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Abstract. We consider the stochastic linear complementarity problem (SLCP) involving
a random matrix whose expectation matrix is positive semi-definite. We show that the
expected residual minimization (ERM) formulation of this problem has a nonempty and
bounded solution set if the expected value (EV) formulation, which reduces to the LCP
with the positive semi-definite expectation matrix, has a nonempty and bounded solution
set. Moreover, by way of a regularization technique, we prove that the solvability of the
EV formulation implies the solvability of the ERM formulation. We give a new error
bound for the monotone LCP and use it to show that solutions of the ERM formulation
are robust in the sense that they may have a minimum sensitivity with respect to random
parameter variations in SLCP. Numerical results are given to illustrate the characteristics
of the solutions.
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1 Introduction

The linear complementarity problem (LCP) is to find a vector z € R™ such that
Az +b>0, >0, 27 (Az +p) =0,

where A € R™*™ and p € R™. This problem is generally denoted as LCP(A, p). The LCP
has a significant number of applications in engineering and economics [4, 5, 8]. In prac-
tice, due to several types of uncertainties such as weather, material, trade, loads, supply,
demand, cost, etc., the data in the LCP can only be estimated based on limited informa-
tion. Suppose that M(w) € R",q(w) € R™, for w € Q C R™, are random quantities on a
probability space (€2, F,P), where the probability distribution P is known. In order to
take the stochastic uncertainty into account appropriately, deterministic formulations of

the stochastic linear complementarity problem (SLCP)

M(w)z +q(w) >0, x>0, 27 (M(w)z + q¢(w)) =0, we (1.1)
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have been studied. In this paper, we consider two existing deterministic formulations.

Let us denote
y(z,w) = M(w)z + q(w).

Let ¢ : R? — R be a function, called an NCP function, which satisfies
¢(a,b)=0 <= a>0,b>0, ab=0. (1.2)

Then it is easy to verify that for each w € 2, z,, is a solution of (1.1) if and only if it is

an optimal solution of the following minimization problem with zero objective value:

. 2
xrél}z% @ (z,w)|, (1.3)

where R} := {z € R" |z > 0} and

¢@ﬂ(m,w)¢rﬂ
O(z,w) := :

¢(yn(z,w), 1)

In the literature of linear complementarity problems, ||®(x,w)|| is called a residual for
LCP(M(w),q(w)), since x,, solves LCP(M (w),g(w)) if and only if it solves ®(z,w) = 0.
On the other hand, from the literature of stochastic optimization, ||®(z,w)||? can be
regarded as a random cost function for LCP(M (w), ¢(w)). In this sense, a deterministic
formulation for the SLCP called the expected residual minimization problem in [3] may
be regarded as an expected total cost minimization problem [1, 10, 15] for (1.3).

¢ Expected Residual Minimization (ERM) Formulation [3]:

Find a vector z € R that minimizes the expected total residual defined by an NCP
function:

min f(z) := E[|®(z,w)|], (1.4)

zERY
where E[||®(x,w)||? is the expectation function of the random function ||®(x,w)]|?.
The expectation function of the random function y(z,w) yields another deterministic
formulation [9] for SLCP, which may be called the ezpected value formulation.
e Expected Value (EV) Formulation [9]:

Find a vector x € R™ such that
§(w) i= Ely(w,w)] > 0, 2 >0, a7j(z) = 0. (L5)

Let
M =E[M(w)] and §= E[g(w)]

be the expectation matrix and vector of the random matrix M (-) and vector ¢(-), respec-
tively. Then y(x) = Mz + q and the EV formulation (1.5) is to find a solution of the
LCP (M, q).



Let Spry and Sgy be the solution sets of the ERM formulation (1.4) and EV formu-
lation (1.5), respectively. It is shown in [6] that if Sgy is bounded for any g, then Sgpras
is bounded for any ¢(-). However, the converse is not true in general.

The LCP has been studied for more than a half century. We have rich theoretical
results on the existence of solutions for the LCP, which provide a powerful framework for
developing efficient algorithms to solve the LCP. In particular, because of many important
applications, the monotone LCP has been studied most extensively. In this paper, we
focus our attention on the SLCP (1.1) with the expectation matrix M being a positive
semi-definite matrix, i.e.,

2T Mz >0 for all z € R™.

We call (1.1) a monotone SLCP if M is a positive semi-definite matrix.
Obviously, if M (w) is a positive semi-definite matrix for all w € Q, then M is a positive
semi-definite matrix. However, the expectation matrix M being a positive semi-definite

matrix does not implies that
P{w € Q| M(w) is positive semi-definite} > 0.
In the following example, M is a positive definite matrix, i.e.,
"Mz >0 for all z € R",

but there is no w € Q such that M (w) is a positive semi-definite matrix.

Example 1.1 Let

-5+ (15 + w) max(0, sign(w)) 0
M(w) = P ;
0 —5 — (15 + w) min(0, sign(w))
where w € Q = [—1,1] and w is uniformly distributed on Q. It is easy to see that
-5 0 10 0
M(w) = for w < 0, M(w) = T for w > 0,
0 104w 0 -5
-5 0 _ 27 0
M(w) = for w =0, M =E(Mw)) = .
0 -5 0 2.25

Although the positive definiteness of M does not ensure the existence of an w € €
such that M (w) is positive semi-definite, we find that the monotone LCP (M, ) serves
as an important tool in the study of the monotone SLCP with the ERM formulation.
In particular, we will show that if the monotone LCP (M, §) has a bounded solution set
Spv, then the ERM formulation (1.4) of the monotone SLCP has a bounded solution
set Sgrar- Moreover, by way of a regularization technique, we will show that if Sgy is
nonempty, then Sgras is nonempty. Without any assumption on the solution set Sgy, we
will prove that A being positive semi-definite implies that every accumulation point of
a sequence generated by the regularization method is a solution of the ERM formulation
(L4).



In general, the two deterministic formulations (1.4) and (1.5) have different solutions.
Moreover, with different NCP functions and norms, the ERM formulation has different
solutions. How to select a robust solution that is insensitive with respect to random
parameter variations is an important issue in decision theory. To investigate the charac-
teristics of optimal solutions of the ERM formulation, we give a new error bound for the
monotone LCP based on the error bounds in [14]. Using the error bound, we will show
that optimal solutions of the ERM formulation (1.4) yield a high mean performance of the
SLCP and may have a minimum sensitivity with respect to random parameter variations
in SLCP. Hence, they are robust solutions for SLCP.

This paper is organized as follows: In Section 2, we study the existence of solutions
for the ERM formulation of the monotone SLCP based on the monotone LCP(M, ).
In Section 3, we investigate the robustness of the ERM formulation. In Section 4, we
give a procedure to generate a test problem of monotone SLCP, which allows the user to
specify the size of the problem, the condition number of the expectation matrix M and
the number of active constraints at a global solution of the ERM formulation. We report
numerical results for hundreds of test problems by using a semismooth Newton-type
method with a descent direction line search.

In this paper, || - || denotes the Euclidean norm || - ||o. For any positive integer s and a
vector z € R®, we denote [z]; = max(0, z), where the maximum is taken component-wise.

For a subset J C {1,2,...,s}, z; denotes the subvector of z with components z;,j € J.

2 Existence of solution

In this section, we study the relation between the EV formulation LCP(M,§) and the
ERM formulation of the monotone SLCP. First, we summarize some results on the exis-
tence of a solution for a deterministic monotone LCP. Recall that a square matrix A is

called an Ry matrix if the solution set of LCP(A,0) consists of the origin only.
Lemma 2.1 Suppose that A is a positive semi-definite matriz.

1.[4] If the LCP(A,b) is feasible, i.e., there is a vector x > 0 such that Ax +b > 0, then

it has a solution.

2.[4] The LCP(A,b) has a nonempty and bounded solution set for any b if and only if

A is in addition an Ry matriz.

3.[2] The solution set of LCP(A,b) is nonempty and bounded if and only if LCP(A,b)
has a strictly feasible point, i.e., there is a vector x > 0 such that Az + b > 0.

We call M(-) a stochastic Ry matriz if
>0, M(w)z >0, zT M(w)z =0, ae. = z=0.

If Q only contains a single element w, then M (w) is an Ry matrix. However, M (-) being
a stochastic Ry matrix does not imply that there is an w € Q such that M (w) is an Ry

matrix. See Example 2.1 in [6].



It is shown in [6] that the random matrix M(-) being a stochastic Ry matrix is a
necessary and sufficient condition for the solution set Sgras to be nonempty and bounded
for any random vector ¢(-). If the expectation matrix M is an Ry matrix, then M (-) is a
stochastic Ry matrix; but the converse is not true. Since a positive definite matrix is an
Ry matrix, we can claim that if the expectation matrix M is a positive definite matrix,
then the solution set Sggras is nonempty and bounded for any ¢(-). However, a positive
semi-definite matrix may not be an Ry-matrix.

The ERM formulation (1.4) utilizes an NCP function that possesses the property
(1.2). There are a variety of functions that satisfy (1.2). Among them, the most popular
NCP functions are the “min” function ¢, and the Fischer-Burmeister (FB) function ¢o,
which are defined by

¢1(a,b) :== min(a, b)

and
$2(a,b) :==a+b—Va?+ b2,

respectively. Notice that, as shown below, the solvability of the ERM formulation is
dependent on the choice of NCP functions.

Example 2.1 [3] Let n = 1, m = 1, Q = {w',w?} = {0,1}, M(w) = w(l —w) and
q(w) =1 - 2w, M(w') = M(w?) =0, g(w') =1, ¢(w?) = -1 and

2
E[[|®(z,w)|I’] = %Z 19 (2, w) 13-
=1

For every w € Q, M(w) is positive semi-definite. It can be seen that the ERM problem
(1.4) defined by the “min” function has the unique solution z* =0 and the level set

{z| B[l min(z, M (w)z + q(w))|*] < 7}

is nonempty and bounded for all v € [0.5,1). However, the ERM problem (1.4) defined
by the FB function does not have a solution as the objective function is monotonically

decreasing on [0, 00).

Nevertheless, the FB function has a number of nice properties. Among others, a
distinctive property from the “min” function is that ||®(-,w)||? defined by the FB function
is continuously differentiable everywhere. However, the FB function lacks flexibility in
dealing with the monotone LCP. Some other merit functions and NCP functions have
nice properties in dealing with monotone LCP [2, 11, 13, 17]. Here, we consider a version
of the penalized FB NCP function given in [2]

#3(a,b) :==XNa+b—vVa?+b?) + (1 —Nayby, (2.1)

where A\ € (0,1). For Example 2.1, the ERM formulation (1.4) defined by ¢35 with A = %

has the objective function

f3(x):i[(l—i—w—\/1—|—x2—|—x+)2+(_1+x_\/l_i_—x2)2]’



which is a continuously differentiable convex function and has a minimizer z* = 0.3685.
Moreover, the level set {x | f3(x) < v} is nonempty and bounded for all vy € [f3(z*), 00).
The NCP functions ¢; and ¢y have the same growth rate. In particular, Tseng [16]

showed

ﬁ2+2|min(a,b)| <latb— V102 < (V2+2)|min(a,b)| V(a,b) € B2 (2.2)

However, for ¢1 and ¢3, we only have

9
V242

There is no ¢ > 0 such that

min(\, 1-\) | min(a, b)| < |[Aa+b—va2 +b2)+(1-Nayby| VY(a,b) € R%. (2.3)

c|min(a,b)| > [Ma +b— Va2 +b2) + (1 — Nayby| V(a,b) € R

The ERM formulation (1.4) defined by the “min” function and the penalized FB
function has different properties in regard to smoothness and boundedness. When we
discuss their different properties, we use ®1(z,w), f1(x), and ®3(z,w), f3(z) to distinguish
the functions ®(x) and f(z) defined by the “min” function ¢; and the penalized FB
function ¢3, respectively. When we discuss the ERM formulation (1.4) defined by any of
the NCP functions, we use the notations ®(x,w) and f(z).

Assumption I. f(z) is finite and continuous at any = € R’}.

This assumption holds if M(w) and ¢(w) are measurable functions of w with the
following property

E[(IM@)] + lg@))?] < oo.

Let us denote the expected value of random function ®(-,z) by

O(x) := E[®(x,w)]. (2.4)
From the definition of the Euclidean norm || - ||, we have
@z, )? = [1®()” +28(2)" (P(2,w) — B(x)) + [|P(z,w) — D(2)]

> | @(2)]* +28(2)" (2(x,w) — B(2)).
Taking expectation, we obtain Jensen’s inequality for the objective function f

El|@(z,w)lI”] 2 |2(2)|” = [|E[®(z, w)]|*. (2.5)

2.1 “min” function

In this subsection, we consider the ERM formulation (1.4) defined by the “min” function.

Lemma 2.2 IfQ = {wy,ws,...,wn}, then for any random matriz M (-) and vector q(-),
the solution set Sprar of the ERM formulation (1.4) defined by the “min” function is

nonempty.



Proof: For each w,, the squared norm of the function ®;(x,w,) = min(x, M (w,)z +

q(wy)) can be represented as
191 (2, w)|I” = (Mfz +¢))T (Mjz +4ql), z€P), j=1...k

where P,Z are polyhedral convex sets comprising a partition of R}, each (M J,¢7) is a row
representative of ((I, M), (0,q)), and k < 2™. Hence f; is a piecewise quadratic function
and fi(z) > 0 on R’.. By the Frank-Wolfe Theorem, f; attains its minimum on R7.

If Q@ = {wy,ws,...,wn}, then f; is a piecewise quadratic function. However, the
following example shows that for a continuous random variable, f; is not necessarily a

piecewise quadratic function.

Example 2.2 Letn=1, m=1, M(w) =14+ w, qlw) = -1, w € Q =[0,1], where w is

uniformly distributed on Q). By direct calculation, we find

(722 -9z +3), 0<z<1

z) = E|min(z, (1 + w)z — 1)|? =
fil@) = Bl mina, (1 + w)o — 1) {xu%_l, .

Theorem 2.1 Assume that M is a positive semi-definite matriz. If there are > 0 and
Z > 0 such that

min {&;, (M@ + q);} > 1/ f1(2) =7, (2.6)

1<i<n
then the level set
Di(%) :={x | fi(z) <¥°}

15 monempty and bounded.
Proof: First we prove that the level set

Li(7) :=A{x | E[[|®1(z,w)[] <7}

is bounded. Suppose on the contrary that there exists an unbounded sequence {z*} C
Li(7¥). Since z* € L1(7) implies that

1Emin(z", y(2", w)]ll = [ B[@1 (=", w)]ll < Ef|®1 (=", w)[] < 7,

it is clear that there is no index j such that mf — —oo or g;(z¥) = Ely;(z*,w)] — —oo.

Define the index sets
Jo={i|zF =00} and Jy={i|7gi(a") = oo}.

By taking a subsequence if necessary, we may suppose that .J; is nonempty since {z*} is
unbounded and there exists no index j such that mf — —oo, while Jy may be empty. By

the definition of ®;(x,w), for sufficiently large k, we have

E[|min(zf, yi (", 0))] = Ellyi(z",w)] <7 for i€y



and
E[| min(zf,y;(«*,w))]] = |2f| <7 for i€,

which together with (2.6) yield

Elyi(z*, w)] < (M# + q); = E[yi(¢,w)] for ie.J,

and
x; <z for i€ Js.
So we have
Elyi(a*,w) — yi(@,w)] <0 for i€ Jy,
as well as

¥ — ;<0 for i€ Jo.

Moreover, {xf} and {;(2¥)} are bounded for each j ¢ J;U.Jo. Therefore, by the definition

of J; and .Jo, we have

= (2 —)TM(@F - &)

for k sufficiently large. This contradicts the positive semi-definiteness of M. Hence L1 (7)
is bounded. Now we consider the level set D; (7). Since f(z) = 42, the level set D;(7) is
nonempty. By Cauchy-Schwartz inequality, we find

@1 (x,0) (] < /E[l®1 (2, 0)[12] = \/f1 (2).

This implies that any x € D;(7) also belongs to the set L;(7). Hence the level set D;(7)
is bounded. |

Corollary 2.1 Under the assumptions of Theorem 2.1, the solution set Sgry of the
ERM formulation (1.4) defined by the “min” function is nonempty and bounded.

Remark 2.1 If M is positive definite, then M is an Ry matriz. From Lemma 2.1, there
is an & > 0 such that Mi > 0. This implies that for any v > 0, there is a X > 0 such
that min{\&;, (AM % + q);} > ~. Hence by Theorem 2.1, M being positive definite implies
that the level set D1(7y) is bounded for any v > 0 and thus the solution set Sprar of the
ERM formulation (1.4) defined by the “min” function is nonempty and bounded.

From Lemma 2.1, Assumption (2.6) implies that the solution set of the monotone
LCP(M,q) has a nonempty and bounded solution set. However, the following example
shows that D;(v) being bounded for v € [, f] with 0 < a < 8 does not imply that the
monotone LCP(M, ) has a solution.



Example 2.3 Letn =2, m =2, Q = {w',w?} C R?, w! = (0,1), w? = (1,0), pw!) =

1
0 - -2
M(w)z( °“>, q(w>=< "“”2).
w1 W w1 + wa

p(e?) = 5, and

_ 0o -1/2 —1/2
M = / , q= / .
/2 1/2 1
Obviously, M (w) is positive semi-definite for each w € Q. For x € Ri, we have

1 . .
filz) = §[| min(z,1)[* + | min(zy, 1)|?
+| min(z1, —x2 — 2)|2 + | min(ze, 1 + 2 + 1)|2]

1. . .
= §[| min(zq,1)[? + | min(zg, 1) 2 + (20 + 2)% + 23].
By direct calculation, we see that the ERM formulation mir% fi1(x) has x = 0 as its unique
zeR:

solution with optimal value f1(x) = 2. Moreover, the level set D1(7) is bounded for any

v € [2,2.5). However, it is easy to see that for any x € R?H

) _ _ ) 1 1 1
12122{% (Mz + @)} = min{x, 5(—%’2 — 1), 22, 5(%’1 +x2+2)} < ~3

Hence there is no & and & such that (2.6) holds. Moreover, the EV formulation LCP(M,q)

has no feasible point, since the first component of Mz + G is negative for any = € R%r.

2.2 Penalized FB function

In this subsection, we consider the ERM formulation (1.4) with the penalized FB NCP
function ¢3 defined by (2.1). Since the analysis remains valid for any A € (0, 1), in the

definition of ¢3, we omit A in the following discussion for simplicity of presentation.

Theorem 2.2 If the monotone LCP(M,q) has a nonempty and bounded solution set,
then for any v > 0, the level set

Ds(v) = {z| f3(x) <~}

18 bounded.

Proof: For a fixed v > 0, we assume on the contrary that ||z¥|| — co and {z*} C D3(v).
First we show that {z¥} and {E[y;(z*,w)]} are bounded below for all i. By (2.3) and

Jensen’s inequality (2.5), we have
4

f3(z) 2 | E[@s(z,w)]|* 2 mIIE[%(m,w)]IIZ-

9



Moreover, it is easy to verify
Elmin(z;, y;(z,w))] < min(z;, Ely;(z, w)])

for each i, which implies that E[min(z¥, y;(2*,w))] = —oc if E[y;(z*, w)] — —oo. Hence
there is no index i such that ¥ — —oo or Efy;(2*,w)] = —oc.
By Lemma 2.1, the assumption that the monotone LCP (M, §) has a nonempty and

bounded solution set implies that there is a vector £ > 0 such that
g(#) = Mz +q > 0.
Moreover, from the positive semi-definiteness of M, we have
(@) g(a") + 2" g(2) > (") 5(@) + 2" gla").
Since {z¥} and {7;(z*)} are bounded below for all i, there must be an index j such that
x?gjj(wk) — 00,

that is,
2514 [7(2")]4 = oo (2.7)
There are two cases: (i) There is a subsequence {mf} such that xf — oo and (ii) {xf}

is positive and bounded.

(i) Suppose there is a subsequence such that xf’ — 00. Since
0 < Ely;(z",w)] = Elly;(z", w)]4] = E[[-y; (@, w)]4], (2.8)

we find
Bl[—y;(«", w)]4] < Elly; («",w)]4], (2.9)

and

+ ly; (2™, W]

E [\/ (25)? + gk, w)?| < Efjay
= b + Blly; (=", w)]4] + E[[-y; (=", w)]4]  (2.10)

for all k; large enough. Therefore, as xf — 00,

(@) > | E[@s (", w)]|?
> |E[®3(h, w))[?
= Iacf"JrE[yj(ac’“,w)]—E[\/(ﬂc?)Qerj(ﬂff"’“aw)2 + [+ Bllys (o )]
> | = 2B[[—y;(a", w)]4] + [ )4 Blly; («F, w)]4 )7
> (2} = 2)[7;(«*)]4)
— 00,

where the third inequality uses (2.8) and (2.10), and the fourth inequality uses (2.9).
This contradicts {z*} C D3(7).

10



(ii) Suppose {w?} is positive and bounded. From (2.7), we have §;(2*) — oo. Note
that 7;(2*) = Ey;(2*,w)]. There are a set Qy C Q and a vector 2* € {2*} such that for

all w € Q, y;(z*,w) >0 and

l'ch[y] (xka w)l{weﬂo}] > ﬁ

This yields that for all w € g,

ok () - (D) 4 (e w2 0
Hence, we find

fa(z®) > E[(@(a",w))i[*1 fweay)]

- F [Iw? Fuplat,) - (2 + ek @2 + (e8]l (o, )] P e

(xfE[y] (mka (’J)l{weﬁo}])2
> .

v

This contradicts ¥ € {2} C D3(v).
Consequently, any sequence {z¥} C Ds3(v) is bounded. Since 7 is arbitrarily chosen,

we can claim that the level set D3(v) is bounded for any v > 0. |

Corollary 2.2 If the monotone LCP(M,q) has a nonempty and bounded solution set,
then the ERM formulation (1.4) defined by the penalized FB function ¢3 has a nonempty

and bounded solution set.
Remark 2.2 Let Qy C Q, My = E[M(w)liuenyy] and qo = Elqg(w)1j,eq,y]- From
Efl[® (2, w)Lweap ] < ET[[@(z, w)]]], (2.11)

we can weaken the assumption (2.6) in Theorem 2.1 by assuming that My is positive

semi-definite and there are & > 0, & > 0 such that

min {2, (Mo + 0)i} > 1/ f1(%).
Moreover, we can weaken the assumption of Theorem 2.2 by assuming that the monotone

LCP(My, qo) has a nonempty and bounded solution set.

It should be noticed that in Example 2.1, the solution set of the monotone LCP (M, q)
is unbounded, but D3(7y) is bounded for all v > 0.
2.3 Regularization

To establish the solvability of the ERM formulation (1.4) for the monotone SLCP without
assuming the boundedness of the solution set of the monotone LCP(M, 7), we consider

a regularized version of (1.4). For € > 0, let

y(r,w,€) := (M(w) + el)x + q(w)

11



and
¢(y1 (Z’, W, 6)’ 1'1)
O(z,w,e€) = :
d)(yn (III, w, 6)7 ',Z:TL)
The regularized problem for (1.4) is defined as

min f(z,€) == E[|®(z,w,e)||]. (2.12)

TERT

We will study the behavior of the sequence {xz, } of solutions to (2.12) for an arbitrarily
chosen positive sequence {e;} tending to zero. In the following, to simplify the notation,

we will denote {e} and {z.} for {ex} and {z, }, respectively.

Theorem 2.3 Suppose M is positive semi-definite. Then for any € > 0, the reqularized
problem (2.12) has a nonempty and bounded solution set Sgryr.. Let xe € Sgra. for

each € > 0. Then every accumulation point of the sequence {x¢} is contained in the set

SERM-

Proof: Note that E[M(w) + eI] = M + €l is positive definite. From Remark 2.1, the
solution set Sgras. of (2.12) defined by the “min” function is nonempty and bounded.
Moreover, from Lemma 2.1, the solution set of the strongly monotone LCP(M + €I, q) is
nonempty and bounded; in fact, it is a singleton. Hence, by Theorem 2.2, the solution
set Sgras. of (2.12) defined by the penalized FB function is nonempty and bounded.
Let & be an accumulation point of {z.}. For simplicity, we assume that {z.} itself

converges to z. Now we show
|f(ze,e) — f(Z)] =0 as e—0. (2.13)
From the continuity of f, we observe
|f(z) — f(Z)] =0 as e—0.
Therefore, for (2.13), it is sufficient to show
|f(ze,€) — f(xze)] >0 as €—0. (2.14)
It is not difficult to verify that, for any a,b € R and ¢ > 0,
|¢1(CL, b) - ¢1((1,C)| < |b - C|
and
|¢3(a7 b) - ¢3(a,c)| < (2 + [a]+)|b - C|‘
Now choose § > 0 arbitrarily and let B := {z |||z — Z|| < d}. Then, for any = € B,
we have ||z]| < ¢y := ||Z|| + ¢ and

H(I)(xawa 6) - (I)(wi)H < (2 + CO)H?J(xawa 6) - y(xaw)“

(24 co)llex||
< (24 co)cpe
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for all w € ). Moreover, from Assumption I, there is a positive constant ¢; such that for
any = € B,
Ef|@(z,w)ll] < e

and
El|®(z,w,e)|l] < E[||®(x,w)[|] + (2 + co)coe < 1 + (2 + co)coe.

Since x, — Z, there is a small ¢y > 0 such that z. € B for all € € (0,¢p). Therefore, we

have
|f(xe,€) — f(ze)]

= |E[|@(@e,w,e)l” = 1@ (ze, w) ]|
= [E[(|12(ze, w, ) || + [|@(ze, ) D (1@ (e, s €) | = [[@ (e, )]

< E[(12(ze, w, )l + 12z, w) DI (e, w, €) — P(ze, w) ]
< (180w, Ol + 18 D2 + co)ene
< (21 4 (2 + ¢)epe) (2 + ¢p)cge.

Letting e — 0, we obtain (2.14). Furthermore, for every x € R}, from (2.13) and the
inequality
f(Z) = lim f(z¢, €) <lim f(z,€) = f(x),
€l0 €l0

we find that Z € Sggruy- |

We should clarify the meaning of the conclusion of Theorem 2.3. The result applies
regardless of whether the sequence {z.} has an accumulation point or not. In the case
where {z.} has an accumulation point, the ERM formulation has a solution. In the
opposite case, we do not know if it has a solution. Now, we show that if the monotone
LCP(M,q) has a solution, then {z.} has an accumulation point, and thus the ERM
formulation has a nonempty solution set Sgras and every accumulation point of {z} is
contained in Sgrar. To establish this result, we use Li’s error bound [12] for the monotone
LCP.

Lemma 2.3 [12] Suppose that A is positive semi-definite. Then there is a constant ¢ > 0
such that
lz = Z(2)|| < (|| min(z, Az + p) || + [T (Az + p)]4), (2.15)

where Z(x) is a closest solution of LCP(A,p) to x under the norm || - ||.

Theorem 2.4 Suppose the monotone LOP(M,q) has a solution. Then the sequence
{z¢} is bounded.

Proof: Let @ be a solution of LOP(M,q). By definition, we have 0 < f3(z, €) < f3(&, €).
Notice that
f3(#,€) = Bll|®3(2, (M (w) + el)d + q(w))[I*],
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and lim¢ o f3(,€) = f3(&). Therefore, there exists a constant v > 0 such that
0 < f3(ze,€) <. (2.16)

Then, for any set (2 C Q and any index j, {(z);E[y(ze, w, €)j1{weny}]} is bounded above.
Moreover, by (2.3), there is a constant ¢y > 0 such that

Y > f3(',1:67€) = E[H<I>3(m€,y(m€,w,e)“2]
> B[] min(zc, y(ze, w, €))|I”] = cofi(we,€). (2.17)

Since z, > 0, for any set 2y C Q and any j, {E[y;(zc,w, €)1{,ec0,}]} is bounded below.
By choosing a subsequence of {x.} if necessary, we may partition the index set {1,...,n}
as J1 U Jy U Js, where J; = {i | (zc); = oo}, Jo = {i | (Mz + q); — oo}, and J3 =
{i | (xe)i # 00, (Mze + q)i #» oo} Since {(ze);Ely(we,w, €)jliueq,}]} is bounded as
mentioned above, we have for any set {2y C (2,

Elyi(ze,w, €)1{yenn] = 0, i€ Ji,
and
(xe)i = 0, i€ Jy.
Therefore, there exist an € > 0 and a constant w > 0 such that for any € < €
Elyi(we,w, )] = min((zc)i, Elyi(ze, w, €)]) = Emin((ze)i, yi(ze, w,€))], i€ i (2.18)
and
(xc)i = min((ze)s, Blyi(ze, w, €)]) = Emin((ze)i, yi(re, w, €) +u)], i €Jp,  (2.19)

where (2.19) uses the fact that {E[y;(ze, w, €)1ye0,]} is bounded below for any Qg C .
From (2.16), (2.18) and (2.3), there is oy > 0 such that

[(min(ze, Ely(ze,w,))nll = [[(Blmin(ze, y(ze, w, €))]) 5 ||

IN

E[|| min(zc, y(ze, w, €))]]

S oz“/fg(xe,e) S Oqﬁ. (2.20)

From (2.19) and (2.3), there is ap > 0 such that

[(min(ze, Ely(ze,w, ) nll = [(Emin(ze, y(ze, w, €) +ue)]) p||

IA

Efl| min(ze, y(ze, €, w)) + uel]

< VnE[| min(ze,y(ze, w, €))[l] + vnu

< agy/ f3(@e, €) + Vnu

< agy/y + Vnu, (2.21)
where e = (1,...,1)T. Furthermore, from (z¢ + y(z¢,w, €)) 5,07, > 0, we find

(me)i + yi(l‘éawae) - \/(me)l2 + yi(x67w76)2 Z 07 1€ Jl U JZ
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and hence

$3((2e)is Yi(Te, w, €)) > a3(we)ilyi(e, w, €)]+ >0, i€ 1US (2.22)

for some a3 > 0.
By the definition of Js, there is 5 > 0 such that

()i <0, Elyi(ze,w,€)] <o, i€ J3. (2.23)

Moreover, since {E[y;(x¢,w,€)]} is bounded below as noted above, there is ay > 0 such
that
| (min (e, Bly(zerw, ) sl < s (2.24)

On the other hand, we have

¢ Bly(ze,w, )]+

IA

Bz [y(ze, w,€)]+]
T

= aE[“((I)?)(xea W, 6))JlUJ2 “] + E[(xf)Jg [y(xev W, E)Ja]-i—]
< ay/fa3(we€) + g < a4+ g, (2.25)

for some « > 0, where the second inequality follows from (2.22) and the third inequality
follows from (2.16) and (2.23).
Let 7, be the solution of LOP(M + €I,q). By Theorem 5.6.2 in [4], {#.} is bounded.

Furthermore, from Lemma 2.3, there are ¢; > 0 and 0 < é < € such that for all € < ¢,

AN

lze — Z|| < ei(||min(xe, (M + el)ze + §)|| + [a:ET((M +el)ze+ q)]+)

= a(lmin(ze, Bly(ze,w, o)) + [ Ely(ze, w, €)]]+). (2.26)

Consequently, we can deduce from (2.20), (2.21), (2.24) and (2.25) that there is a
constant ¢ such that ||z — Z|| < ¢ for all € > 0 small enough. Thus {z.} is bounded. §

3 Robust solution

The EV formulation and the ERM formulation take into account all random events and
give decisions under uncertainty. In general, the decisions may not be the best or may
be even infeasible for each individual event. However, in many cases, we have to take
risk to make a priori decision based on limited information of unknown random events.
Naturally, one wants to know how good or how bad the decision given by a deterministic
formulation can be. In this section, we study the robustness of solutions of the ERM
formulation (1.4) for the monotone SLCP.
Let ® be defined by (2.4). For any x, by taking expectation in

1@ (2, )|? = 1D (@)|I* +28(x)" (P(z,w) — B()) + [|®(z,w) — B(a)||%,

we find
f(x) = E[l|@(z,w)|*] = |®(x) ]| + E[[|®(z,w) — D(z)||]-
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Note that the second term

E|@(z,w) = @@)|°] = Eltr(d(z,w) - @(2))(@(z,w) — ®(2))"]
= trB[(®(z,w) — B(x))(®(,w) — B(x))"]

is the trace of the covariance matrix of the random function ®(z,w).
Since ®(z,w) = 0 if and only if = solves LCP(M (w), ¢(w)), and the ERM formulation

(1.4) is equivalent to

i 9(2) P+ B|@(r,) — B(a) ] (3.1)

an optimal solution of the ERM formulation (1.4) yields a high mean performance of the
SLCP and has a minimum sensitivity with respect to random parameter variations in
SLCP. Therefore, the ERM formulation (1.4) can be regarded as a robust formulation
for SLCP.

Now, we investigate the relation between a solution of the ERM formulation and a
solution of LCP (M (w),g(w)) for w € Q. First, we give a new error bound for monotone
LCP which uses the sum of the “min” function ¢;(a,b) and the penalized FB function
¢3(a,b). The idea comes from the error bound given by Mangasarian and Ren [14]. Let
SOL(A,p) denote the solution set of LCP(A,p), and define the distance from a point z
to the set SOL(A, p) by dist(z, SOL(A, p)) := ||z — Z(x)||, where Z(z) is a closest solution
of LCP(A,p) to x under the norm || - ||. Let

Uy () = || min(z, Az + p)||

and
s(z) = |[[-Az — p, —z, 2" (Az + p)]+ .

Lemma 3.1 [14] Suppose that A is positive semi-definite and SOL(A,p) # (0. Then

there is a constant ¢ > 0 such that
dist(z,SOL(A4,p)) < c(¥yi(x) + s(z)), =z € R"

Lemma 3.2 Let ¢(a,b) = [-b,—a,ab]y. Then we have ||¢(a,b)|| < |¢p3(a,b)| for any
a>0and b€ R.

Proof: Let a > 0. If b > 0, then from a + b > Va2 + b2, we have
|v¥(a,b)|| = ab < a+b—va?+ b2+ ab=|p3(a,b)|.
If b < 0, then from a < Va? + b?, we have a + b — Va? + b2 < b < 0, and

[4(a,b)Il = |=b] < la+b—Va? + | = |¢3(a,b)].
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From Lemma 3.2, it is easy to see that for any x > 0,

s(z) < Us(z) := [[(g3(z1, (Az +p)1), - ., @3(2n, (AT + p)n))|.

Moreover, from (2.3), there is a constant £ > 0 such that
Uy (z) < kU3(x), =€ R".

Using these inequalities with Lemma 3.1, we obtain the following new global error bounds
for the monotone LCP (A4, p).

Theorem 3.1 Let the monotone LCP(A,p) have a nonempty solution set SOL(A,p).
Then both ¥y + V3 and W3 provide global error bounds for the monotone LCP on R},

that is, there are positive constants aq and ag such that
dist(z, SOL(A,p)) < ai1(Vi(z) + ¥3(x)) < ap¥3(z), =€ R.

To give error bounds for SLCP, we assume that M (w) is a positive semi-definite matrix
and LCP(M (w),¢(w)) has a nonempty solution set for every w € Q. This assumption

holds in many applications. For instance, consider the stochastic quadratic program
min %zTQz +cl'z
st A(w)z > bw), z >0,

where Q) is a positive definite matrix. The KKT conditions for this quadratic program

yield the SLCP involving the random matrix

vy = [ @ AT
A(w) 0

Clearly this is a positive semi-definite matrix for each w.

Theorem 3.2 Assume that Q = {wi,wy...,wn} C R™ and, for every w € Q, M(w) is
a positive semi-definite matriz and LCP(M (w),q(w)) has a nonempty solution set. Then

there are positive constants 51 and Bo such that

Bldist(z, SOL(M(w), a(@))] < Bi(\/i(2) +/fs() < Ba/fala), = € RY.

Theorem 3.2 particularly shows that for z* € Sgra,

E[dist(z*,SOL(M (w),q(w)))] < B2v/f3(z*) = o Iél}l{l% \/ f3(x). (3.2)

x

Unlike an error bound for the deterministic LCP, the left-hand side of (3.2) is in general
positive at a solution of the ERM formulation (1.4). Nevertheless, the inequality (3.2)
suggests that the expected distance to the solution set SOL(M (w),q(w)) for w € Q is
also likely to be small at * € Sggras. In other words, we may expect that a solution of
the ERM formulation (1.4) has a minimum sensitivity with respect to random parameter
variations in SLCP. In this sense, solutions of (1.4) can be regarded as robust solutions
for SLCP.
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4 Numerical experiments

We have conducted some numerical experiments to investigate the properties of solutions
of the ERM formulation (1.4) for monotone SLCP. In particular, we have made compar-
ison of the ERM formulation with the EV formulation (1.5) in terms of the measures
of optimality and feasibility as well as that of reliability, which are defined through a
quadratic programming formulation of SLCP.

We start with some preliminary materials about calculations of gradients and Hessian

matrices of functions f; and f3 in the ERM formulation (1.4).

4.1 Gradient and Hessian

If the strict complementarity condition holds with probability one at x, then f; is twice

continuously differentiable at x. In this case, the gradient g;(z) of f; is given by
g1(z) = E[M(w)" (I = D(z,w))(M (w)z + q(w)) + (I + D(z,w))z]
and the Hessian matrix G1(z) of fi is given by
Gi(z) = E[M(w)" (I = D(z,w))M () + I + D(z,w)],

where D(z,w) = diag(sign(M (w)x 4+ q(w) — x)).
The function f3 defined by (2.1) with X\ € (0,1) is continuously differentiable at any
point z € R", and twice continuously differentiable at point = where P{w | z; = y;(z,w) =

0, i=1,...,n} =0. The gradient g3(z) of f3 is given by
93(z) = B[V ®3(z,w)[%] = 2B[V (2, w)" ®3(z, w)],

where V (z,w) € R™"™ can be computed by Algorithm 1 in [2]. If f3 is twice continuously
differentiable at x, then the Hessian matrix G3(x) is given by

n
G3(x) = E[V?||®3(x,w)||*] = 2BV (z,0)"V(2,w) + Y Uiz, w)(®3(z,w))il,
i=1
where U;(z,w) € R"™ ™. For each i, U;j(x,w) can be computed as follows: Let & =
(22 + yi(w,w)Q)_%, n; = sign([z;]+[yi(z,w)]+), and m;; be the (i,7) element of M (w).
Then we put

—Amigmaiéi k#i, 1 #i
—Amg(mia; — ziyi(z,w)& + (1= Nmaemi k#1, 1 =i
—dmg(mi; — ziyi(@,w)& + (1= Nman; k=1, [ #i
—A(migi — yi(x, w))*& + 2(1 — N)min; k=i, 1=i.

(Ui(z,w))p =

4.2 Measure of optimality and feasibility

Different deterministic formulations of SLCP have different optimal solutions. To help
decision makers to select a proper solution, we introduce some measure of optimality and

feasibility for a given point x € R}.
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As stated in the introduction, the function value f(z) can be regarded as an expected
total cost. Let z* be a solution of (1.4) with © = {wi,...,wn}. By the definition of
ERM formulation, there is no # € R’} such that

Plall|@(z,w)ll < |@(z,w)l]} = 1.

Hence x* is a weak Pareto optimal solution of the SLCP in the sense of multi-objective
optimization
1@ (2, w1)]]
min :
TERY
@ (2, wn )|l
Now we define some measure of optimality and feasibility for a given point x, without
using an NCP function. For a fixed w, LCP(M (w),g(w)) is equivalent to the quadratic

program

st y(r,w) = Mw)z+qw)>0, z>0 (4.1)

in the sense that (4.1) has an optimal solution with zero objective value if and only
if LCP(M (w),q(w)) has a solution. We adopt some ideas of loss functions from the
literature of stochastic programming [1, 10, 15] to problem (4.1). For x € R"}, let

¥(2,w) = [l min(0, y(z, w)) || + 2 [y(z, @)+ (4.2)

It is easy to verify that x, is a solution of (4.1) if and only if vy(z,,w) = 0 and z,, > 0,
provided LCP(M (w), ¢(w)) has a solution. In (4.2), the first term evaluates violation
of the nonnegativity condition and the second term evaluates the loss in the objective
function of (4.1). For a fixed & € R}, the expected total loss is defined by E[y(z,w)].

For two points 2*,Z € R}, we define the measure of dominance of z* over Z by
w2, 5) = Pl | y(a*,w) < 1@ 0)} (4.3)

If w(2*,Z) > 0.5, then z* has more chance to dominate Z, and so 2* may be regarded as

a better point than z in the multi-objective optimization problem

Y(z,w1)
V(2 wN)

In many engineering and economic applications of SLCP, the inequality y(z,w) > 0
describes the safety of the system, and the guarantee of safety is critically important.
Under those circumstances, we may judge that a failure occurs if and only if there is an
index ¢ such that y;(z,w) < 0. Let

min(x’w) = min y;(r,w).

y 1<i<n

The reliability of  with a tolerance € > 0 is then defined by

rele(x) == P{w | y™"(z,w) > —e}.
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4.3 Test problems

We give a procedure to generate a test problem of the ERM formulation for discretized
monotone SLCP,

p(xi, (MIz + ¢7);)?, (4.4)

n
=1

)

1 N
o f@ =52

where M7 = M (w’) and ¢/ = q(w’) for j =1,...,N and Q = {w',..., 0V}

Let & be a nominal point chosen in R}, which is used as a seed of constructing a set
of test problems and becomes a solution of the ERM formulation (1.4) in some special
cases (see below for the detail). Moreover, the user is required to specify the following

parameters:
e n: the number of variables
e N: the number of random matrices and vectors

e 4?2 (1 > 1): the condition number of the expectation matrix M

ng: the number of elements in the index set J = {i|z; > 0}

(0,7): the range of z; for i € J

#1I;: the number of elements in the index set Z; = {i|%; = 0, (M’% + ¢’); > 0} for
each j

#K;: the number of elements in the index set K; = {i|#; = 0,(M7% + ¢’); = 0}

for each j

(0,v): the range of (M74 + ¢/); for i € Z; and each j

e [0,7): the range of (M7 + ¢7); fori € J
e (—0,0): the range of elements of matrix M — M/ for each j
Procedure for generating a test problem of monotone SLCP
1. Randomly generate a vector & € R’} that has n, positive elements in (0, 7).

2. Generate a diagonal matrix D whose diagonal elements are determined as

p i=1
Di=X ph i=2,...,n—1
pooi=mn,
where )\;, i =2,...,n — 1 are uniform variates in the interval (—1,1).

3. Generate a random orthogonal matrix U € R™*™ and let M = UDU".
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4. Generate N random matrices B/ € R"*" j =1,2,..., N whose elements are in the
interval (0,1). Set

M) =M +o(B - BV, j=1,2,...,N.

5. For each j =1,2,..., N, set

(—Miz); i € K;
Q‘g: (—Mji“+ﬁzj)i 1€ J
(—Mji‘-i—yzj)i iEIj,

where 2/ € R™ is a random vector whose elements are in the interval (0,1).
Some aspects of the test problem

e The expectation matrix M = UDU?T is symmetric positive definite. Its condition

number is 2 and its eigenvalues are distributed on the interval [1/, p).

e If 0 = 0, then all M/ are equal to M = UDU?”, which is positive definite. For
o > 0, M7 may not be a positive semi-definite matrix, but |(M — M7);| = o|(B’ —
BN-ith <o foralli,l =1,...,n.

o If #K; =0 forall j =1,..., N, then f; is continuously differentiable at x.

e If 3 =0, then & is a solution of LCP(M7,¢’) for all j = 1,2,...,N. In this case, &
becomes a global solution of (4.4) with f(#) = mingecpn f(z) = 0.

e n — n, is the number of active constraints at Z.

e If 3 > 0, then we have in general f(z) > 0. In this case, Z is not necessarily a solu-
tion of (4.4). However, by Theorem 2.1 and Theorem 2.2, the positive definiteness
of M guarantees that the solution set of (4.4) is nonempty and bounded.

4.4 Numerical results

We used the program of Lemke’s method [7] to get a solution Z of the EV formulation
(1.5). To solve the ERM formulation (4.4), we used a semismooth Newton method with
descent direction line search [5]. In particular, we first applied a global descent line
search with the gradient V f(z) to make the function value sufficiently decrease and get
a rough approximate solution. Next, we used a local semi-smooth Newton method with
the rough approximate solution as an initial point to get an approximate local optimal
solution. As the ERM problem defined by the “min” function is nonsmooth, in a few
occasions, the method failed to decrease the function value. When it happened, we
restarted the method. All computations were carried out by using MATLAB on a PC.
We first tested our program on hundreds of random problems with 5 = 0 generated

by the procedure in the last subsection with different parameters (n, N, pu,ng, v, o) and
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starting points 2° = fe where ¢ = 0,10,...,50 and e is the n-dimensional vector of
ones. Since 3 = 0, the solution x* of (4.4) coincides with the nominal point #. We have
observed that the average function values and relative errors at computed solutions Z of

(4.4) satisfy
[l — 2|

o <107,
[Eal

f(z) <1072,

which indicates that our method works successfully in finding a global solution of (4.4).
Next, for each fixed (n,nz, 8,0) with 8 > 0, we used the procedure described in the

previous subsection to generate 100 test problems with the following parameters:
=20, p =10, v =15, N = 10°.

The number of elements in the index set K; was determined by using a random number as
#K; = floor((n — ny)rand(1, N)). The numbers shown in Tables 4.1 and 4.2 are average
values for the 100 problems.

In these tables, 2’ is the computed solution, where the index i = 1 stands for the
“min” function, and 7+ = 3 stands for the penalized FB function.

For any x,& € R}, we define I'(x) := E[y(z,w)], n(x,%) and rel(x) as follows:
D) = 37 (e), (@) = | min(0, 97 )| + 27y (o)
i=1
N
m(x, &) = > pj, pj = {
=1

N
rel(z) :== > pj, pj = {
=1

if 77(z) < +/(7)
otherwise,

if minj<;<p yzj (x) > —€

S z= <2z

otherwise.

where y/(z) = Mz +¢’,j=1,...,N.

Table 4.1 Function values and rel. with ¢ =0 (left) and € = 1 (right).

(0,10, 8,0) | £1@) | 1@ | Fo@®) | @) | rel@ | rela@) | relo@®)

20,10,10,20 | 254.87 | 2.13e6 | 447.82 | 1.05e7 0,0 0.55, 0.91 | 0.55,0.92
20,10,10,10 | 241.89 | 4.47e5 | 448.99 | 2.13e6 0,0 0.55, 0.91 | 0.55, 0.92
20,10, 5,10 69.41 2.62e5 | 131.64 | 1.34e6 0,0 0.54, 0.96 | 0.52,0.93
20,10, 5, 0 18.89 75.78 32.69 154.36 | 0.31, 0.37 | 0.27, 0.60 | 0.21, 0.51
40,20,10,20 | 527.19 | 6.83e6 | 998.75 | 3.01le7 0,0 0.52, 0.97 | 0.52, 0.97
40,20,10,10 | 510.84 | 1.90e6 | 999.39 | 8.52e6 0,0 0.49, 0.85 | 0.49, 0.84
40,20, 5,10 | 144.06 | 1.14e6 | 270.48 | 4.65e6 0,0 0.52, 0.99 | 0.50, 0.98
40,20, 5, 0 44.11 171.25 79.86 79.86 | 0.07,0.58 | 0.05, 0.58 | 0.05, 0.58
60,30,10,20 | 812.27 | 1.29e7 | 1465.60 | 5.19e7 0,0 0.49, 0.95 | 0.49, 0.95
60,30,10,10 | 819.21 | 9.23e6 | 1442.70 | 4.39e7 0,0 0.45, 0.79 | 0.46, 0.81
60,30, 5,10 | 215.60 | 1.77e6 | 418.87 | 7.05e6 0,0 0.38, 0.99 | 0.36, 0.98
60,30, 5, 0 58.29 281.16 | 100.56 | 576.09 | 0.51, 0.58 | 0.37, 0.56 | 0.28, 0.48
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Table 4.2 Relative dominance of solutions based on the stochastic QP formulation

(n,n.,B,0) | w(xt,z) | w23 z) | w(x! 2?) n(z®,2Y) | [(z) | T(z') | T(23)
20,10, 10,20 1 1 0.49 0.51 3.67e4 | 518.13 | 517.91
20,10,10,10 1 1 0.49 0.51 1.56e4 | 491.21 | 490.64
20,10, 5,10 1 1 0.42 0.57 1.14e4 | 241.04 | 239.05
20,10, 5, 0 0.50 0.55 0.32 0.60 139.36 | 84.66 | 71.00
40,20, 10,20 1 1 0.47 051 | 8.69¢4 | 1.08¢3 | 1.08¢3
40, 20, 10,10 1 1 0.42 0.47 4.61ed | 1.04e3 | 1.04e3
40,20, 5,10 1 1 0.42 0.58 3.03e4 | 493.10 | 490.95
40,20, 5, 0 0.53 0.53 0.70 0.30 340.45 | 197.09 | 197.09
60, 30,10, 20 1 1 0.51 0.49 1.21e5 | 1.59e3 | 1.59e3
60,30, 10, 10 1 1 0.51 049 | 1.92¢5 | 1.57e3 | 1.57e3
60, 30, 5,10 1 1 0.43 0.57 5.12e4 | 767.49 | 765.50
60,30, 5, 0 0.57 0.58 0.42 0.58 552.59 | 276.76 | 222.37

Table 4.1 shows that the minimum values of f; and f3 become large as § and o
become large. Nevertheless, the function values fi(z!) and f3(23) are usually much
smaller than f;(z) and f3(z), respectively. As to the reliability rel () and the expected
total loss I'(z), the solutions ! and x3 exhibit significantly better performance than z
as shown in Tables 4.1 and 4.2. Moreover, as to the measure of optimality and feasibility
7(+,-) which is defined through the stochastic quadratic program (4.1), the solutions !
and 2% dominate # in most cases. From these results, we may conclude that the ERM
formulation yields a solution that has desirable properties in regard to the performance

measures related to optimality, feasibility, and reliability.

5 Final remark

The monotone SLCP has a wide range of applications in engineering and economics, and is
closely linked to the study of stochastic linear and quadratic programs. Our theoretical
and numerical study has revealed that the ERM formulation for the monotone SLCP
has various desirable properties. In particular, the ERM formulation produces robust
solutions with minimum sensitivity, high reliability, and low risk in violation of feasibility

with respect to random parameter variations in SLCP.
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