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Abstract

The quasi-Newton method is a powerful method for solving unconstrained minimization prob-
lems. However, since the approximate Hessian generated by the usual quasi-Newton update (e.g.
BFGS or DFP) becomes dense, the quasi-Newton method cannot be applied for large-scale problems
due to lack of memory. To overcome this difficulty, we propose sparse quasi-Newton updates with
positive definite matrix completion that exploit the sparsity pattern E := {(i,7) | (V2f(z))i; #
0 for some © € R"} of the Hessian. The proposed method first calculates a partial approximate
Hessian HSN, (i,j) € F, where F D E, by using an existing quasi-Newton update formula such
as BFGS or DFP. Next, we obtain a full matrix Hj41, which is a maximum-determinant positive
definite matrix completion of HgN, (i,j) € F. If the sparsity pattern E (or its extension F') has a
property related to a chordal graph, then the matrix Hy41 can be expressed as products of some
sparse matrices. Therefore, if the Hessian is sparse, the time and space complexities of the proposed
method are far fewer than those of the BFGS or the DFP. In particular, when the Hessian matrix
is tridiagonal, the complexities become O(n). We show that the proposed method has superlinear
convergence under the usual assumptions.

Introduction

In this paper we consider the following unconstrained minimization problem:

min f(z)
subject to =z € R™.

Key words: quasi-Newton method, large-scale problems, sparsity, positive definite matrix completion.
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(1)

Throughout the paper we assume that f is twice continuously differentiable, n is huge and V?f(x)
For solving the unconstrained minimization problem, there exist several useful methods,
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including the steepest descent method, the Newton method, the quasi-Newton method, the conjugate
gradient method and the trust region method [10]. Among others, the quasi-Newton method is easy to
implement and has good convergence properties.

The quasi-Newton method generates a sequence {z} by xx+1 = z — H,V f(xy) with an approximate
inverse Hessian Hy. The approximate inverse Hessian usually satisfies the secant condition:

Hy1yr = sk, (2)
where

Sk = Tk+1 — Tk

Y = Vf(@rt1) — V().

The quasi-Newton updates that satisfy the secant condition are BEFGS and DFP. The BFGS and DFP
update formulae are given by

BFGS
Hk+1 :Hk

Hyyrsi + su(Hyyr)" 'H r
_ kYrSg sk (Hryr) +<1+yk kyk> SkSk (3)

T T T
Sk Yk S Yk S Yk

and - .
_ Hyyr(Heyr) L SkSk
TH T,

Yi 1Yk Se Yk

respectively. It is known that both H, ,Z_FlGS and HPHP are positive definite when s{y, > 0 and Hy is

positive definite. Moreover, the update can be calculated within O(n?) arithmetic operations, whereas
the Newton method requires O(n?) arithmetic operations to solve Newton equations. The quasi-Newton
method has superlinear convergence under appropriate conditions [2, 10]. Therefore, the quasi-Newton
method is very efficient for small- and medium-scale problems. For large-scale problems, the Hessian
V2 f(zy) usually becomes sparse. By exploiting the sparsity, the Newton method and the trust region
method can be implemented with little memory. Thus, these methods are applicable for such problems.
However, since sist in (3) or (4) becomes dense, the updated matrix Hy1 (or its inverse By1) is also
dense even if the Hessian is sparse. Storing the full matrix Hy1 requires O(n?) memory, and thus BFGS
and DFP are not applicable for large-scale problems.

In order to overcome this difficulty, several methods have been proposed [4, 9, 12]. The limited-
memory BFGS (L-BFGS) [9] is widely used in practice. The L-BFGS stores a few vector pairs (s?,y¢),i =
k—m+1,...,k — 1k, and constructs an approximate Hessian by BFGS with the vector pairs. The
approximate Hessian satisfies the secant condition and becomes positive definite. The time and space
complexities per iteration of the L-BFGS are O(mn), and it is shown that the L-BFGS converges linearly
[8]. However, since L-BFGS does not use much information of the Hessian, it converges very slowly for
ill-posed problems.

In this paper we propose quasi-Newton updates that exploit the sparsity of the Hessian. Although
Toint [12] and Fletcher [4] have previously proposed updates that exploit the sparsity, these methods
involve the solution of a convex programming problem at each iteration in order to obtain approximate
Hessians. Moreover, since these methods require the sparsity and secant conditions simultaneously, the
approximate Hessian tends to be ill-posed when (si); = 0 for some ¢ [11]. The method proposed herein

DFP _
Hk+1 = Hi

(4)



is based on positive definite matrix completion. For a given set F' C {1,2,...,n} x {1,2,...,n} and a
partial matrix X;;(i,j) € F, we assume that X;;, (i,j) € F has a positive definite matrix completion
(PDMC) X or that X is a PDMC of X;j, (i,j) € F if X is an n x n symmetric positive definite matrix
and X;; = X;;,V(i,j) € F. The PDMC has been investigated extensively [7, 6, 5]. Recently, the PDMC
has been used for the interior point method for solving the sparse semidefinite programming problem [5].
The results reported in [7, 5] are as follows: (i) If F and X;;, (i,j) € F satisfy some properties related to a
chordal graph (for the definition of ”chordal”, see Section 2), then X;;, (i, ) € F has a PDMC. (ii) If X is
the maximum-determinant PDMC, then (}&_’)i_j1 =0,(i,j) € F. (iii) The maximum-determinant PDMC
is expressed as products of sparse matrices. Based on these results, we propose new sparse quasi-Newton
updates. The proposed methods first calculate a partial approximate inverse Hessian HgN, (i,j) € F,
where F is an extension of the sparsity pattern E = {(i,7) | (V2f(z))i; # 0 for some z € R"} of the
Hessian, by using the existing quasi-Newton updates, such as BFGS (3) and DFP (4). We then obtain
a full matrix Hyy1, which is the maximum-determinant PDMC of HgN, (i,j) € F. When the Hessian
is sparse, the time and space complexities of the proposed method become much fewer than those of
BFGS and DFP. Since the updates do not require the sparsity and secant conditions simultaneously,
they do not suffer from Sorensen’s example [11], i.e., the approximate Hessian does not become ill-posed
even if (s); = 0 for some i. Moreover, we will show that the proposed method has local and superlinear
convergence under the usual assumptions.

The paper is organized as follows. In Section 2, we introduce some results regarding PDMC. The
results are based primarily on [7, 5] and are rearranged slightly for our purpose. In Section 3, we
propose the sparse quasi-Newton updates with PDMC and discuss their time and space complexities
per iteration. In Section 4, we examine the behavior of the proposed method for Sorensen’s example,
which indicates that the proposed method is better than existing sparse quasi-Newton updates. We then
show that the proposed method with DFP, which is a special case of the proposed methods, has local
and superlinear convergence under appropriate conditions in Section 5. Section 6 presents a number of
numerical experiments, and we present concluding remarks in Section 7.

The following notation is used throughout the present paper. We denote V by {1,2,...,n}. For a
givenset F CVxV, F,={j €V |(ij) € F} and |F| denotes the number of elements of F. For
an n X n matrix H, ||H|| denotes the Frobenius norm of H and H > 0 indicates that H is positive
definite. For a vector z € R™ and a set S C V, zg denotes the |S|-dimensional vector with components
zi,i € S. For an n x n matrix A and sets S,U C V, Agy denotes the |S| x |U| matrix with components
Aij,(’L.,j) eSxU.

2 Positive definite matrix completion

In this section we introduce some results regarding the PDMC, which will be used in subsequent sections.
Most of these results are found in [7, 5].

Let FF C V x V. Throughout this section we assume that (i,7) € F for i € V, and (i,j) € F
if (j,i) € F. For a given X;j, (i,j) € F, the problem of finding a PDMC of X;;, (i,j) € F is usually
formulated as a semidefinite programming problem, and thus it is not easy to obtain the PDMC. However,
if F and X;j,(i,j) € F have certain properties, then the PDMC can be calculated directly. Such
properties are related to a graph G(V, F') induced from F, where G(V, F) is a graph having a vertex set
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Figure 1: F = {(i,j) € V x V| M;; # 0} and its related graph
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V and an edge set F := F\{(i,i) | i =1,...,n} (Figure 2).
We recall the following concepts of graph theory, which are related to PDMC.

Definition 1 e Two vertices u,v € V are adjacent if (u,v) € F. The set of the vertices adjacent to
v €V is denoted by Adj(v).

o A graph is complete if every pair of vertices is adjacent.

o For a subset V' of V, the induced subgraph on V' is a graph G(V',F'") with the edge set F' =
FnV'xV’).

o A clique of a graph is an induced subgraph that is complete.

o A clique is mazimal if its vertices do not constitute a proper subset of another clique.

o A vertex is simplicial if its adjacent vertices induce a clique.

e For a cycle, an edge is a cord of the cycle if it joins two nonconsecutive vertices of the cycle.
o A graph is chordal if every cycle of length greater than 3 has a chord (Figure 2).

When G(V, F) is a chordal graph, there exists a family {C, | r = 1,... ,1} of maximal cliques of
G(V,F) such that F = U_,;C; x C; [1]. One of the necessary conditions for Xjj;, (i,j) € F to have a
PDMC is that X¢, ¢, is positive definite for all » = 1,...,l. We call this condition the clique positive



definite condition (CPDC). When G(V, F) is chordal, it becomes a sufficient condition [7]. Moreover, [7]
reported the following properties.

Theorem 1 (a) G(V,F) is a chordal graph if and only if X;j,(i,j) € F satisfying the CPDC has a
PDMC.

(b) Suppose that G(V, F) is a chordal graph and Xij, (i,j) € F satisfies the CPDC. Then a mazimum-
determinant PDMC of X;j, (i,j) € F, i.e., a solution of

max det(X)

subject to  X;; = Xyj, V(i,j) € F
X=XT
X0

is unique and Xigl =0 for all (i,j) ¢ F.

Next, we consider how to compute the maximum-determinant PDMC of X;;, (i,j) € F. To this end
it is important to specify the family {C,. | » = 1,...,1} of maximal cliques of the chordal graph G(V, F').

The chordal graph has a simplicial vertex [1]. Let the vertex be v;. Then the subgraph induced on
V\{v1} becomes a chordal graph, and thus it has a simplicial vertex v,. By repeating this process, we
can construct an ordering (v1, va, ... ,v,). (We call such an ordering a perfect elimination ordering.) The
maximal cliques can be enumerated from the ordering. Note that, since v; is simplicial, a maximal clique
containing v is given by {v; JUAdj(vy). Furthermore, a maximal clique not containing v; is a maximal
clique of the subgraph induced on {v2,vs,...,v,}. Therefore, we can construct {C, C Vir=1,...,1} as

Cr = {vi} U (Adj(vi) N {vig1, vig2,. .., 0n})

for i = min{j | v; € C.}. Thus, maximal cliques {C,. C V|r =1,...,1} can be computed within O(n+m)
by the maximum cardinality search [1], where m is the number of edges. Moreover, the maximal cliques
can be indexed in such a way that for each r = 1,2,...,1 — 1, the following holds:

s > r such that C,. N (Crp1 UCrpa---UCY) G Ch.

This is called the running intersection property (RIP) and is easily obtained by using the clique tree [1].
Next, we suppose that {C, | r =1,...,l} are indexed as satisfying the RIP. Then, we can define the
following families of subsets of {C..}.

S, = C\(Cr1UCraU---UC), r=1,...,1 (5)
UT Crﬂ(cr+1UCT+2U"'UCl),7“:1,...,l (6)

By definition each element of S; is simplicial. Moreover, each element of S;;1 is a simplicial node of the
graph induced from S;US;11 U---US;. Therefore, we can construct the perfect elimination ordering from
{S.|r=1,...,r}. Let P be the permutation matrix of this ordering. Then, the maximum-determinant
PDMC of X;;, (i,j) € F is given as follows [5, Sparse clique-factorization formula (2.16)]:

X=pP'LTLY...LIDLL, |- LyL, P, (7)



where the factors {L,} and D are given by

1 i=7
[Lr]ij = (XI}TlUTXUTSr)ij (i,7) € Up X S,
0 otherwise
forr=1,...,1—1, and
Ds, s,
Ds,s,
D =

Dg, s,

with

Ds,.s,. =

rOr

Xs,s, — XSTUTX(;TIUTXUTST r<l-1
Xs, s, r=1.

3 Sparse quasi-Newton updates with positive definite matrix

completion

In this section, we propose new sparse quasi-Newton updates.
Fletcher [3] showed that HP% P is the unique solution of the following problem:

k+1
11
ming W(H *HH,?)
subject to Hyp = sp, H = HT (8)
H =0,

where ¢ : R"*™ — R is a strictly convex function defined by

P(A) = trace(A) — Indet(A). (9)

When A is symmetric positive definite and its eigenvalues are \;,i = 1,...,n, we have p(4) = > (A —

In );). Therefore, the minimum of ¢ on A = 0 is attained at \; = 1,4 = 1,...,n. This implies that
1

_1 —1
Y(H, >HH, ”) denotes a kind of distance from Hj to H, and thus the solution Hyy; of (8) is the
"nearest” positive semidefinite matrix satisfying the secant condition from Hj. On the other hand,

BP[ES, the inverse of HZE%S is a solution of the following problem [3]:
1 1
ming Y(HZBH?)
subject to Bsy = yi, B = BT (10)
B > 0.

The above problems (8) and (10) do not include the information of the sparsity of the Hessian. If
we exploit this information, we may construct a new approximate Hessian with less memory. Therefore,



rather than (8), we consider the following problem:

mingg W(H, *HH, *)

subject to  Hyp = sg, H=H” (11)
(Hil)ij - 07 (27]) g F
H >0,

where F D E = {(i,j) | V2f(z);; # 0 for some z € R"}. We refer to E as the sparsity pattern of
the Hessian and F' as an extension of E. (Of course, it is favourable to choose F' = E, but certain
properties of F' are required, as will be discussed later.0 Throughout the paper we assume that (i,i) € F'
for all i € V and that (i,j) € F if (j,i) € F. Fletcher [4] considered the problem (10) with the
sparsity conditions B;; = 0,(4,j) ¢ F, and proposed the use of its exact solution as By4q. Since the
problem is a nonlinear convex programming problem, a great deal of time is required in order to obtain
the exact solution. Moreover, as shown in Section 4, Bjyy; sometimes becomes unstable due to the
simultaneous requirement of the sparsity and secant conditions [11]. In this paper we consider the use
of an approximate solution of (11) as Hy rather than the exact solution. More precisely, we propose
the following new updates:

Step 1: Obtain a partial matrix H f;N ,(i,7) € F by using existing quasi-Newton updates, such as BFGS
and DFP.

Step 2: Obtain a solution Hy11 of the following problem with HgN, (i,j) € F as given constants.

min ZZJ(H;:%HH;%)

subject to  H;j = HZQ,JN, (i,j) € F
(Hil)ij =0, (27]) g F
H*>0

Remark 1 If we use DFP in Step 1, then H®N is a solution of problem (11) without the sparsity
constraints, i.e., problem (8).

Remark 2 The secant condition Hyy, = s; in problem (11) is replaced with the constraints H;; =
HZQJN, (i,7) € F in problem (12). Therefore, as shown in Section 4, Hyy1 is stable even if (si); =0 for
some i.

Remark 3 When F' =V x V, the proposed updates are reduced to the existing quasi-Newton updates
used in Step 1.

Remark 4 A matriz satisfying the constraints of (12) may be unique. However, we prefer to use the
optimization formulation (12) for the subsequent analysis.

The proposed method is illustrated in Figure 3.



Solution of

problem (11) (H)ij =0,(i,5) ¢ F

Hy.1 by the proposed method

Hij = Hng(Zvj) eEFr

Figure 3: Proposed method

From the above remarks and Figure 3, the updated matrix Hj1 is regarded as a kind of approximate
solution of (11). However, problem (12) still seems to be difficult. Fortunately, as shown below, if G(V, F')
is chordal, then problem (12) is equivalent to finding a maximum-determinant PDMC of H f;N ,(4,)) € F,
ie.,

max det(H)

subject to  H;j = g”] ,(4,j) € F (13)
H=H
H > 0.

Theorem 2 Suppose that styr > 0, Hy is symmetric positive definite and (Hk_l)i]- =0,Y(i,j) ¢ F.
If G(V, F) is a chordal graph, then problem (12) is equivalent to problem (13). Moreover, the solution
Hy1 of the problem (12) forms the sparse clique-factorization formula (7).

Proof. We first show that problem (12) is equivalent to

max det(H)

subject to  H;; = H?JN, (i,j) € F
H=HT (14)
(H_l)ij =0, (’Lv]) € F
H 0.

Since, based on the assumption, we have (H;');; = 0,¥(i,7) ¢ F, and from the constraint of (12) we



have H;; = HiQJN, (i,7) € F, we have

n

trace(H, ® HH, *) = trace(HH 2 2 Hy(H Y5 =S Y Hiy(H, Z S HIN(H ),

i=1 j=1 i=1 jeF; i=1 jEF;
_1 _1
which shows that trace(H, > HH, ?) is constant on the feasible set of (12). Moreover, we have

Indet(H, * HH, *) = 2Indet(H, *) + In det(H).

Therefore, problem (12) is equivalent to problem (14).
Next, we show that problem (14) is equivalent to problem (13). Suppose that {C, | r =1,...,r} is
a family of maximal cliques of G(V, F). Since sfy; > 0 and Hy, is positive definite, H?" is also positive

definite. Therefore, the submatrices HCQf\éT ,7 = 1,...,1 are positive definite, i.e., HgN, (i,j) € F satisfies
the CPDC. The desired relation then follows from Theorem 1 (b). a

Remark 5 Fletcher [4] showed that the problem (10) with the sparsity conditions B;; = 0,(i,j) € F
can be efficiently solved by the Newton method if a factorization of By has no fill-in, which implies that
G(V, F) is chordal.

We now describe the proposed method as follows:
Matrix Completion Quasi-Newton method (MICQN)

Step 0: Obtain an extension F of E such that G(V, F) is chordal. Calculate a family {C, [ r =1...,1}
of maximum cliques of G(V, F), {S, | r=1,...,1} and {U, |r =1,...,1} by (5) and (6). Choose
zo € R"™ and a positive definite matrix Hy with (Hy');; = 0,V(i,j) € F. Set k = 0.

Step 1: If z;, satisfies the termination criterion, then stop.
Step 2: zp41 =z — Hka(ZEk)
Step 3: Obtain HinN, (i,7) € F by the existing quasi-Newton updates.

Step 4: Obtain the sparse clique-factorization formula (7) of Hyyy with X;; = HSN (i,j) € F.

Step 5: Set k:=k + 1 and go to Step 1.
Next, we estimate the time and space complexities per iteration of MCQN. In order to obtain H g.N

in Step 3, we may employ the BFGS or DFP update formula. Let us assume the use of the BFGS. Step
3 is then calculated as follows:

(Heyr)i(sk); + (sk); (Heyw);
SZyk

HEZN (Hk)w + psisj —

2,7

V(i,j) € F, (15)

where .
1 (yr)" Hryr

STk (stye)?

p:



We first estimate the time complexity per iteration. To compute (H,Cff\{]r)_1 for each r, we need
O(|C,|?) arithmetic operations. Therefore, the calculation of Hyv for given v € R™ requires O(Zizl |C-1?)
arithmetic operations, and thus the time complexity of Step 2 is 0(22:1 |C?). In Step 3, we first cal-
culate Hypys, then we compute HinN, (i,7) € F. The calculation of Hyyy is O(Eizl |C.|3). Moreover,
since |F| < er:1 |Cr|?, O(E:IT:1 |C|?) arithmetic operations are required for (15). Consequently, the
time complexity of Step 3 is O(Zizl |C.|?). Step 4 is a dummy step because we compute the factoriza-
tion (7) of H**! whenever we compute Hyv for given v. Consequently, when V f(z}) is given, the time
complexity per iteration of MCQN is O(Y>'_, |C,[?). If we store ((Hy)u,p,) " for all r = 1,...,1, we
can reduce the time complexity to O(Elr:1 |C|?). For clarification, note that

(Hyyw)v, s, + su. (Hry) (),
SZyk -

(Hii1)v,0, = HRY, = (Hi)v,v, + psu, s, —

Thus, using the Sherman-Morrison formula, we can compute ((Hgt1)v,.v, )" from ((Hy)y, v, )~! within
O(|C,|?) arithmetic operations. By using the stored ((Hy)y,v,.)™!, the time complexity of the compu-
tations of Hyv becomes O(Y'_, |Ch]2).

Next, we estimate the space complexity. When we do not store ((Hy+1)v,v,) ! for all r, we only need
to store (Hy)ij, (ij) € F. Therefore, the space complexity is O(|F|). When we store ((Hy41)u,v, )" for
each 7, the space complexity becomes O(Zizl |C?).

When the Hessian is sparse, in general, C,. becomes much less than n. Since | < n, Zi«:1 |C.|?
is usually smaller than n?. For example, as shown below, when the Hessian is tridiagonal, I = n and
|Cr] =2for all r =1,...,n. Then, the time and space complexities become O(n).

In Step 0 of the proposed method, we must obtain the chordal extension G(V, F) of G(V, E). The
problem of finding a minimum chordal extension of a general graph is NP complete. The minimum
chordal extension is obtained via the minimum fill-in Cholesky factorization of a positive definite matrix
with sparsity pattern E. Therefore, we may employ various existing heuristic methods, such as minimum
degree ordering and nested dissection ordering, for the minimum fill-in Cholesky factorization. On the
other hand, when the sparsity pattern E has a special structure, we can easily obtain the minimum
chordal extension G(V, F). The following are practical examples in which F' becomes E [5].

Multidiagonal: Suppose that a sparsity pattern E is given by E = {(i,j) € V x V| |i — j| < } with
a positive integer 3. Let

C,={ieV|(r-1r<i<fB+re},r=1,...,1

with a positive integer £ and the smallest positive integer [ satisfying 8 + Ik > n and F =
UL_,C, x C,.. Then, G(V, F) is chordal and {C, | r = 1,...,1} is a family of its maximum cliques.
Figure 3 (a) shows the case for n = 6 and § = 2, and we verify that the graph is chordal.

Note that the integer x corresponds to |C,|. Moreover, as k becomes large, [ becomes small and
|F'| becomes large. If k =1, then l=n— 4, |C;.| =5 and F = E.

Now let us consider (7) the case in which the Hessian is tridiagonal, i.e., 3 = 1 and x = 1. In this
case, we have S, = {r},r=1,...,01-1, S, ={n—-1,n},U. ={r+1},r=1,...,0—=1and U; = 0.

10
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(a) multidiagonal (3 = 2) (b) borederd block-diagonal (]S,.| = 2)

Figure 4: Special cases of G(V, F)

Therefore, L; = I and L,.,r =1,...,[ — 1 are given by

1 i=j
N N ..
[Lrlij = HTQ+17T‘/H(QT+1),(T+1) (i,j) = (r+1,r)
0 otherwise

and Dg, g, are given by

r

N N
D _ H971‘V - (HST+1)2/H7Q+1,T+1 r<il-1
SrSr = ngjgr r=1.

Therefore, we can compute all L, and Dg, g, with O(1) arithmetic operations, and the space
complexity is O(1). For given v, we can compute Hv with O(n) arithmetic operations.

Bordered block-diagonal Consider the case in which the Hessian has the following form:

B5151 0 ot 0 35150
0 Bg,s, - 0 Bs,s,
0 0 ot BS[S[ BS[SO
Bsys,  Bsys, -+ Bsys;  Bsgs,

Let C. = SoUS,. Then E = F = U._,C, x C, and G(F,V) is a chordal graph. Now suppose that
nis even and |S,| = 2,7 =0,...,l. Then we have l =n/2—-1, So = {n —1,n}, S, = {2r — 1,2r}
and U, = Sp,r =1,...,1 (the case in which n = 6 is illustrated in Figure 3 (b)). Therefore, H[?TA{]T
becomes a 2 X 2 matrix for each r, and thus L, and D, can be calculated within O(1) arithmetic
operations. Consequently, the time complexity per iteration becomes O(n).

11



4 Behavior of MCQN for Sorensen’s example

In this section, we show the behavior of the proposed method for Sorensen’s example [11]:
1
flz) = g(z: — 1?(21 + 1)%a3 + 25 + (22 — x3)° (16)

with zo = (0,0,/432/55 — )T, 2y = (=5/6,1,1/432/55)7 ¢ = 1075. As shown in [11, p.149], if the
secant condition Bjsg = o is imposed, then

1+5(B 6
(B1)is = 7( u/ )
€
and thus numerical difficulty occurs. Therefore, most existing sparse quasi-Newton updates suffer from
this problem.
The Hessian of f has the following form:

0 =
% %
*

* O %

*

Therefore, its sparsity pattern E is bordered diagonal, and thus G(V, E) is chordal and its maximum
cliques are C; = {1,3} and C> = {2,3}. When By is the identity matrix, the new matrix B; updated
by MCQN with BFGS becomes

0.3421 0 0.2373
B, = 0 2.0629 —-1.7167
0.2373 —-1.7167 2.5931

This shows that the proposed method does not suffer from Sorensen’s problem.

Next, we show the behavior of MCQN with BFGS for the solution of (16) in Table 1. (We employed
the Armijo step size rule presented in Section 6 for global convergence.)

After nine iterations, the method obtains an approximate stationary point of f. Moreover, even if
the true Hessians are singular (see k = 7,8,9), the approximate Hessians By, are still positive definite
and stable.

5 Local and superlinear convergence of MCQN with DFP

In this section, we show that the MCQN with DFP in Step 3 has local and superlinear convergence.
This is proven in a manner similar to [10, 8.4 Convergence Analysis], where the superlinear conver-
gence of the BFGS method is demonstrated using the following property of the function v defined by
(9).
ylyr || Besell? yi sk spBysg
To T - > 1o 2
Yi Sk SgBrsk skl skl

0 <(BPECS) <o(Bi) + (17)
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Iteration Bj, V2 f(xk) IV f(z)]|
0.3421 0 0.2373 8.5091 0 0.7136
k=1 0 2.0629 —1.7167 0 4 -2 4.13
0.2373 —1.7167 2.5931 0.7136 -2 2.0233
3.6201 0 —3.4288 26.3805 0 —17.7974
k=2 0 1.5396 —0.8149 0 4 -2 8.41
—3.4288 —0.8149 3.5658 —17.7974 -2 10.5672
4.2031 0 —1.3889 9.9069 0 —16.6557
k=3 0 2.3174  0.6037 0 4 -2 6.07
—1.3889 0.6037 10.4431 —16.6557 —2 22.3021
2.0461 0 0.6472 3.3856 0 —2.4441
k=4 0 2.3485 0.1128 0 4 -2 4.21
0.6472 0.1128 10.4969 —2.4441 -2 3.1845
2.0584 0 1.3355 —0.0516 0 0.0531
k=5 0 2.3740 0.3049 0 4 -2 1.51
1.3355 0.3049 9.4283 0.0532 —2 2.2249
2.1656 0 1.1738 —0.003 0 0.0001
k=6 0 2.1526 1.0876 0 4 -2 3.70E-1
1.1738 1.0876 8.2456 0.0001 -2 2.25
2.1462 0 1.0924 0 0 0
k=7 0 2.0614 1.1157 0 4 -2 1.58E-2
1.0924 1.1157 8.2908 0 -2 2.25
2.0837 0 1.0747 0 0 0
k=8 0 1.5396 1.0563 0 4 =2 7.23E-4
1.0747 1.0563 8.2706 0 -2 225
2.0231 0 1.0629 0 0 0
k=9 0 2.0294 1.0483 0 4 -2 2.34E-5
1.0629 1.0483 8.2687 0 -2 2.25

Table 1: Behavior of MCQN for Sorensen’s example

Here, B, = H, ' and BP[\¢S = (HPFY5)=!. Since MCQN updates Hy, and (17) is the inequality for By,
we cannot directly apply the proof technique to show the superlinear convergence of MCQN. Moreover,
since Hy11 is the maximum-determinant PDMC of H{",(i,j) € F, we have det(Hy1) > det(H?N),
and thus det(Bpy;) < det(B®N) where BN = (H@N)~!. Therefore, when we consider MCQN with
BFGS in Step 3, i.e., BN = BFFCS it is difficult to derive inequalities like (17) due to the definition
of ¢. Taking these difficulties into account, we consider MCQN with DFP because the update formula
(4) of DFP has a form similar to that of BE/{%S. We will derive an inequality similar to (17) for Hy41
updated by MCQN with DFP.
For our purposes, the following assumptions are necessary:

Assumption 1 Let x, be a solution of (1) and let C = {x € R" | ||z — z.|| < b} with a positive constant
b.
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(1) The objective function f is twice continuously differentiable on C.
(ii) There exist positive constants m and M such that
mljz]* < 2T (V?f(x)) "'z < M|l2||* Vz € R"
for all z € C.

If the second-order sufficient optimality condition holds at the solution z,, then Assumption 1 (ii) holds.
From Assumption 1 (i), V2 f(z) is Lipschitz continuous on C. Then, from Lemmas 4.1.12 and 4.1.15 in
[2], there exist L; and Lo such that

lye — V2 f (@)sell < Lallsel® (18)
and
lye — V2 f(@2)skll < Loerllskll, (19)
where ¢, is defined by
er = max{||Tr+1 — T, |Tr — x|} (20)

Moreover, from Eq. (8.12) of [10] we have
yr = Grsi, (21)

where G, is the average Hessian defined by G}, = fol V2 f(zr + tsy)dt.
For convenience in our analysis, we use the following notations, which are used in [10]:

G.=V2f(x.),H. = V2f(z.)"",
S = Ho sy, i = HY *yy, Hy = HOVPHGHETY?, HON = H7VPHONHY?,
; T ST
cosfy = TtV g Yk ROk
G | Hrg || |9kl

2
iz, = lsel

- i 5
y Mg = —p—.
Y Sk Y Yk
We will make frequent use of the following inequality in our analysis:

h(t):=t—Int—1>0 Vt>0. (22)

The inequality can be shown from the fact that h is strictly convex on ¢ > 0, and its minimum is attained
att =1.
First, we show the following two basic lemmas:

Lemma 1 Suppose that Assumption 1 holds. Then there ezists c € (0,00) and v € (0,b) such that
Inmy > —2ce
Mk S 1+ CEL

whenever g, < 1.
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Proof. Since ~
Yk — Gusy = (G, — Gy)si
from (21), we have
gk — 8 = G (yr — Gasi)
= GYA(Gr - Gse
= GYA(Gr - GOGI 5.
Thus, there exists a positive constant ¢ such that
U —1/20211= 111~ i~
13 — 8l < NG 21156 1IGr — Gl < @llFelex, (23)

where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality follows
from the Lipschitz continuity of V2 f. It follows from the triangle inequalities £||yx|| F ||kl < ||lyx — sk ||
that

(1= ceu)llSell < M1l < (1+ cep)ll3kll- (24)

Moreover, squaring both sides of (23) and using (24), we have
Gk 3k > (1 —ze) 131>

It then follows that o

S URse o (L—2e)

my = ~ 3 = — 5"
Gell> = (1 + cex)

Suppose that « is sufficiently small. Then, since 5 < 7, there exists a positive constant ¢; such that

mk Z 1-— C1€k. (25)
In a similar manner, we can show that there exists a positive constant c» such that
a2
~ 5
My, = 15 < <1+ coep.

g;{gk 1 —ceg

It then follows from (22) that

—C1E} 1 1 1
—— —In(1 - =1-—+In|— ) =h| —— | <0,
1—ciep n( ciek) 1——ciek +hn (1—clsk> (1—clsk> -

—C1E€k

and thus

—— <In(1 - 26
O <l - e (20)

Since we choose ~y sufficiently small, we may suppose that ciep < % Thus, from (26) we have

ln(l — Cle’:‘k) >

It then follows from (25) that
In Tﬁk Z ln(l — Clz’:‘k) Z —2018k.

Letting ¢ = max{cy, c2}, we have the desired inequalities. a
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Lemma 2 Suppose that Assumption 1 holds and HON = H,?_SP. Then we have

Y(Hipr) < p(HOY),
where ¢ is defined by (9).

Proof. We investigate the determinant term and the trace term of ¢ separately. Since H@V is feasible
for problem (13) and Hy; is the unique maximizer of (13), we have det(H?V) < det(Hyy1). Moreover,

since H*_l/2 is positive definite by Assumption 1, we have

det(H9N) = det(HI'/?)det(HN)det(Hs /?)
< det(H, Y*)det(Hyy1)det(H, /%)
= det(Hpy1). (27)
Next, we show that trace(H9N) = trace(Hy1). Note that Hf;N = (Hy41)ij,VY(i,7) € F and (G.)ij =
0,Y(i,j) ¢ F. Therefore, we have
trace(HOY) = trace(H, PHONE, 1/2)
= trace( HONG,)

AT

i=1 j=1

AT

i=1 j=1

I

i=1 jEF;

= Y > (Hi)y(@
=1 ]EFZ
= trace(Hg+1Gx)

= trace(Hpq1). (28)

Combining (27) and (28), we have the desired inequality. a
By using the above lemmas, we show the following key inequality, which corresponds to (17).

Lemma 3 Suppose that Assumption 1 holds and HZN = H,?flp. Suppose also that v is the constant

specified in Lemma 1. If e}, < vy, then we have

= 1 qr ( qr. >] -
H +In — — |1 — — +1n = < Y(Hy) + 3cey. 29
Y(Hesr) cos? 0y, cos? 0, cos? 0y, < Y(H) ¢ (29)

16



Proof. By Assumption 1 (ii), we have

and

T
Y Sk

y};”yk

YL Yk

T

Yi Sk

where zj, = H,iﬂyk and H;, = G
Since H®YN is obtained from Hj by the DFP formula (4), we have

oN

_ H:1/2HQNH*_1/2

Z,{szk

Zk Zk

T

TH
Y Tkyk >m
Y Yk

< M,

- H*”%AH;”2+H;”2<—H?”£Hk Sf£>H;U2
Y Hiyr Yi Sk
5 ngi/2ykngi/2Hk H:l/zsks{Hfl/Z
= y,{Hi/QH*_l/QHkH*_I/QHi/ka ngi/QH*_l/QSk
- i gk?jkggﬁk %k%{
gt Hegin Ui 8k

In a manner similar to the use of Eqgs. (8.44) and (8.55) in [10], we can show that

and

Moreover, by simple calculations, we have

and

- ~ H 2 =112
trace(HOY) = trace( ) — It | 5]
U Hy G Ui, Sk
QN = U B
det(H®Y) = det(Hy) —%—
Uk HrJr
s _ als lad?
g Hege Nkl g Hygr  dr
1xyell” _ gt | HiePl5el> _
YrHeYr Well? (GeHigx)? cos? 0,

It then follows from (30)-(34) that
trace(HN) — det(H9N)

YHEY) =

trace(ﬁk) + M, —

O(Hy) + My, —In(mg) =141 —

Gk
cos

k

—1In det(ﬁk) —Inmy + Ingy

17

qk
cos

k

d

G
cos?

k

) + In cos® 9~k

(31)

(32)



Then, from Lemmas 1 and 2, we have

Y(Hpyr) < P(HON) < p(Hy) + 3cep +Incos? 0y, +1 — T 4+n < Qe ) ,
cos? 0y, cos? 0,

and thus

~ 1 dk ( dk >] =
H +In — — |[1—-——— +1In _ < (Hp) + 3ce,
Y(Hesr) cos? 0y, cos? 0, cos? 0y, < Y(H) ¢

which is the desired inequality. O

By using the inequality (29), we will show the local and superlinear convergence. We first show
the local convergence. To this end, we need the following relation between (H}y) and the distance
| Hy — H||-

Lemma 4 S11Lppose fhat Assumption 1 holds. Suppose also that H € R™*™ is symmetric positive definite
and H=H,*HH, *.

(a) Let p;,i=1,...,n be the eigenvalues of H. Then y(H) =Y (1; —Inp;) and p(H) —n > 0.
(b) For any p > 0, there exists & such that (H) —n < & implies ||[H — H.,|| < p.

(c) For any § > 0, there exists p such that |H — H,|| < p implies Y(H) —n < 4.

Proof. To show (a), note that det(H) = I, p; and trace(H) = Y., pr;. Thus, we have ¢(H) =
S (i — Inp;). Tt then follows from (22) that Y(H) —n =31 (i —Inp; — 1) > 0.
Next, we show (b) and (c). Let \;,i = 1,...,n be the eigenvalues of H. We then have

12 —1)| = (35)
Moreover, since ||H — H.|| = ||H§ (H - I)H*% || and H, is positive definite, there exist positive constants
a1 and as such that . .
ar||[H = 1I| < ||H = H.|| < ax||H — 1I].
It then follows from (35) that
ar, | Y =12 <||H - H|| <as (36)
i=1
On the other hand, from (a), we have
0<y(H)—n=> (Ai—In)—1). (37)

i=1

Since h(t) = t — Int — 1 is strictly convex and h(1) = 0, »(H) — n — 0 implies that \; — 1 for all i.
Therefore, we have (b) and (c). O
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Theorem 3 Suppose that Assumption 1 holds and HON = H,gﬂp. Then, for any o € (0,1), there
exists T such that ||zg — z.|| < 7 and ||[Hy — V2 f(x.)|| < T imply

Zrt1 — @l < allwr — .|
for all k.

Proof. Suppose that o € (0,1). We will show that the following inequalities hold for all k.

[Zrt1 — @l < allwr — .| (38)
Q
1k = V2 f () < 5 (39)
First, note that by choosing 7 to be sufficiently small, we have
Q
LlMT<§, TS’)/ (40)

where Ly, M and v are the constants specified in (18), Assumption 1 (ii) and Lemma 1, respectively.
Moreover, by choosing 7 to be sufficiently small, if necessary, from Lemma 4 (b) and (c), there exists §
such that

$(Hp) —n < g, (41)
WH)—n<d = |H-Vf@) <3 (42)

and 3er 0
—a>7% (43)

where H is a symmetric positive definite matrix, H = H, ih H, %, and c is the constant specified in
Lemma 3.

We show the inequalities (38) and (39) by induction. When k£ = 0, the inequality (39) holds from
(41) and (42). Moreover, we have

ey =2l = lzo — HoVf (o) — .|
< oo — 2 — V2 () TV f (20| + |(Ho — V2 (2) ™) (2o — )|
< VR f(@) T V(@) = V(o) + V2 f () (@0 — 2 )|l + |1 Ho — V2 () " o — .|
< LIV @) llzo = 22 + 5 lao — .l
< (LaMr+ )z — .|
< allzo — o),

where the third inequality follows from (18) and the last inequality follows from (40).
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Next, we suppose that (38) and (39) hold for £k = 0,1,...,] and show the inequalities for k = [ + 1.
Similar to the case in which k = 0, we have

|1 — HiV f(21) — o]

2141 — .||

<l =2 = V2 f(e) T V@)l + (= V2 () ™) @ — 2|

< V(@) (V) = V) + V2 f () (@ = o)+ H = V2 @)l —
< LlIVAf (@) ke = ol + Sl — 2]

< (LiMlla = @l + 3)llee —

< (LM(@)'r+ F)ller - .

< allo —al,

where the fifth inequality follows from the fact that ||z; — z.|| < (a)!||zg — «||. This shows (38) for
k =1+ 1. Next, we show (39) by using (29) in Lemma 3. Summing up the inequalities (29) with
k=0,1,...,1, we have

¢(I§,+1)+§ <1n L__ [1— BT <q~—’“>D gw(ﬁfo)+3czl:sk.

cos? 0, cos? 0y, cos? 0y, P

Since 0 < cosf), < 1 and the term in the square brackets is nonpositive by (22), we have

l

Y(Hipr) —n < p(Ho) —n+3c) ey (44)
k=0
From (38), we have
er = llzer — ol < ()7

for k=0,...,l, and thus

1 — (a)! T
Zz’:‘k < T <

1—a —l-a
k=0

It then follows from (44), (41) and (43) that

. ~ 3er
Y(Hip1) —n < p(Ho) —n+ 1 —a
)
< -+ =-=0.
- 2 + 2 o
From (42) we have ||Hj41 — V2 f(z.) 7| < %, which is (39) for k =1+ 1. ]

Next, we show the superlinear convergence. The following are the sufficient conditions for the super-
linear convergence of quasi-Newton methods [10].

[(Bx = Ga)sell _

lim =0. (45)

k—o0 ||Sk||
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By using (29) and Theorem 3 we will show that

H, — H,
o N0 = Howell

0. 46
N TP (46)

In order to show the superlinear convergence, the following relation between (46) and the superlinear
convergence condition (45) is necessary.

Lemma 5 Suppose that Assumption 1 holds and that HN = HPEP . Suppose also that ||zo — .|| < 7

and ||Ho — V2 f(z.)|| < 7 with the constant T specified in Theorem 3 for sufficiently small o € (0,1).
Then (46) implies (45).

Proof. Let A\¥,i = 1,...,n be the eigenvalues of Hy. Since the inequality (39) holds for sufficiently
small o, we may assume that there exists Apin > 0 such that )\f > Amin for all i and k.
From Assumption 1 (i) there exists a positive constant Lg such that

lyell = IV f (2r11) = VI (@)l < Lsl[sk]| for all k. (47)
Moreover, since yy = Gysi + (Gf, — G.)sy from (21), we have

(Hy — Hi)Gusi + (Hi — Ho) (G — G|
| Hk(Gx — Bi)sill — [[He — Ho|[[|Gr — Gallllsil
Aminl[(Br = G)skll = |1 Hi — Hell[|Gr — Gullllskll-

I(Hx — Ha )yl

(AVARAY]

It then follows from (47) that

[(He = Hoyell o Aminll(Br = Gu)sill _ [|He — Ha|[IGx — Gull
llyell - Ly||sl Ls

Since Gy, = fol V2f(xy, + tsg)dt and x, — z, by Theorem 3, the second term of the right-hand side of
the inequality converges to 0 as k — oco. It then follows from (46) that

[(Br = Ga)sell _

lim =0,

k—oo |5kl
which is the desired inequality. O
We can now show the main result of this section.

Theorem 4 Suppose that Assumption 1 holds. Suppose also that ||zo—z.|| < T and ||Ho— V2 f(z.) 71| <
T hold for sufficiently small T > 0. The sequence {x1} generated by MCQN with DFP then converges to
T« superlinearly.

Proof. From Lemma 5 it is sufficient to show (46). Summing up the inequalities (29) in Lemma 3, we

have
Z(ln L —[1— G +ln< (jk~>]>§¢(ﬁ0)+3025k<oo,
0

o cos? 0y, cos? 0y, cos? 0, i
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where the first inequality follows from the fact that ¢ (Hj) > 0 for all k, and the last inequality follows
from the local linear convergence of {z}} (Theorem 3). Since 0 < cosf < 1, In(1/cos? ;) must be
nonnegative. Moreover, the term in square brackets is nonpositive. Therefore, we have

lim cosfp =1, lim G = 1. (48)
k—o0 k— o0
Furthermore, we have
1H. 2 (Hy = Hoyel P (|(Hx = Dl
NHLY 2ys||2 1k
_ I Hegel® = 205 Hege + 117l
e [?
~2
5 =
= — — 2Gr + 1
cos? 0, 1 ’
where the last equality follows from the fact that
~T ra ~ 2
@ _ (T83) P img? _ 1)
cos? B gxll* (nggkgk)Q 19k

It then follows from (48) and the positive definiteness of H, that we have the desired inequality (46). O

As in the proofs, we can show the superlinear convergence under Assumption 1 and the assumptions
that (a) {Hj} is uniformly positive definite and (b) >~ er < co. The assumptions on the initial data,
i.e., the assumptions that ||zo — z.|| < 7 and ||[Hy — V2 f(z.) || < 7 hold for sufficiently small 7, are
sufficient conditions for (a) and (b).

6 Numerical Experiments

In this section, we report numerical results for the proposed method MCQN as well as for the existing
BFGS and L-BFGS methods.
We solved the following problems:

Problem 1: f(z) = 3.7 i(zip, — @)
Problem 2: f(z) = 2?2_11 sin(z;1 — x;)
Problem 3: f(z) = (n+ 1)(22_, +22) + X\" /% (23, | + 22i 1201 + 1w, + 220 1801 + T2i70)

Problem 4: f(z) = 25212)/2(sin(x2i,1 — o) + (T2i-1 — l‘n71)2 + (22; — ﬂfn)Z)
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Problem n BFGS L-BFGSO MCQN with DFP  MCQN with BFGS

10 16.4 76.7 30.1 26.7

Problem 1 100 | 115.2 1363.2 123.1 122.9
1000 | 1028.5 F 815.1 785.2

10 18.4 33.3 20.8 204

Problem 2 100 | 115.7 309.5 88.5 85.2
1000 | 1021.1 2373.6 933.5 498.3

10 17.5 80.3 27.3 22.3

Problem 3 100 69.3 234.7 126.2 99.2
1000 | 646.3 742.7 1030.9 786.0

10 19.5 38.2 20.3 27.6

Problem 4 100 27.8 81.7 32.3 37.3
1000 | 29.7 F 103.0 108.3

Table 2: MCQN vs. existing methods

Problems 1 and 3 are convex quadratic minimization problems, and Problems 2 and 4 are nonconvex and
nonlinear. The conditions numbers of Problems 1 and 3 are very large, and thus they are ill-conditioned.
The sparsity patterns of Problems 1 and 2 are tridiagonal, whereas those of Problems 3 and 4 are bordered
block-diagonal. Therefore, we can easily obtain the chordal extensions of their sparsity pattern.

We employed the following termination criterion:

[|Vf(zr)|| <eor k> 5000.

The second criterion implies that the method fails to obtain a solution. We set ¢ = 10~® for nonconvex
problems, Problems 2 and 4, and ¢ = 109 for other problems. Since Wolfe’s rule has a high cost, we
employed the Armijo rule:

Flak + (0.5)di) — f(wx) < 0.001(0.5)2V f(wy) " dy,

to obtain a step size t and set xpy1 = xx — teHeV f(21). In order to guarantee the positive definiteness
of Hy, we set Hpy; = Hy if s{yk is less than 2.2 x 1072, The initial points are randomly chosen
from [—10,10]™. We set m = 5, which is the number of stored vectors of L-BFGS. The algorithms were
implemented in Matlab 6.1.

We solved problems of various dimensions, i.e., n = 10,100, 1000 by MCQN with BFGS, BFGS and
L-BFGS. The results are listed in Table 2. The table lists the total number of iterations (average of 10
independent runs), and the symbol” 00 ” denotes that the number is over 5000.

Table 2 shows that the number of iterations of MCQN is almost equal to or less than those of the
existing methods. In particular, L-BFGS converged very slowly for the ill-posed problem (Problem 1),
whereas MCQN converged after far fewer iterations for this problem.
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BFGS L-BFGS O MCQN (with DFP)
Positive definiteness [ Yes Yes Yes
Secant condition Yes Yes No
Sparsity pattern No No Yes
Rate of convergence superlinear linear superlinear

Table 3: Comparison between MCQN and existing updates

7 Concluding remarks

In this paper, we proposed the quasi-Newton methods using the PDMC. We showed that the method
with DFP has local and superlinear convergence under the usual assumptions. The method requires
fewer space and time complexities than those for existing quasi-Newton methods that have superlinear
convergence. In particular, when the Hessian has a special structure, such as multidiagonal or bordered
block-diagonal, as discussed in Section 4, the complexities are drastically decreased. The simple numeri-
cal results suggest that the proposed method is very promising. The properties of the proposed method,
compared with existing methods, are summarized in Table 3.

Investigation of the sparse quasi-Newton update with PDMC is a relatively new area of research. We
are considering the following future research topics.

e How do we obtain a sparsity pattern E of the Hessian[

It is not easy for non-specialists to obtain the sparsity pattern E and thus it is important to
construct an automatic procedure for obtaining E. To this end, automatic differentiation may be
useful.

e How do we obtain an appropriate chordal extension]

In general, the problem of finding a minimum chordal extension is NP complete. We may use
a heuristic method, such as the minimum degree ordering, for this problem. However, minimum
degree ordering sometimes adds many edges (fill-in) in order to obtain the chordal extension. We
note that, although we need F' D E for superlinear convergence, F' is not required be a superset, of
E in practice. For example, if F' is multidiagonal, i.e., F = {(i,5) € V. x V| |i — j| < 8} regardless
of the value of E, then the sparse clique-factorization (7) can be computed quickly, even though the
number of iterations may increase. An investigation of the value of F' that is efficient for practical
situations would be useful.

e Can we show the superlinear convergence of MCQN with BFGS?
We have shown that MCQN with DFP has superlinear convergence. Generally, BFGS is faster
than DFP. Therefore, it is important to show the superlinear convergence of MCQN with BFGS.
e Can we extend MCQN to the constrained minimization problem[]

The interior point method and the sequential quadratic programming method are widely used for
solving constrained minimization problems. These methods usually exploit approximate Hessians
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of the Lagrange function, which are generated by the BFGS update formula. We may employ
MCQN for such algorithms.
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