usually greater than 0.9) and a fixed x ∈ X , the value-at-risk is
defined as

VaRβ(x) , min{α ∈ R : Ψ(x, α) ≥ β}.

The corresponding conditional value-at-risk, denoted by CVaRβ(x), is defined as the expected
value of loss that exceeds VaRβ(x), that is,

CVaRβ(x) , 1
1− β

∫

f(x,y)≥VaRβ(x)
f(x,y)p(y)dy.

Rockafellar and Uryasev (2000, 2002) demonstrate that the calculation of CVaR can be
achieved by minimizing the following auxiliary function with respect to variable α ∈ R:

Fβ(x, α) , α +
1

1− β

∫

y∈Rm

[f(x,y)− α]+p(y)dy, (1)

where [t]+ = max{t, 0}. Thus we have the formula

CVaRβ(x) = min
α∈R

Fβ(x, α). (2)

Instead of assuming the precise knowledge of the distribution of random vector y, we
assume in this paper that the density function is only known to belong to a certain set P of
distributions, i.e.,

p(·) ∈ P.

This is the case widely faced in practice.

Definition 1 The worst-case CVaR (WCVaR) for fixed x ∈ X with respect to P is
defined as

WCVaRβ(x) , sup
p(·)∈P

CVaRβ(x). (3)

In the sequel, we will make further investigations on some special cases of P that meet
practical requirements and, at the same time, can be efficiently solved. First we need to quote
the following lemma which will serve as a key to transform the problem to a tractable one.

Lemma 1 Suppose X and Y are nonempty compact convex sets in Rn and Rm, respec-
tively, and the function φ(x,y) is convex in x for any given y, and concave in y for any
given x. Then we have

min
x∈X

max
y∈Y

φ(x,y) = max
y∈Y

min
x∈X

φ(x,y).

One can find the detail of this lemma in Fan (1953) and Bazaraa, Sherali and Shetty (1993,
Chapter 6).
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2.1 Mixture Distribution

We assume in this subsection that the density function of y is only known to belong to a set
of distributions which consists of all the mixture distributions of some possible distribution
scenarios, i.e.,

p(·) ∈ PM ,
{

l∑

i=1

λip
i(·) :

l∑

i=1

λi = 1, λi ≥ 0, i = 1, · · · , l

}
, (4)

where pi(·) denotes the i-th distribution scenario, and l denotes the number of possible
scenarios. Mixture distribution has already been studied in robust statistics and used in
modeling the distribution of financial data (Hall, Brorsen and Irwin 1989, Peel and McLachlan
2000). Denote

Λ ,
{

λ = (λ1, · · · , λl) :
l∑

i=1

λi = 1, λi ≥ 0, i = 1, · · · , l

}
. (5)

Define

F i
β(x, α) , α +

1
1− β

∫

y∈Rm

[f(x,y)− α]+pi(y)dy, i = 1, · · · , l.

Theorem 1 For each x, WCVaRβ(x) with respect to PM is given by

WCVaRβ(x) = min
α∈R

max
i∈L

F i
β(x, α), (6)

where L , {1, 2, · · · , l}.

Proof. For given x ∈ X , define

Hβ(x, α,λ) , α +
1

1− β

∫

y∈Rm

[f(x,y)− α]+
[

l∑

i=1

λip
i(y)

]
dy

=
l∑

i=1

λiF
i
β(x, α), (7)

where λ ∈ Λ. Hβ(x, α,λ) is convex in α (see Rockafellar and Uryasev 2000, 2002) and affine
(concave) in λ. It is easy to see that minα∈RHβ(x, α,λ) is a continuous function with respect
to λ. By (2), (3), (4) and the fact that Λ is compact, we can write

WCVaRβ(x) = max
λ∈Λ

min
α∈R

Hβ(x, α,λ) = max
λ∈Λ

min
α∈R

l∑

i=1

λiF
i
β(x, α). (8)

For each i and fixed x, the optimal solution set of minα∈R F i
β(x, α) is a nonempty, closed

and bounded interval (see Rockafellar and Uryasev 2000, 2002). Thus we can denote

[α∗i , α
∗
i ] , argmin

α∈R
F i

β(x, α), i = 1, · · · , l.
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Suppose g1(t) and g2(t) are two convex functions defined on R, and the nonempty, closed and
bounded intervals

[
t∗1, t

∗
1

]
,
[
t∗2, t

∗
2

]
are the sets of minima of these two functions, respectively.

It can be easily verified that for any β1 ≥ 0 and β2 ≥ 0 such that β1+β2 > 0, β1g1(t)+β2g2(t)
is convex too, and the set of minima of β1g1(t) + β2g2(t) must lie in the nonempty, closed
and bounded interval

[
min{t∗1, t∗2},max{t∗1, t∗2}

]
. From this fact and (7), we get

argmin
α∈R

Hβ(x, α,λ) ⊆ A, ∀λ ∈ Λ,

where A is the nonempty, closed and bounded interval given by

A ,
[
min
i∈L

α∗i ,max
i∈L

α∗i

]
.

This implies

min
α∈R

Hβ(x, α,λ) = min
α∈A

Hβ(x, α,λ).

Therefore, by Lemma 1, we have

max
λ∈Λ

min
α∈R

Hβ(x, α,λ) = max
λ∈Λ

min
α∈A

Hβ(x, α,λ) = min
α∈A

max
λ∈Λ

Hβ(x, α,λ). (9)

It is obvious that

min
α∈A

max
λ∈Λ

Hβ(x, α,λ) ≥ inf
α∈R

max
λ∈Λ

Hβ(x, α,λ). (10)

By (9), (10) and the well known result on the min-max inequality

inf
α∈R

max
λ∈Λ

Hβ(x, α,λ) ≥ max
λ∈Λ

min
α∈R

Hβ(x, α,λ),

we immediately get

max
λ∈Λ

min
α∈R

Hβ(x, α,λ) = min
α∈R

max
λ∈Λ

Hβ(x, α,λ).

It then follows from (8), along with (7) that

WCVaRβ(x) = min
α∈R

max
λ∈Λ

Hβ(x, α,λ) = min
α∈R

max
λ∈Λ

l∑

i=1

λiF
i
β(x, α). (11)

Now we only need to verify the equivalence of the right-hand sides of (6) and (11). As an
optimization problem, the right-hand side of (11) is equivalent to

min
(α,θ)∈R×R

θ

s.t.
l∑

i=1

λiF
i
β(x, α) ≤ θ, ∀λ ∈ Λ. (12)

From (5), it is clear that any feasible solution of (12) satisfies

F i
β(x, α) ≤ θ, i = 1, · · · , l. (13)
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On the other hand, if (13) holds, then for any λ ∈ Λ, we have

l∑

i=1

λiF
i
β(x, α) ≤

l∑

i=1

λiθ = θ.

Thus problem (12) is equivalent to

min
(α,θ)∈R×R

θ

s.t. F i
β(x, α) ≤ θ, i = 1, · · · , l,

which is nothing but the right-hand side of (6). This completes the proof. ¤

Denote

FL
β (x, α) , max

i∈L
F i

β(x, α).

By Theorem 1, we get the following corollary immediately.

Corollary 1 Minimizing WCVaRβ(x) over X can be achieved by minimizing FL
β (x, α)

over X ×R, i.e.,

min
x∈X

WCVaRβ(x) = min
(x,α)∈X×R

FL
β (x, α).

More specifically, if (x∗, α∗) attains the right-hand side minimum, then x∗ attains the left-
hand side minimum and α∗ attains the minimum of FL

β (x∗, α), and vice versa.

It is known that Fβ(x, α) defined by (1) is convex in (x, α) if f(x,y) is convex in x (see
Rockafellar and Uryasev 2000, 2002). By the fact that the function g(t) = max{g1(t), g2(t)}
is convex if both g1(t) and g2(t) are convex, we get that if f(x,y) is convex in x, then
FL

β (x, α) is convex in (x, α). So, if X is a convex set and f(x,y) is a convex function of x,
then the WCVaR minimization problem is a convex program.

From now on, we discuss the computational aspect of minimization of WCVaR. Theorem
1 and Corollary 1 help us to translate the original problem to a more tractable one. It can
be seen that the WCVaR minimization is equivalent to

min
(x,α,θ)∈X×R×R

θ

s.t. α +
1

1− β

∫

y∈Rm

[f(x,y)− α]+pi(y)dy ≤ θ, i = 1, · · · , l. (14)

The most difficult part in the computation of (14) is the calculation of the integral of
a multivariate and non-smooth function. However, an approximation method can be used
to deal with this difficulty. Monte Carlo simulation is one of the most efficient methods for
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high dimensional integral computation. Rockafellar and Uryasev (2000) use this method to
approximate Fβ(x, α) as

F̃β(x, α) = α +
1

S(1− β)

S∑

k=1

[f(x,y[k])− α]+, (15)

where y[k] denotes the k-th sample (We use the subscript [k] to distinguish a vector from
a scalar) generated by simple random sampling with respect to y according to its density
function p(·), and S denotes the number of samples. The Law of Large Numbers in probability
theory guarantees the approximation accuracy (or convergence) when the number of samples
becomes large enough. If f(x,y) is linear with respect to x and X is a convex polyhedron,
then the Monte Carlo method produces linear programs, which can be efficiently solved.

Replacing the integral in (14) with (15) yields

min
(x,α,θ)∈X×R×R

θ

s.t. α +
1

Si(1− β)

Si∑

k=1

[f(x,yi
[k])− α]+ ≤ θ, i = 1, · · · , l, (16)

where yi
[k] is the k-th sample with respect to the i-th distribution scenario pi(·), and Si denotes

the number of the corresponding samples. Instead of the simple random sampling method,
some improved sampling approaches can be used to approximate the integral. Generally, the
approximation of problem (14) can be formulated as

min
(x,α,θ)∈X×R×R

θ

s.t. α +
1

1− β

Si∑

k=1

πi
k[f(x,yi

[k])− α]+ ≤ θ, i = 1, · · · , l, (17)

where πi
k denotes the probability according to the k-th sample with respect to the i-th

distribution scenario pi(·). If πi
k is equal to 1

Si for all k, then (17) reduces to (16). In
the following, we denote πi =

(
πi

1, · · · , πi
Si

)T .

Proposition 1 Let m =
∑l

i=1 Si. Then, by introducing an auxiliary vector u = (u1;u2;
· · · ;ul) ∈ Rm, the optimization problem (17) can be rewritten as the following minimization
problem with variables (x,u, α, θ) ∈ Rn ×Rm ×R×R:

min θ

s.t. x ∈ X ,

α +
1

1− β

(
πi

)T
ui ≤ θ, (18)

ui
k ≥ f(x,yi

[k])− α,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · , l.
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More specifically, if (x∗,u∗, α∗, θ∗) solves (18), then (x∗, α∗, θ∗) solves (17), Conversely, if
(x∗, α∗, θ∗) solves (17), then (x∗,u∗, α∗, θ∗) solves (18), where u∗ is constructed as

ui∗
k = [f(x∗,yi

[k])− α∗]+, k = 1, · · · , Si, i = 1, · · · , l.

Proof. Suppose (x∗,u∗, α∗, θ∗) is an optimal solution to (18) and (x̃∗, α̃∗, θ̃∗) is an optimal
solution to (17).

Since ui∗
k ≥ f(x∗,yi

[k])− α∗ and ui∗
k ≥ 0, it can be easily observed that

α∗ +
1

1− β

Si∑

k=1

πi
k[f(x∗,yi

[k])− α∗]+ ≤ α∗ +
1

1− β

(
πi

)T
ui∗ ≤ θ∗, i = 1, · · · , l,

which implies that (x∗, α∗, θ∗) is feasible to (17). Thus we have θ∗ ≥ θ̃∗, since θ̃∗ is the
optimal objective value of (17).

On the other hand, let

ũi∗
k = [f(x̃∗,yi

[k])− α̃∗]+, k = 1, · · · , Si, i = 1, · · · , l.

Then we immediately get

α̃∗ +
1

1− β

(
πi

)T
ũi∗ = α̃∗ +

1
1− β

Si∑

k=1

πi
k[f(x̃∗,yi

[k])− α̃∗]+ ≤ θ̃∗,

ũi∗
k ≥ f(x̃∗,yi

[k])− α̃∗, ũi∗
k ≥ 0, k = 1, · · · , Si, i = 1, · · · , l,

which means that (x̃∗, ũ∗, α̃∗, θ̃∗) is feasible to (18). Thus we have θ∗ ≤ θ̃∗, since θ∗ is
the optimal objective value of (18). Therefore, it must be ture that θ∗ = θ̃∗, which means
(x∗, α∗, θ∗) solves (17) and (x̃∗, ũ∗, α̃∗, θ̃∗) solves (18). This completes the proof. ¤

Proposition 1 claims that solving the original non-smooth problem (17) can be substituted
by solving a more tractable formulation (18). Furthermore, if f(x,y) is linear with respect
to x and X is a convex polyhedron, then the problem can actually be solved via a linear
programming approach.

Remark 1 In the special case where l = 1, i.e., the distribution of y is confirmed to be
only one scenario without any other possibility, problem (18) is exactly that of Rockafellar
and Uryasev (2000) with πi

k = 1
S1 for all k. Although in the above discussion we assume a

continuous distribution, it is easy to see from Rockafellar and Uryasev (2002) that the results
also hold in the general distribution case. For example, in the discrete distribution case, it is
straightforward to interpret the integral as a summation. Moreover, it should be interpreted
as a mixture of an integral and a summation in the case of mixed continuous and discrete
distributions.
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2.2 Discrete Distribution

In this subsection we assume that y follows a discrete distribution and discuss the mini-
mization of the worst-case CVaR under componentwise bounded uncertainty and ellipsoidal
uncertainty. From a practical viewpoint, this consideration still makes sense for continuous
distributions, since we usually use a discretization procedure to approximate the integral
resulted form a continuous distribution.

Let the sample space of random vector y be given by
{
y[1],y[2], · · · ,y[S]

}
with Pr

{
y[i]

}
=

πi and
∑S

i=1 πi = 1, πi ≥ 0, i = 1, · · · , S. Denote π = (π1, π2, · · · , πS)T and define

Gβ(x, α,π) , α +
1

1− β

S∑

k=1

πk[f(x,y[k])− α]+.

For given x and π, the corresponding CVaR is then defined as (Rockafellar and Uryasev
2002)

CVaRβ(x,π) , min
α∈R

Gβ(x, α,π).

Especially, we denote P as Pπ in the case of discrete distribution. Then we may identify
Pπ as a subset of RS and the worst-case CVaR for fixed x ∈ X with respect to Pπ is defined
as

WCVaRβ(x) , sup
π∈Pπ

CVaRβ(x,π),

or equivalently,

WCVaRβ(x) , sup
π∈Pπ

min
α∈R

Gβ(x, α,π).

Theorem 2 Suppose Pπ is a compact convex set. Then, for each x, we have

WCVaRβ(x) = min
α∈R

max
π∈Pπ

Gβ(x, α,π).

Proof. Since Pπ is bounded, it is contained in a polytope, i.e.,

Pπ ⊆
{

π ∈ RS : π =
l∑

i=1

λiπ
i, λ ∈ Λ

}

for some positive integer l and distribution scenarios {πi}l
i=1, where Λ is given by (5). There-

fore, for any given π ∈ Pπ, using a similar argument to that in the first part of Theorem 1,
we can show that

min
α∈R

Gβ(x, α,π) = min
α∈A

Gβ(x, α,π),
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and hence

max
π∈Pπ

min
α∈R

Gβ(x, α,π) = max
π∈Pπ

min
α∈A

Gβ(x, α,π),

where A is a nonempty, closed and bounded interval.

For fixed x, Gβ(x, α,π) is convex in α (see Rockafellar and Uryasev 2002) and affine
(concave) in π. By Lemma 1, we get

max
π∈Pπ

min
α∈A

Gβ(x, α,π) = min
α∈A

max
π∈Pπ

Gβ(x, α,π).

Performing a further discussion similar to the proof of Theorem 1, we can show

WCVaRβ(x) = min
α∈R

max
π∈Pπ

Gβ(x, α,π).

This completes the proof. ¤

Theorem 2 indicates that, if Pπ is a compact convex set, the problem of minimizing
WCVaRβ(x) over X can be written as

min
(x,α,θ)∈X×R×R

θ

s.t. max
π∈Pπ

α +
1

1− β

S∑

k=1

πk[f(x,y[k])− α]+ ≤ θ. (19)

By introducing an auxiliary vector u ∈ RS , we can show as in Proposition 1 that problem
(19) is equivalent to the following minimization problem with variables (x,u, α, θ) ∈ Rn ×
RS ×R×R:

min θ

s.t. x ∈ X ,

max
π∈Pπ

α +
1

1− β
πT u ≤ θ, (20)

uk ≥ f(x,y[k])− α,

uk ≥ 0, k = 1, · · · , S.

Problem (20) is not ready for application because of the max operation involved in the
constraints. In the following, we show that, under the componentwise bounded uncertainty
and ellipsoidal uncertainty in the distributions, (20) can be cast as linear programs and
second-order cone programs, respectively.

2.2.1 Componentwise Bounded Uncertainty

Suppose π belongs to a componentwise bounded set, i.e.,

π ∈ PB
π ,

{
π : π = π0 + η, eT η = 0,η ≤ η ≤ η

}
, (21)
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where π0 is a nominal distribution which represents the most likely distribution, e denotes
the vector of ones, and η and η are given constant vectors. The condition eT η = 0 ensures
π to be a probability distribution, and the non-negativity constraint π ≥ 0 is included in the
bound constraints η ≤ η ≤ η.

Since

α +
1

1− β
πT u = α +

1
1− β

(
π0

)T
u +

1
1− β

ηT u,

we have

max
π∈PB

π

α +
1

1− β
πT u = α +

1
1− β

(
π0

)T
u +

γ∗(u)
1− β

,

where γ∗(u) is the optimal value of the following linear program

max
η∈RS

uT η

s.t. eT η = 0, (22)

η ≤ η ≤ η.

The dual program of (22) is given by

min
(z,ξ,ω)∈R×RS×RS

ηT ξ + ηT ω

s.t. ez + ξ + ω = u, (23)

ξ ≥ 0, ω ≤ 0.

Consider the following minimization problem over (x,u, z, ξ,ω, α, θ) ∈ Rn × RS × R ×
RS ×RS ×R×R:

min θ

s.t. x ∈ X ,

α +
1

1− β

(
π0

)T
u +

1
1− β

(
ηT ξ + ηT ω

) ≤ θ, (24)

ez + ξ + ω = u,

ξ ≥ 0, ω ≤ 0,

uk ≥ f(x,y[k])− α,

uk ≥ 0, k = 1, · · · , S.

Proposition 2 If (x∗,u∗, z∗, ξ∗,ω∗, α∗, θ∗) solves (24), then (x∗,u∗, α∗, θ∗) solves (20)
with Pπ = PB

π ; Conversely, if (x̃∗, ũ∗, α̃∗, θ̃∗) solves (20) with Pπ = PB
π , then (x̃∗, ũ∗, z̃∗,

ξ̃∗, ω̃∗, α̃∗, θ̃∗) solves (24), where (z̃∗, ξ̃∗, ω̃∗) is an optimal solution to (23) with u = ũ∗.
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Proof. Let (x∗,u∗, z∗, ξ∗,ω∗, α∗, θ∗) solve (24). By the duality theorem of linear pro-
gramming, we have

γ∗(u∗) ≤ ηT ξ∗ + ηT ω∗.

Thus

max
π∈PB

π

α∗ +
1

1− β
πT u∗

= α∗ +
1

1− β

(
π0

)T
u∗ +

γ∗(u∗)
1− β

≤ α∗ +
1

1− β

(
π0

)T
u∗ +

1
1− β

(
ηT ξ∗ + ηT ω∗

)

≤ θ∗,

which, together with other constraints in (24), implies that (x∗,u∗, α∗, θ∗) is feasible to (20)
with Pπ = PB

π .

Now assume (x∗,u∗, α∗, θ∗) is not an optimal solution to (20) with Pπ = PB
π , i.e., there

exists an optimal solution (x̄∗, ū∗, ᾱ∗, θ̄∗) to (20) such that

θ̄∗ < θ∗.

Let (z̄∗, ξ̄∗, ω̄∗) be an optimal solution to (23) with u = ū∗. By the strong duality theorem
of linear programming, we have

ᾱ∗ +
1

1− β

(
π0

)T
ū∗ +

1
1− β

(
ηT ξ̄∗ + ηT ω̄∗

)

= ᾱ∗ +
1

1− β

(
π0

)T
ū∗ +

γ∗(ū∗)
1− β

= max
π∈PB

π

ᾱ∗ +
1

1− β
πT ū∗

≤ θ̄∗,

which, together with other constraints in (20) and (23), implies that (x̄∗, ū∗, z̄∗, ξ̄∗, ω̄∗, ᾱ∗, θ̄∗)
is feasible to (24). This contradicts the assumption that (x∗,u∗, z∗, ξ∗,ω∗, α∗, θ∗) is an opti-
mal solution to (24) since θ̄∗ < θ∗. Thus (x∗,u∗, α∗, θ∗) is an optimal solution to (20) with
Pπ = PB

π .

Conversely, let (x̃∗, ũ∗, α̃∗, θ̃∗) solve (20) with Pπ = PB
π , and let (z̃∗, ξ̃∗, ω̃∗) denote an

optimal solution to (23) with u = ũ∗. Then (x̃∗, ũ∗, z̃∗, ξ̃∗, ω̃∗, α̃∗, θ̃∗) must solve (24). In
fact, if this is not the case, then there exists an optimal solution (x̄∗, ū∗, z̄∗, ξ̄∗, ω̄∗, ᾱ∗, θ̄∗) of
(24) such that θ̄∗ < θ̃∗. From the discussion of the first part of the proof, (x̄∗, ū∗, ᾱ∗, θ̄∗) is
an optimal solution of (20), which contradicts the assumption that (x̃∗, ũ∗, α̃∗, θ̃∗) solves (20)
since θ̄∗ < θ̃∗. This completes the proof. ¤

If f(x,y) is a convex function with respect to x and X is a convex set, then (24) is a
convex program. Especially, if f(x,y) is linear in x and X is a convex polyhedron, then the
problem is a linear program.
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Remark 2 In the special case where η = η = 0, (24) reduces to the original CVaR
minimization problem.

2.2.2 Ellipsoidal Uncertainty

Suppose π belongs to an ellipsoid, i.e.,

π ∈ PE
π ,

{
π : π = π0 + Aη, eT η = 0,π0 + Aη ≥ 0, ‖η‖ ≤ 1

}
, (25)

where ‖η‖ =
√

ηT η, π0 is a nominal distribution that is the center of the ellipsoid, A ∈ RS×S

is the scaling matrix of the ellipsoid. The conditions eT η = 0 and π0 + Aη ≥ 0 ensure π to
be a probability distribution.

Consider the following convex program

max
η∈RS

uT Aη

s.t. eT η = 0,

π0 + Aη ≥ 0, (26)

‖η‖ ≤ 1.

The dual of (26) is the second-order cone program

min
(ζ,ω,ξ,z)∈R×RS×RS×R

ζ +
(
π0

)T
ω

s.t. − ξ −AT ω + ez = AT u,

‖ξ‖ ≤ ζ, (27)

ω ≥ 0.

One can refer to Lobo et al. (1998) and Alizadeh and Goldfarb (2003) for the details on
second-order cone programming.

Consider the following minimization problem over (x,u, ζ,ω, ξ, z, α, θ) ∈ Rn×RS ×R×
RS ×RS ×R×R×R:

min θ

s.t. x ∈ X ,

α +
1

1− β

(
π0

)T
u +

1
1− β

[
ζ +

(
π0

)T
ω

]
≤ θ, (28)

− ξ −AT ω + ez = AT u,

‖ξ‖ ≤ ζ, ω ≥ 0,

uk ≥ f(x,y[k])− α,

uk ≥ 0, k = 1, · · · , S.
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This problem is similar to (24). Under some mild condition, such as the existence of interior
feasible points for both (26) and (27), the zero duality gap is guaranteed by the strong conic
duality theorem. In this case, we can prove the following theorem by using a similar argument
to Proposition 2.

Proposition 3 If (x∗,u∗, ζ∗,ω∗, ξ∗, z∗, α∗, θ∗) solves (28), then (x∗,u∗, α∗, θ∗) solves
(20) with Pπ = PE

π ; Conversely, if (x̃∗, ũ∗, α̃∗, θ̃∗) solves (20) with Pπ = PE
π , then

(x̃∗, ũ∗, ζ̃∗, ω̃∗, ξ̃∗, z̃∗, α̃∗, θ̃∗) solves (28), where (ζ̃∗, ω̃∗, ξ̃∗, z̃∗) is an optimal solution to (27)
with u = ũ∗.

If f(x,y) is a convex function with respect to x and X is a convex set, then (28) is a
convex program. Furthermore, if f(x,y) is a linear function with respect to x and X is
a convex polyhedron, then the problem is a second-order cone program that can be solved
efficiently by interior-point methods developed in recent years.

Remark 3 In the special case where A = 0, (28) reduces to the original CVaR minimiza-
tion problem.

3 Robust Portfolio Management Using Worst-Case CVaR

In this section we consider the situation that random returns of financial assets are just
specified by a set of distributions, and formulate a portfolio management problem by utilizing
worst-case CVaR as the measure of risk.

Suppose there exist n risk assets that can be chosen by the investor in the financial
market. Let random vector y = (y1, · · · , yn)T ∈ Rn denote the uncertain returns of the n

risk assets, and x = (x1, · · · , xn)T ∈ Rn denote the amount of the investments in the n risk
assets decided by the investor. Thus the loss function is defined as

f(x,y) = −xT y.

By definition, the portfolio return is the negative of the loss, i.e., xT y.

Portfolio optimization tries to find an optimal trade-off between the risk and the return ac-
cording to the investor’s preference, while the robust portfolio selection is performed through
the worst-case analysis of risk and return. Thus the robust portfolio selection problem using
WCVaR as a risk measure can be represented as

min
x∈X

WCVaR(x),

where X denotes the constraint on the portfolio position, which usually includes the require-
ment of the worst case minimum expected return. According to the discussion in the previous
section, in order to complete the formulation of the robust portfolio selection model, we only
need to specify the constraint set X .
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Suppose the investor has an initial wealth w0. Thus the portfolio satisfies

eT x = w0. (29)

To ensure diversification and satisfy the regulations, we impose the bound constraints on the
portfolio

x ≤ x ≤ x, (30)

where x and x are the given lower and upper bounds on the portfolios.

Let µ be the worst-case minimum expected return required by the investor. Mathemati-
cally, this can be represented as

min
p(·)∈P

Ep

(
xT y

) ≥ µ, (31)

where Ep denotes the expectation operator with respect to the distribution p(·) of y. Gener-
ally, X is specified by (29), (30) and (31), i.e.,

X ,
{

x : eT x = w0, x ≤ x ≤ x, min
p(·)∈P

Ep

(
xT y

) ≥ µ

}
. (32)

3.1 Problem Formulations

In this subsection, we discuss robust portfolio selection problems corresponding to the three
types of uncertainties described in the previous section. The problems are cast as linear
programs and second-order programs.

3.1.1 Mixture Distribution Uncertainty

In the case of mixture distribution uncertainty given by (4), (31) can be written as

l∑

i=1

λiEpi

(
xT y

) ≥ µ, ∀λ ∈ Λ, (33)

where Λ is defined by (5). By the definition of Λ, it is clear that any x satisfying (33) also
satisfies

Epi

(
xT y

) ≥ µ, i = 1, · · · , l. (34)

On the other hand, if (34) holds, then for any λ ∈ Λ, we have

l∑

i=1

λiEpi

(
xT y

) ≥
l∑

i=1

λiµ = µ.
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So (33) is equivalent to (34). Let ȳi denote the expected value of y with respect to the
distribution scenario pi(·). Then (31) can be simply represented as

xT ȳi ≥ µ, i = 1, · · · , l.

By (18), the robust portfolio selection problem, under the mixture distribution situation,
is formulated as the following linear program with variables (x,u, α, θ) ∈ Rn×Rm×R×R:

min θ

s.t. eT x = w0,

xT ȳi ≥ µ,

x ≤ x ≤ x,

α +
1

1− β

(
πi

)T
ui ≤ θ, (35)

ui
k + xT yi

[k] + α ≥ 0,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · , l.

3.1.2 Componentwise Bounded Uncertainty in Discrete Distributions

Denote

Y =




yT
[1]
...

yT
[S]


 . (36)

In the case of the componentwise bounded uncertainty in discrete distributions, by (21) and
(32), X is given by

XB ,
{

x : eT x = w0, x ≤ x ≤ x, (Y x)T π0 + min
{η: eT η=0, η≤η≤η}

(Y x)T η ≥ µ

}
.

The dual problem of the linear program

min
η∈RS

(Y x)T η

s.t. eT η = 0,

η ≤ η ≤ η

is written as

max
(δ,τ ,ν)∈R×RS×RS

ηT τ + ηT ν

s.t. eδ + τ + ν = Y x,

τ ≤ 0, ν ≥ 0.
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Define

ΦB ,
{

(x, δ, τ ,ν) :
eT x = w0, x ≤ x ≤ x, eδ + τ + ν = Y x,

τ ≤ 0, ν ≥ 0, (Y x)T π0 + ηT τ + ηT ν ≥ µ

}

and

ΦB
X ,

{
x : ∃(δ, τ ,ν) such that (x, δ, τ ,ν) ∈ ΦB

}
.

By the duality theory of linear programming, it is easy to see that

XB = ΦB
X . (37)

By (24) and (37), the robust portfolio selection problem can be written as the following
linear program with variables (x,u, z, ξ,ω, α, θ, δ, τ ,ν) ∈ Rn × RS × R × RS × RS × R ×
R×R×RS ×RS :

min θ

s.t. eT x = w0,

x ≤ x ≤ x,
(
π0

)T
Y x + ηT τ + ηT ν ≥ µ,

eδ + τ + ν = Y x,

τ ≤ 0, ν ≥ 0, (38)

α +
1

1− β

(
π0

)T
u +

1
1− β

(
ηT ξ + ηT ω

) ≤ θ,

ez + ξ + ω = u,

ξ ≥ 0, ω ≤ 0,

uk + xT y[k] + α ≥ 0,

uk ≥ 0, k = 1, · · · , S.

3.1.3 Ellipsoidal Uncertainty in Discrete Distributions

In the case of the ellipsoidal uncertainty in discrete distributions, by (25) and (32), X is given
by

XE ,



 x :

eT x = w0, x ≤ x ≤ x,

(Y x)T π0 + min
{η: eT η=0, π0+Aη≥0, ‖η‖≤1}

(Y x)T Aη ≥ µ



 ,

where Y is defined by (36). The dual program of the second-order cone program

min
η∈RS

(Y x)T Aη

s.t. eT η = 0,

π0 + Aη ≥ 0,

‖η‖ ≤ 1.
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is given by

max
(σ,τ ,ν,δ)∈R×RS×RS×R

−σ − (
π0

)T
τ

s.t. ν + AT τ + eδ = AT Y x,

‖ν‖ ≤ σ,

τ ≥ 0.

Define

ΦE ,
{

(x, σ, τ ,ν, δ) :
eT x = w0, x ≤ x ≤ x, ν + AT τ + eδ = AT Y x,

‖ν‖ ≤ σ, τ ≥ 0, (Y x)T π0 − σ − (
π0

)T
τ ≥ µ

}

and

ΦE
X ,

{
x : ∃(σ, τ ,ν, δ) such that (x, σ, τ ,ν, δ) ∈ ΦE

}
.

By the conic duality theory, under some mild condition that guarantees zero duality gap, we
have

XB = ΦE
X . (39)

By (28) and (39), the robust portfolio selection problem can be written as the following
second-order cone program with variables (x,u, ζ,ω, ξ, z, α, θ, σ, τ ,ν, δ) ∈ Rn × RS × R ×
RS ×RS ×R×R×R×R×RS ×RS ×R:

min θ

s.t. eT x = w0,

x ≤ x ≤ x,
(
π0

)T
Y x− σ − (

π0
)T

τ ≥ µ,

ν + AT τ + eδ = AT Y x,

‖ν‖ ≤ σ, τ ≥ 0, (40)

α +
1

1− β

(
π0

)T
u +

1
1− β

[
ζ +

(
π0

)T
ω

]
≤ θ,

− ξ −AT ω + ez = AT u,

‖ξ‖ ≤ ζ, ω ≥ 0,

uk + xT y[k] + α ≥ 0,

uk ≥ 0, k = 1, · · · , S.

3.2 Numerical Examples

In this subsection, we consider two numerical examples to illustrate the robust portfolio
optimization problems. Market data simulation analysis and Monte Carlo simulation analysis
are presented.
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Figure 1: Return of Hang Seng Finance Index of SEHK (27/07/1990 ∼ 11/30/2000).

3.2.1 Market Data Simulation Analysis

The four sectoral sub-indices of Hang Seng Index of Hong Kong Stock Exchange (SEHK):
(1) Hang Seng Finance Index (HSNF), (2) Hang Seng Utilities Index (HSNU), (3) Hang
Seng Property Index (HSNP), and (4) Hang Seng Commercial/Industrial Index (HSNC), are
chosen as the financial assets to construct the portfolios. We consider the day returns of
these assets in the example. 2700 samples of returns of these four assets are collected from
the time period from July 27, 1990 to November 30, 2000. Figure 1 is constructed by the
samples of day return of HSNF. The day returns of other three assets behave similarly to
that of HSNF. It can be roughly observed from Figure 1 that the behaviour of returns is not
consistent among different time periods. According to this observation, we divide the time
period into the following three sub-intervals (900 samples for each time period):

• Period1: 07/27/1990 ∼ 01/06/1994;

• Period2: 01/07/1994 ∼ 06/19/1997;

• Period3: 06/20/1997 ∼ 11/30/2000.

Within each time period, the returns behave similarly, whereas they exhibit remarkable dif-
ference between any two time periods.

The expected values and variances of returns of the four assets corresponding to different
time periods are listed in Table 1. We find that the expected return of Period1 and the
volatility of Period3 are much larger than those of the other two time periods. In this
example, the estimation of the statistical parameters is not stable. Thus it is questionable to
assume that all the samples are generated by an identical nominal probability distribution.
Consequently, the original CVaR, as the measure of risk, is not reliable if all those samples are

20



Table 1: Expected value and variance of returns of four indices in different time periods.

Period
Mean (10−3) Variance (10−3)

HSNF HSNU HSNP HSNC HSNF HSNU HSNP HSNC

Period1 1.8455 1.2522 1.5859 1.1383 0.2106 0.1947 0.2417 0.2062

Period2 0.7264 0.1648 0.2902 0.2625 0.1926 0.1823 0.2740 0.2110

Period3 0.5104 0.6743 -0.1271 0.1872 0.5346 0.4352 0.8138 0.8010

used directly in calculation since the underlying assumption that the probability distribution
is precisely known to be a nominal one is violated. In this situation, it is reasonable to
assume a mixture distribution of the random returns, and it makes sense for us to perform a
worst-case CVaR minimization.

In the example, according to our observation, we assume that the samples are generated
by the mixture distribution of three probability distribution scenarios. The samples within
each time period are assumed to be generated by the corresponding probability distribution
scenario.

SeduMi1.05 (Sturm 2001), a package developed by J. Sturm for optimization over sym-
metric cones, is employed in our computation. The numerical experiments are implemented
on PC (1.5G RAM, CPU 3.06GHz). All the problems are successfully solved within 10 sec-
onds. Especially, the linear programs obtained from the the market data simulation analysis
are always solved within 4 seconds.

In this example, we set β = 0.95, w0 = 1, x = (0, 0, 0, 0)T and x = (1, 1, 1, 1)T . Numerical
experiments for the nominal and the robust portfolio optimization problems are performed
via the linear programming model (35). The former employs the original CVaR as the risk
measure, while the latter uses the worst-case CVaR. In the computation of the nominal
portfolio optimization problem, we set l = 1 and S1 = 2700, i.e., all the samples are used
in the model by assuming that they are generated by one nominal probability distribution.
In the computation of the robust portfolio optimization problem, we set l = 3 and S1 =
S2 = S3 = 900, where we assume the samples within each time period are generated by the
corresponding distribution scenario.

To compare the performances of the nominal portfolio optimization problem and the ro-
bust portfolio optimization problem, for various values of the required worst-case expected
return µ and for each time period, Table 2 shows the expected values and the CVaRs at con-
fidence level 0.95 of the corresponding portfolios. It is obvious that the larger the required
minimal expected/worst-case expected return is set, the larger the associated risk would be.
From the expected values, we find that the robust optimal portfolio policy always guarantees
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Table 2: Comparison of performances of nominal optimal and robust optimal portfolios.

µ Robust (I) Mean (10−3) CVaR0.95

(10−3) Nominal (II) Period1 Period2 Period3 Period1 Period2 Period3

0
I 1.3546 0.2618 0.6460 0.0299 0.0299 0.0425

II 1.4455 0.3478 0.6209 0.0293 0.0295 0.0427

0.5
I 1.6063 0.5000 0.5765 0.0292 0.0299 0.0441

II 1.4455 0.3478 0.6209 0.0293 0.0295 0.0427

0.55
I 1.6591 0.5500 0.5619 0.0294 0.0304 0.0448

II 1.4455 0.3478 0.6209 0.0293 0.0295 0.0427

0.95
I — — — — — —

II 1.7064 0.5948 0.5488 0.0297 0.0308 0.0455

the required worst-case expected value of µ. However the nominal optimal portfolio policy
usually results in a small worst-case expected value although it may have a large expected
value (see lines for µ = 0.0005, 0.00055, 0.00095). For the same value of µ, the risk of the
robust optimal portfolio policy appears to be larger than the risk of the nominal optimal
portfolio policy. It should be mentioned that we only list the CVaRs calculated according to
the three sets of samples, and they do not necessarily reveal the real worst-case CVaRs. How-
ever, the larger risk is usually rewarded by a higher return. Figure 2 illustrates the evolution
of the values of the robust optimal portfolio and the nominal optimal portfolio generated by
setting µ = 0.0005. It shows that the robust optimal portfolio almost always outperforms
the nominal optimal portfolio. For µ = 0.00095, the robust portfolio optimization problem is
infeasible. But we find that, in the sense of worst-case trade-off, the nominal optimal policy
generated by setting µ = 0.00095 is dominated by the robust optimal policy generated by set-
ting µ = 0.00055, since we have 0.0005500 > 0.0005488 for the “worst-case” expected returns
and 0.0448 < 0.0455 for the “worst-case” CVaRs. This together with Figure 2 suggests that
the worst-case requirement in the robust portfolio formulation does not affect the average
performance of the portfolio substantially.

3.2.2 Monte Carlo Simulation Analysis

In this part, we perform a Monte Carlo simulation analysis for the robust portfolio opti-
mization model under the ellipsoidal uncertainty in distributions. Notice that a nonempty
ellipsoid must contain a smaller box, and at the same time, must be contained by a bigger
box. Thus, for both the ellipsoidal and componentwise bounded uncertainties, it is pre-
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Figure 2: Evolution of values of robust optimal and nominal optimal portfolios (µ = 0.0005).

Table 3: Expected returns.

Asset Expected value

S&P 0.0101110

Gov Bond 0.0043532

Small Cap 0.0137058

dictable that the simulation results will be similar to each other. As shown in the previous
section, the ellipsoidal uncertainty yields a second-order cone program which is more complex
than a linear program resulting from the componentwise bounded uncertainty. To reduce the
duplicate statements and verify the computational efficiency, we only consider here the case
of ellipsoidal uncertainty, i.e, the second-order cone programming model (40).

We take the example given by Rockafellar and Uryasev (2000), where the portfolio is to
be constructed by three assets: S&P 500, a portfolio of long-term U.S. government bonds,
and a portfolio of small-cap stocks. The expected value and the covariance matrix of returns
of these three assets are given in Tables 3 and 4, respectively.

In the example, the discrete sample space of random returns consists of 1000 samples,
which are generated via the Monte Carlo simulation approach by assuming a joint normal
distribution. We set β = 0.95, w0 = 1, x = (0, 0, 0)T and x = (1, 1, 1)T . For the sake of
simplicity, the scaling matrix of the ellipsoid A is assume to be a diagonal matrix ρI3, where
ρ is a nonnegative scalar and I3 is the 3× 3 identity matrix. The larger the value of ρ is, the
more uncertain the distribution becomes.
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Table 4: Covariance matrix of returns.

S&P Gov Bond Small Cap

S&P 0.00324652 0.00022983 0.00420395

Gov Bond 0.00022983 0.00049937 0.00019247

Small Cap 0.00420395 0.00019247 0.00764097

It should be mentioned that the nominal optimal portfolio is obtained by solving model
(40) with A = 0, i.e., ρ = 0. It can also be obtained by solving model (35). The worst-case
CVaR of the nominal optimal portfolio is obtained from solving model (40) by setting x =
“nominal optimal portfolio”. For both nominal optimal and robust optimal portfolios, we get
a set of global minimal worst-case CVaRs associated with different values of ρ, where we set
µ = −2 since all the obtained worst-case expected returns are greater than −2. A part of the
numerical results is illustrated in Figure 3, which shows that the worst-case CVaR/risk grows
as the value of the uncertain parameter ρ increases. More important observation is that the
gap between the two curves becomes larger as ρ increases, which demonstrates the advantage
of the robust optimization formulation in the situation where the uncertainty grows.
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Figure 3: Worst-case CVaR of nominal optimal and robust optimal portfolios.

Table 5 shows a part of the comparison results corresponding to several values of µ and ρ.
The phenomenon demonstrated by Figure 3 can also be observed in Table 5. Both nominal
optimal and robust optimal portfolios become infeasible when either µ or ρ becomes large.
However, by comparison, the robustness of the robust optimal portfolios is evidenced.
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Table 5: Worst-case CVaR of nominal optimal and robust optimal portfolios according to different

values of µ and ρ.

µ

ρ

0.001 0.003 0.005

Robust Nominal Robust Nominal Robust Nominal

0 0.040870 0.040874 0.044218 0.044257 0.047295 0.047370

0.002 0.040870 0.040874 0.044218 0.044257 0.047445 —

0.004 0.040870 0.040874 0.049347 — — —

0.005 0.041453 — 0.096214 — — —

0.007 0.069936 — — — — —

4 Conclusions and Future Directions

This paper focuses on the worst-case CVaR minimization problem for the purpose of deal-
ing with the uncertainty of the probability distributions. Application to robust portfolio
optimization is also demonstrated. In comparison with the original CVaR, numerical experi-
ments imply that the portfolio selection model using the worst-case CVaR as the risk measure
performs robustly in practice, and provides more flexibility in portfolio decision analysis.

However, we only present here a simple application of worst-case CVaR to portfolio op-
timization. Many other applications of worst-case CVaR in financial optimization and risk
management, such as hedging, index tracking and credit risk management, can also be easily
implemented. Moreover, our approach is suitable for modeling the decentralized risk man-
agement problems, portfolio selection problems with uncertain exit time, and even those out
of financial area.

How to determine the descriptions of the uncertainties, more specifically, how to determine
the scenario distributions for the mixture distribution uncertainty, the bounds for the box
uncertainty and the scaling matrix for the ellipsoidal uncertainty, are issues left for further
investigations. Those are the key factors for the successful practical applications.

We can also formulate the robust portfolio optimization problem in the form of maximizing
the worst-case expected return with constraint on the worst-case CVaR. For example, in the
case of the mixture distribution uncertaity, noting that

WCVaRβ(x) = min
α∈R

max
i∈L

F i
β(x, α) ≤ θ

if and only if there exists α such that

max
i∈L

F i
β(x, α) ≤ θ,
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we can formulate the corresponding robust portfolio selection problem as the following linear
program with variables (x,u, α, µ) ∈ Rn ×Rm ×R×R:

max µ

s.t. eT x = w0,

xT ȳi ≥ µ,

x ≤ x ≤ x,

α +
1

1− β

(
πi

)T
ui ≤ θ,

ui
k + xT yi

[k] + α ≥ 0,

ui
k ≥ 0, k = 1, · · · , Si, i = 1, · · · , l,

where θ is a predetermined bound on the worst-case CVaR. The robust portfolio optimization
problem of this form can be similarly formulated as a linear program and a second-order cone
program for the other two types of uncertainties.
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