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An Optimal Design of Collateralized Mortgage Obligation with

PAC-Companion Structure Using Dynamic Cash Reserve

Abstract

This paper presents a model for optimally designing a collateralized mortgage obliga-
tion (CMO) with a planned amortization class (PAC)-companion structure using dynamic
cash reserve. In this structure, the mortgage pool’s cash flow is allocated by rule to the
two bond classes such that PAC bondholders receive substantial prepayment protection,
that protection being provided by the companion bondholders. The structure we propose
provides greater protection to the PAC bondholders than current structures during pe-
riods of rising interest rates when this class of bondholders faces greater extension risk.
We do so by allowing a portion of the cash flow from the collateral to be reserved to meet
the PAC’s scheduled cash flow in subsequent periods. The greater protection is provided
by the companion bondholders exposure to interest loss. To tackle this problem, we
transform the problem of designing the optimal PAC-companion structure into a stan-
dard stochastic linear programming problem which can be solved efficiently. Moreover,
we present an extended model by considering the quality of the companion bond and
by relaxing the PAC bondholder shortfall constraint. Based on numerical experiments
through Monte Carlo simulation, we show the utility of the proposed model.

Keywords: Stochastic programming; Finance; Linear programming; Simulation

Subject Classification: O.R. Applications
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An Optimal Design of Collateralized Mortgage Obligation with

PAC-Companion Structure Using Dynamic Cash Reserve

1 Introduction

The residential mortgage market in most countries is typically the largest debt sector.
The development of a strong housing finance market requires the participation of investors
who are willing to hold residential mortgage loans as either whole loans or in the form of
a security. The best developed housing finance market in the world is that of the United
States because of the ability of investment bankers in conjunction with government agencies
to create securities backed by a pool of residential mortgage loans that are more appealing for
institutional investors to hold rather whole loans. These securities, referred to as mortgage-
backed securities (MBS), were first issued in 1969 with the process of creating these securities
referred to as securitization. More specifically, the MBS issued at the time were mortgage
passthrough securities, securities where the cash flow of the pool of residential mortgage loans
(amortization, prepayments, and interest after servicing expenses and any guarantee fees) is
prorated among the certificate holders. The uncertainty about the cash flow to investors
in a mortgage passthrough security is due to prepayments (i.e., payments in excess of the
principal payment due to amortization) (Fabozzi, 1995).

The major problem with investing in a mortgage passthrough security is that because
of prepayments and the associated uncertainty about the cash flow, these securities do not
provide an effective matching of assets and liabilities for institutional investors. In fact, it is
fair to say that there are few institutional investors who found mortgage passthrough secu-
rities attractive from an asset-liability perspective, thereby limiting the institutional appeal
of these securities. The problem was that there was considerable uncertainty about the secu-
rity’s average life. It could be shorter than expected when the security was purchased (a risk
referred to as contraction risk) or longer than expected (a risk referred to as extension risk).

To deal with this problem, in the early 1980s investment bankers created a different type
of MBS. Instead of an MBS that distributes the cash flow from the pool of mortgage loans on a
pro rata basis, the cash flow is distributed according to rules for principal (both amortization
and prepayments) and interest to different bond classes (tranches) in the structure. This
type of MBS is called a collateralized mortgage obligation (CMO). The initial structures
created provided some bond classes with reduced risk of one type of prepayment (extension
or contraction) with the protection provided by another bond class that realized a reduction
in the risk of the other type of prepayment risk.

The key innovation in the CMO market was the creation of a planned amortization class
(PAC) and companion bond class. In a structure with a PAC and a companion bond class, the
PAC bondholders are provided significant protection against prepayment risk (both extension
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and contraction risk). The protection provided to the PAC bondholders was supported by
the companion bondholders (hence the reference to these types of bonds as “support bonds”).
The rule for the distribution of principal to the PAC bondholders is as follows. There is a
schedule of principal payments that must be made to the bondholders each month. The PAC
bondholders are given priority over the support bondholders with respect to the payment of
the scheduled PAC amount (Fabozzi and Ramsey, 1999).

In the creation of a CMO, the issuer seeks to maximize the proceeds from the sale of the
bond classes backed by the pool of mortgages. Equivalently, the issuer seeks to minimize the
weighted average yield at which it offers the bond classes. When creating a CMO with a
PAC-companion structure, the issuer would like to maximize the amount of the PAC bonds
offered because they can be sold at a lower yield than no-PAC bonds due to their reduced
prepayment risk; in contrast, the companion bonds must offer a higher yield to compensate
for the substantial prepayment risk. The trade off is that for a given pool of mortgages, the
greater the percentage of the PAC bonds, the less prepayment protection the PAC bonds are
afforded.

In the United States, a PAC-companion structure is created by providing an upper and
lower collar prepayment rate. The prepayment rates are based on a prepayment benchmark
developed in the 1980s by the Public Security Association (now the Bond Market Associa-
tion). However, it is possible to create a scheduled payment (i.e., the PAC schedule) based
on some other type of benchmark and allow for cash reserves to protect the PAC bondholders
against prepayment risk. Kutsuna et al. (2004), based on a prepayment model developed
by Schwartz and Torous’ prepayment model (1989), present a new method of optimally de-
signing a CMO with PAC-companion structure using cash reserves. If there are principal
payments in excess of the scheduled amount in a period due to prepayments generated by
the collateral, then the maximum cash that does not exceed the upper bound of cash reserve
is reserved, and finally, if any, the amount that exceeds the upper bound of cash reserve is
distributed to the companion bondholders. If there is a shortage in the PAC scheduled cash
flow generated by the collateral, the PAC bondholders would realize a shortfall whose total
amount is kept in a reasonable range this bondholders can accept. Numerical experiments
using Monte Carlo simulation confirmed the feasibility and validity of their approach.

In this paper, we propose an alternative method for optimally designing a CMO with
a PAC-companion structure. We do so by introducing a dynamic decision process for the
upper bound of the cash reserve, which is different from Kutsuna et al. (2004). Strictly
speaking, the amount of cash reserve is highly correlated with the past cash flow and the
future prepayment behavior. Hence, it will be more reasonable to assume that the amount
of the cash reserve is time-varying and dependent on the actual nature of the prepayment
cash flow. In contrast with the fixed upper bound assumed by Kutsuna et al. (2004), we will
investigate the dynamic approach that takes into account past information about cash flow
and future payment process.
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The structure presented here reduces the extension risk for the PAC bondholders, a
particular concern to investors during a period of rising interest rates. While the structure
does not expose the companion bondholders to risk of loss of principal, the increased risk
faced by the companion bondholders is the risk that there will be a loss in the interest paid
to them. The model makes this potential loss as small as possible.

Another contribution of the model proposed in this paper is that the structurer (designer)
of the CMO can try to improve the quality of the companion bond by making the absolute
deviation of this bond’s cash flow small under the condition that the scheduled principal
payment for the PAC bondholders can be satisfied.

Specifically, we transform the design problem of a CMO into a standard stochastic linear
programming problem which maximizes the objective function formulated by the CMO struc-
turer under PAC bondholder shortfall and cash reserve constraints. That is, the structurer
aims at maximizing the amount of the PAC bond under the condition that the sum of the
cash flow from the mortgagors and the cash reserve brought forward from the previous term
can cover the PAC bond with high certainty. Moreover, it is possible to perform sensitivity
analysis with various risk aversion levels. This approach may provide a new efficient and
flexible vehicle to optimize and price MBS and its derivatives.

In summary, we formulate the following optimization problem:

max W (a)− λR(v)

s.t. L(C,V,a) ≤ UL,

a ≥ 0, v ≥ 0,

where λ is a coefficient used to tradeoff the value of the PAC bond W (a) and the total cash
reserve R(v), and UL is a given threshold for the total PAC bondholder shortfall L(C,V,a).

Based on these considerations, the organization of the paper is as follows. In Section
2 we propose a generic mathematical programming model for designing a CMO with PAC-
companion structure which allows a dynamic cash reserve at each term due on repayment. In
Section 3 we transform the model in Section 2 into a standard stochastic linear programming
problem which can be solved efficiently by the simplex method or the interior-point method.
To improve the tractability of the model, we present in Section 4 an extended model which
may serve as a more reasonable model for the issuer of the CMO. In Section 5 we show some
numerical experiments with Monte Carlo simulation about the basic model and the extended
model. In Section 6 we conclude with a brief discussion of future research.

2 Modelling A CMO with PAC-Companion Structure

In this section, we address the generic targets along with the constraint equalities and
inequalities of a CMO structurer which will be integrated into a mathematical programming

5



problem later.

2.1 Parameters and Variables

We first define some parameters and variables which will be used throughout the paper.
T : maturity of the final payout of the longest maturity loan in the mortgage pool;
x̄t(t = 0, 1, ..., T ): remaining principal balance at time t without prepayments;
πt(t = 0, 1, ..., T − 1): the probability that a mortgagor will prepay at time t + 1 conditional
on no prepayments up to time t;
Xt(t = 0, 1, ..., T ): actual remaining principal balance at time t (random variable);
Ct(t = 1, ..., T ): cash flow at time t (includes amortization, prepayments, and interest [In
this paper we assume there are no service and guarantee fees.]) (random variable);
Vt(t = 1, ..., T ): actual cash reserve at time t (random variable);
at(t = 1, ..., T ): scheduled PAC cash flow at time t (decision variable);
At(t = 1, ..., T ): actual PAC cash flow at time t (random variable);
bt(t = 1, ..., T ): payment to the companion bondholders after paying the PAC bondholders
at time t (dependent variable);
Bt(t = 1, ..., T ): actual payment to the companion bondholders at time t (random variable);
vt(t = 1, ..., T ): upper bound of the cash reserve at time t (decision variable).
We also use the vector notations Ct = (C1, ..., Ct), C = CT , Vt = (V1, ..., Vt), V = VT ,
at = (a1, ..., at), a = aT , At = (A1, ..., At), A = AT , vt = (v1, ..., vt) and v = vT .

2.2 Basic Framework and Optimization Problem

Given a maturity T , a mortgage loan x̄0 is specified by a fixed coupon rate c and a regular
cash flow y (i.e., sum of the regularly scheduled principal repayment and interest from the
mortgage pool). If the mortgagors do not prepay, they will remit y at each due payment date
until maturity. Thus we have the relation

x0 =
T∑

t=1

y

(1 + c)t
,

i.e.,

y = x0 · c(1 + c)T

(1 + c)T − 1
.

Then, the remaining principal balance x̄t at each time t ∈ {0, 1, ..., T} without prepayments
is computed as the discounted future cash flows at the initial coupon rate, that is,

x̄t =
T∑

k=t+1

y

(1 + c)k−t
= x̄0 · (1 + c)T − (1 + c)t

(1 + c)T − 1
.
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Effectively, the mortgagors own an American call option on the underlying mortgage with a
time-varying exercise price x̄t. The lower the current interest rate is, the lower the refinancing
rate, and hence the more valuable the call option.

As to the PAC bondholders, they can receive a scheduled cash flow at each time t to a
certain extent since the payment for the PAC bonds is by rule allocated out of the sum of
repayment from mortgagors and cash reserve from the previous period. Suppose there were
no prepayments and the PAC’s scheduled cash flow is at at time t. Then the holders of the
companion bond would receive bt = y − at.

However, due to prepayments motivated by the fluctuation of refinancing rate and ex-
ogenous factors, the cash flow from mortgagors is not known with certainty, in contrast to
amortization (ignoring defaults). From this perspective, for each t = 1, ..., T, we have the
following relations with V0 = VT = 0:

At(at,vt−1,Ct) = min{at, Ct + Vt−1(at−1,vt−1,Ct−1)},
Vt(at,vt,Ct) = min{vt, Ct + Vt−1(at−1,vt−1,Ct−1)−At(at,vt−1,Ct)},
Bt(at,vt,Ct) = Ct + Vt−1(at−1,vt−1,Ct−1)−At(at,vt−1,Ct)− Vt(at,vt,Ct).

For simplicity, we will abbreviate At(at,vt−1,Ct), Vt(at,vt,Ct) and Bt(at,vt,Ct) as At, Vt

and Bt, respectively.

Needless to say, the PAC bonds are more preferred in terms of lower prepayment risk
than the corresponding companion bond, since the PAC’s scheduled cash flow remains within
a relatively regular range according to a preset schedule. Thus, it can be offered at a lower
yield. So the first target of the CMO structurer is to maximize the amount of the PAC bonds
issued subject to other considerations. Let ṙ be the coupon rate for the PAC bond to be
issued. Then the present value of the PAC bonds is defined as

W (a) =
T∑

t=1

at

(1 + ṙ)t
=

T∑

t=1

αt · at,

where αt = 1
(1+ṙ)t is the discount factor at time t.

At the same time, the trustee for the special purpose vehicle (SPV) created to purchase
the collateral, issue the bonds, and distribute the cash flow according to the priority rules
specified, will be accumulating a cash reserve over time. The cash reserve comes from a
portion of the principal payments that are in excess of the scheduled principal paid to the PAC
bondholders. One economic consequence of the cash reserve for the companion bondholders
is the postponement of the receipt of principal. Assuming no defaults as we do in this paper,
the principal owed to the companion bondholders will be delayed but ultimately paid out.

The risk from the perspective of the companion bondholders is that the interest earned on
the cash reserve for period t will be less than the coupon rate to be paid to them. As a result,
while the companion bondholders will eventually recover their entire principal due, there may
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be an interest loss during the postponement period. The factors that will affect that risk are
changes in the level of interest rates and changes in the shape of the yield curve over the life
of the CMO. Accordingly, the second goal of the structurer should be to decrease the amount
of the cash reserve. However, how to set the upper bound of the cash reserve for the CMO
structurer is complicated due to the uncertainty of prepayments made by the mortgagors in
the mortgage pool. The upper bound will depend on the expectation of the next period’s
repayment from the mortgagors, the scheduled amount for the PAC bondholders, and the
past information about prepayments. If the mortgagors prepay at a high rate in the early
life of the mortgage loan, then the prepayment speed in later periods must be considerably
slower. Moreover, if the estimated prepayments occur at a high rate in the next period, the
structurer need not design much cash reserve since the cash flow from the mortgagors can
meet the schedule for the PAC bondholders. However, since appropriate data in respect to
the design of the cash reserve in a CMO structure are not available in the emerging mortgage
markets, it is difficult to grasp the actual distribution of cash flows. In this paper, to develop
a general model, we assume that the upper bound of the cash reserve is represented as

vt = τt − ξtπtXt,

where τt and ξt(t = 0, 1, ..., T − 1) are parameters determined by the structurer of the CMO.
This model incorporates the following rule: The higher the estimated prepayment πtXt at
time t + 1, the lower the upper bound vt at time t. Thus, the total cash reserve function for
the structurer can be defined as

R(v) = E
[ T−1∑

t=1

vt

(1 + ṙ)t

]
= E

[ T−1∑

t=1

αt(τt − ξtπtXt)
]
, (1)

where E(·) denotes the expectation.

Now, we consider a CMO with a PAC-companion structure that operates under the
following rules:

1. Pay the PAC bonds as scheduled.

2. Set the upper bound of the cash reserve in accordance with the pattern of the prior
prepayments, and reserve the maximum amount of cash that does not exceed the upper
bound.

3. If cash flow is available, pay the companion bond if the payment exceeds the upper
bound of the cash reserve.

Based on the above rules, the structurer determines the amount of the PAC’s scheduled
cash flow and the upper bound of the cash reserve. Therefore, at each time t, the first and
the most important requirement for the structurer is to ensure that the PAC’s scheduled cash
flow satisfies the following condition:

Ct + Vt−1 ≥ at with high probability. (2)
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When inequality (2) is violated, there is a PAC bondholder shortfall that the PAC bondholders
will realize. As a measure of this shortfall, we use the difference between the right-hand side
and left-hand side in inequality (2). More specifically, the PAC bondholder shortfall function
Lt is defined by

Lt(Ct,Vt−1,at) = max{0, at − Ct − Vt−1}
= at −At (3)

≥ 0.

Then since (3) is rewritten as
At = at − Lt,

we may replace At by Lt in Vt and Bt, and get

Vt = min{vt, Ct + Vt−1 + Lt − at},
Bt = Ct + Vt−1 + Lt − at − Vt.

Moreover, the total PAC bondholder shortfall function is defined as

L(C,V,a) = E
[ T∑

t=1

Lt

(1 + ṙ)t

]
= E

[ T∑

t=1

αt · Lt

]
. (4)

Of course, for the PAC bondholders, it is not acceptable that the total PAC bondholder
shortfall exceeds a certain threshold, and hence the following condition is imposed:

L(C,V,a) ≤ UL,

where UL is a given threshold value.

2.3 Mortgage Prepayment Model

Unlike the standard PAC-companion structure created in United States where the PSA
prepayment benchmark is used to establish the prepayment collars in creating the PAC bond
schedule, the structure we are describing can be used in any country interested in creating this
product. This means that in any country, the structurer can adopt our optimal design using
a specified prepayment model to simulate the cash flows. To illustrate the CMO structure
we propose in this paper, we employ the Schwartz and Torous’ prepayment model (1989).

Their prepayment model represents an empirical estimation of the mortgagors’ refinanc-
ing decision. It tries to explain prepayments from the observed actual prepayment behaviors
and relates the prepayment rate to the measurable factors suggested by their economic the-
ory of prepayments. Given the heterogeneous mortgagors, Schwartz and Torous specify the
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prepayment rate πt involving several factors. For simplicity, we adopt the same prepayment
model as that of Kutsuna et al. (2004), which is calculated as follows:

πt = π̂t · exp{β1kt + β2lt + β3mt},

π̂t = b
wν(wt)ν−1

1 + (wt)ν
,

kt = r0 − rt−s,

lt = (kt)3,

mt = ln
xt

x̄t
,

where
βi(i = 1, 2, 3), b, w, ν: constant parameters;
π̂t: baseline function;
s: time lagged factor (in this paper s = 0);
kt: interest rate spread between the coupon rate and the refinancing rate;
lt: accelerating effect;
mt: burnout effect.

As to the simulation generating cash flows for each sample path, interested readers may
refer to Kutsuna et al. (2004), where the parameters are set as

b = 1.5,

w = 0.083,

ν = 1.74,

β1 = 34.2,

β2 = 0,

β3 = 0.3.

2.4 Mathematical Model

We now present the following stochastic optimization problem:

(P0) max
Θ

W (a)− λE
[ T−1∑

t=1

αt(τt − ξtπtXt)
]

s.t. E
[ T∑

t=1

αtLt

]
≤ UL,

Lt = max{0, at − Ct − Vt−1}, (5)

Vt = min{τt − ξtπtXt, Ct + Vt−1 + Lt − at}, (6)

τt − ξtπtXt ≥ 0, t = 1, ..., T,

a ≥ 0, V0 = VT = 0,
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where the variables are Θ = (a, τ , ξ,L,V) with τ = (τ1, ..., τT−1), ξ = (ξ1, ..., ξT−1), L =
(L1, ..., LT ) and V = (V1, ..., VT ).

This problem is to maximize the objective function that takes into account the amount
of the PAC bonds and the cash reserve under the constraint that the total PAC bondholder
shortfall does not exceed a preset threshold UL. Of course, there exist many other targets
and constraints for the structurer, which will be included in the model subsequently.

3 Linear Programming Model

The mathematical model (P0) presented in the previous section involves the constraints (5)
and (6) that are not easy to deal with directly. First note that problem (P0) can be written
as the following program:

(P1) max
Θ

W (a)− λE
[ T−1∑

t=1

αt(τt − ξtπtXt)
]

s.t. E
[ T∑

t=1

αtLt

]
≤ UL,

Lt ≥ 0,

Lt ≥ at − Ct − Vt−1,

Lt = 0 or Lt ≥ at − Ct − Vt−1, (7)

Vt ≤ τt − ξtπtXt,

Vt ≤ Ct + Vt−1 + Lt − at,

Vt = τt − ξtπtXt or Vt = Ct + Vt−1 + Lt − at, (8)

τt − ξtπtXt ≥ 0, t = 1, ..., T,

a ≥ 0, V0 = VT = 0.

The conditions (7) and (8) comprise the complementary constraints that make the problem
quite intractable (Luo, Pang and Ralph, 1996). However, it will be shown shortly that we
can replace the complementarity constraints (7) and (8) with the nonnegative constraints on
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Vt. More specifically, we consider the following problem:

(P2) max
Θ

W (a)− λE
[ T−1∑

t=1

αt(τt − ξtπtXt)
]

s.t. E
[ T∑

t=1

αtLt

]
≤ UL,

Lt ≥ 0,

Lt ≥ at − Ct − Vt−1, (9)

Vt ≤ τt − ξtπtXt, (10)

Vt ≤ Ct + Vt−1 + Lt − at, (11)

τt − ξtπtXt ≥ 0, (12)

Vt ≥ 0, t = 1, ..., T, (13)

a ≥ 0, V0 = VT = 0.

It can be seen that constraint (9) is derived from constraints (11) and (13), constraint (12) is
derived from constraints (10) and (13). Thus, by removing those redundant constraints, we
have the following problem:

(P3) max
Θ

W (a)− λE
[ T−1∑

t=1

αt(τt − ξtπtXt)
]

s.t. E
[ T∑

t=1

αtLt

]
≤ UL, (14)

Vt ≤ Ct + Vt−1 + Lt − at, (15)

0 ≤ Vt ≤ τt − ξtπtXt,

Lt ≥ 0, at ≥ 0, t = 1, ..., T,

V0 = VT = 0.

Problem (P3) is a stochastic linear programming problem which can be solved efficiently by
the well known interior-point methods or simplex method (Vanderbei, 1996). Now it remains
to show that problem (P1) is equivalent to problem (P3).

Theorem 1 If problem (P3) has an optimal solution, then constraint (14) is active at
any optimal solution.

Proof. We show this theorem by contradiction. Suppose there exists an optimal solution
(ā, τ̄ , ξ̄, L̄, V̄) of problem (P3) satisfying

E
[ T∑

t=1

αtL̄t

]
< UL.
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We define δ1, Ľ1, and ǎ1 as

δ1 = UL −E
[ T∑

t=1

αtL̄t

]
> 0,

Ľ1 = L̄1 +
δ1

α1
,

ǎ1 = ā1 +
δ1

α1
.

Let Ľ = (Ľ1, L̄2, ..., L̄T ) and ǎ = (ǎ1, ā2, ..., āT ). Then, constraint (14) becomes active at
(ǎ, τ̄ , ξ̄, Ľ, V̄), since

E
[ T∑

t=1

αtĽt

]
= E

[
α1Ľ1 +

T∑

t=2

αtL̄t

]

= E
[
α1L̄1 + δ1 +

T∑

t=2

αtL̄t

]

= E
[ T∑

t=1

αtL̄t

]
+ δ1 = UL.

Moreover, from

V̄1 ≤ C1 + V̄0 + (L̄1 +
δ1

α1
)− (ā1 +

δ1

α1
),

we have
V̄1 ≤ C1 + V̄0 + Ľ1 − ǎ1,

and hence
V̄t ≤ Ct + V̄t−1 + Ľt − ǎt (t = 1, ..., T ),

which means (ǎ, τ̄ , ξ̄, Ľ, V̄) satisfies constraint (15). Thus (ǎ, τ̄ , ξ̄, Ľ, V̄) is feasible for problem
(P3). However, since

W (ǎ)−W (ā) = δ1 > 0,

the objective value of (ǎ, τ̄ , ξ̄, Ľ, V̄) is larger than that of (ā, τ̄ , ξ̄, L̄, V̄), which contradicts the
assumption that (ā, τ̄ , ξ̄, L̄, V̄) is optimal. Therefore constraint (14) is active at the optimal
solution of (P3). The proof is complete.

Lemma 1 Let (ā, τ̄ , ξ̄, L̄, V̄) be an optimal solution of problem (P3). Then, (ā, τ̄ , ξ̄, L̄, Ṽ)
is also an optimal solution of problem (P3), where Ṽ = (Ṽ0, ..., ṼT ) is recursively given by

Ṽ0 = 0,

Ṽt = min{τ̄t − ξ̄tπtXt, Ct + Ṽt−1 + L̄t − āt}, t = 1, ...T − 1,

ṼT = 0.

Proof. First we show that (ā, τ̄ , ξ̄, L̄, Ṽ) is feasible to problem (P3). Clearly Ṽ0 = ṼT = 0
is satisfied. For t = 1, since

V̄1 ≤ C1 + L̄1 − ā1,

V̄1 ≤ τ̄1 − ξ̄1π1X1,
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we have
Ṽ1 = min{τ̄1 − ξ̄1π1X1, C1 + L̄1 − ā1} ≥ V̄1 ≥ 0.

Assume Ṽt−1 ≥ V̄t−1 is true for each t = 2, 3, ..., T − 1. Then we have

Ṽt = min{τ̄t − ξ̄tπtXt, Ct + Ṽt−1 + L̄t − āt}
≥ min{τ̄t − ξ̄tπtXt, Ct + V̄t−1 + L̄t − āt}
≥ V̄t ≥ 0.

Therefore, (ā, τ̄ , ξ̄, L̄, Ṽ) is feasible for problem (P3). Moreover, it is an optimal solution for
(P3) since its objective function value is equal to that of (ā, τ̄ , ξ̄, L̄, V̄). This completes the
proof.

Lemma 2 Let (ā, τ̄ , ξ̄, L̄, Ṽ) be defined as in Lemma 1. Then at least one of the following
inequalities is active for each t:

L̄t ≥ 0, L̄t ≥ āt + Ṽt − Ct − Ṽt−1. (16)

Proof. Assume the contrary. Then there exists t0 ∈ {1, ..., T} such that

L̄t0 > 0 and L̄t0 > āt0 + Ṽt0 − Ct0 − Ṽt0−1.

We define

δ2 = min{L̄t0 , L̄t0 − āt0 − Ṽt0 + Ct0 + Ṽt0−1} > 0,

ȧt0 = āt0 + δ2

= min{āt0 + L̄t0 , L̄t0 − Ṽt0 + Ct0 + Ṽt0−1}
> 0.

Then we have

ȧt0 ≤ L̄t0 − Ṽt0 + Ct0 + Ṽt0−1,

i.e.,
Ṽt0 ≤ Ct0 + Ṽt0−1 + L̄t0 − ȧt0 .

Let (ȧ, τ̄ , ξ̄, L̄, Ṽ) be a vector obtained by replacing āt0 in (ā, τ̄ , ξ̄, L̄, Ṽ) with ȧt0 . Then,
(ȧ, τ̄ , ξ̄, L̄, Ṽ) is a feasible solution for problem (P3). From the definition of W (a), however,
we have

W (ȧ)−W (ā) = αt0δ2 > 0.

This implies that the objective function value of (ȧ, τ̄ , ξ̄, L̄, Ṽ) is larger than that of (ā, τ̄ , ξ̄, L̄, Ṽ),
which contradicts the assumption that (ā, τ̄ , ξ̄, L̄, Ṽ) is an optimal solution for problem (P3).
As a result, at least one of the inequalities in (16) is active at (ā, τ̄ , ξ̄, L̄, Ṽ). The proof is
complete.
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Lemma 3 Let (ā, τ̄ , ξ̄, L̄, Ṽ) be defined as in Lemma 1. If there exists a t1 such that
L̄t1 > 0, then Ṽt1 = 0.

Proof. We prove the lemma by contradiction. Suppose Ṽt1 > 0. Note that, from Lemma
2, the following equality holds for each t ∈ {1, ..., T},

L̄t = max{0, āt + Ṽt − Ct − Ṽt−1},

which together with L̄t1 > 0 implies

L̄t1 = āt + Ṽt − Ct − Ṽt−1. (17)

We define δ3, V̂t1 , L̂t1 , and L̂t1+1 as

δ3 = min{Ṽt1 , āt1 + Ṽt1 − Ct1 − Ṽt1−1} > 0,

V̂t1 = Ṽt1 − δ3

= max{0, Ct1 + Ṽt1−1 − āt1}
≥ 0,

L̂t1 = L̄t1 − δ3

= max{L̄t1 − Ṽt1 , L̄t1 − āt1 − Ṽt1 + Ct1 + Ṽt1−1}
= max{L̄t1 − Ṽt1 , 0}
≥ 0,

L̂t1+1 = L̄t1 + δ3,

where the first inequality follows from (17) and the assumption Ṽt1 > 0.

Let (ā, τ̄ , ξ̄, L̂, V̂) be a vector obtained by substituting V̄t1 , L̄t1 , and L̄t1+1 in (ā, τ̄ , ξ̄, L̄, Ṽ)
by V̂t1 , L̂t1 , and L̂t1+1, respectively. In the following, we will prove (ā, τ̄ , ξ̄, L̂, V̂) is feasible
and even optimal for problem (P3). First, it can be seen that

V̂t1 < τt1 − ξt1πt1Xt1

is satisfied, since Ṽt1 ≤ τt1 − ξt1πt1Xt1 and Ṽt1 > V̂t1 . Since Ṽt1 ≤ Ct1 + Ṽt1−1 + L̄t1 − āt1 , we
have

(Ṽt1 − δ3) ≤ Ct1 + Ṽt1−1 + (L̄t1 − δ3)− āt1 ,

i.e.,
V̂t1 ≤ Ct1 + Ṽt1−1 + L̂t1 − āt1 .

Moreover, for t = t1 + 1, the inequality Ṽt1+1 ≤ Ct1+1 + Ṽt1 + L̄t1+1 − āt1+1 yields

Ṽt1+1 ≤ Ct1+1 + (Ṽt1 − δ3) + (L̄t1+1 + δ3)− āt1+1,

i.e.,
V̂t1+1 ≤ Ct1+1 + Ṽt1 + L̂t1+1 − āt1+1.

15



Furthermore, by the definition of αt, we have αt1 − αt1+1 > 0, and hence we obtain

E
[ T∑

t=1

αtL̂t

]
= E

[ T∑

t=1

αtL̄t

]
− (αt1 − αt1+1)δ3 < UL. (18)

The above arguments indicate that (ā, τ̄ , ξ̄, L̂, V̂) is feasible for problem (P3). Moreover, it
is optimal for problem (P3), since its objective value is the same as that of (ā, τ̄ , ξ̄, L̄, Ṽ).
However, (18) contradicts Theorem 1, which requires (18) to be active at any optimal solution
of problem (P3). This completes the proof of the lemma.

Now, we are in the position to establish the following theorem which relates problem (P1)
with problem (P3).

Theorem 2 Let (ā, τ̄ , ξ̄, L̄, Ṽ) be defined as in Lemma 1. Then (ā, τ̄ , ξ̄, L̄, Ṽ) is not
only an optimal solution of problem (P3) but also an optimal solution of problem (P1).

Proof. In view of Lemma 1 and the fact that problem (P1) and problem (P3) have the
same objective value at (ā, τ̄ , ξ̄, L̄, Ṽ), it only suffices to show that (ā, τ̄ , ξ̄, L̄, Ṽ) is feasible
for problem (P1). First, from Lemma 1, we obtain

Ṽt = min{τ̄t − ξ̄tπtXt, Ct + Ṽt−1 + L̄t − āt},

which means constraint (8) is satisfied in problem (P1).

Next from Lemma 2, at least one of the following inequalities is active for each t:

L̄t ≥ 0, L̄t ≥ āt + Ṽt − Ct − Ṽt−1,

which implies

L̄t = 0 or L̄t = āt + Ṽt − Ct − Ṽt−1, t = 1, ..., T.

Moreover, when L̄t > 0, we have Ṽt = 0 as shown in Lemma 3. Thus, we obtain

L̄t = 0 or L̄t = āt − Ct − Ṽt−1, t = 1, ..., T.

Hence constraint (7) is satisfied. Consequently, (ā, τ̄ , ξ̄, L̄, Ṽ) is feasible for problem (P1).
The proof is complete.

4 Extended Model

In this section, we extend the model presented in the previous section by considering a
more practical objective function specified by the CMO structurer, in which the companion
bond is paid more attention to, and by relaxing a tight constraint on the PAC bondholder
shortfall Lt at each term t.
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As mentioned in Section 2, the companion bondholders can obtain a deterministic cash
flow bt = y−at at time t, if there are no prepayments. However, due to prepayments, i.e., due
to the uncertainty of y at time t, the cash flow paid to the companion bondholders is unknown.
Therefore, while the PAC’s scheduled cash flow is satisfied, the structurer of the CMO should
also improve the quality of the companion bond in terms of reducing prepayment risk since
it plays an important role in the issuance of the CMO. One of the measures of the quality
for the companion bond is the absolute deviation of its cash flows, which can be defined as

D(B) = E
[ T∑

t=1

|Bt − bt|
]
, (19)

which implies that the smaller the absolute deviation, the higher the quality of the companion
bond.

In terms of the model proposed in the previous section, the PAC bondholders would face
a shortfall Lt if the sum of the cash flow Ct from mortgagors and the cash reserve Vt−1 from
the previous period does not meet the PAC’s scheduled cash flow at. Moreover, the total
present value of the shortfall has an upper bound UL. Therefore, if the scheduled cash flow
is completely fulfilled, there is no shortfall for the PAC bondholders. From the perspective of
the trustee, however, the CMO may not be well designed since the PAC bondholder shortfall
constraint may restrain his efficient operation. As a matter of fact, when the scheduled cash
flow for the PAC bondholders is satisfied, the trustee could have the right of deciding when
and whether to execute the shortfall so long as the total shortfall meets the upper bound
constraint. Mathematically, those constraints may be represented as

E
[ T∑

t=1

αtLt

]
≤ UL,

Ct + Vt−1 + Lt ≥ at.

Now we propose the following model:

max W (a)− λR(v)− ρE
[ T∑

t=1

|Bt − bt|
]

(20)

s.t. E
[ T∑

t=1

αtLt

]
≤ UL,

Ct + Vt−1 + Lt ≥ at, (21)

at + Bt + Vt = Ct + Vt−1 + Lt, (22)

Vt ≤ τt − ξtπtXt, (23)

τt − ξtπtXt ≥ 0, (24)

V ≥ 0, V0 = VT = 0, (25)

a ≥ 0, Bt ≥ 0, Lt ≥ 0, t = 1, ..., T, (26)
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where λ, ρ ≥ 0 are two risk aversion constants used to tradeoff the value of the PAC bond
and the total cash reserve and the absolute deviation of the companion bond. Note that here
Lt and Bt have slightly different implications from those in Section 2.

For a treatment of nonsmoothness of the absolute deviation in (20), we introduce artificial
variables (ut)+ and (ut)− that satisfy

|Bt − bt| = (ut)+ + (ut)−,

Bt − bt = (ut)+ − (ut)−, (27)

(ut)+ ≥ 0, (ut)− ≥ 0.

Here we omit the condition (ut)+ · (ut)− = 0, since it is guaranteed to hold at any optimal
solution of (27).

It can be seen that constraint (21) is derived from constraints (22), (25), and (26), and
constraint (24) is derived from constraints (23) and (25). Thus, by removing those redundant
constraints, we have the following linear programming problem:

(P4) max
Θ

W (a)− λE
[ T−1∑

t=1

αt · (τt − ξtπtXt)
]
− ρE

[ T∑

t=1

[(ut)+ + (ut)−
]

s.t. E
[ T∑

t=1

αtLt

]
≤ UL,

at + Bt + Vt = Ct + Vt−1 + Lt,

0 ≤ Vt ≤ τt − ξtπtXt,

Bt − bt = (ut)+ − (ut)−,

(ut)+ ≥ 0, (ut)− ≥ 0,

at ≥ 0, Bt ≥ 0, Lt ≥ 0, V0 = VT = 0, t = 1, ..., T,

where Θ = (a, τ , ξ,B,V,L,u+,u−), τ = (τ1, ..., τT−1), ξ = (ξ1, ..., ξT−1), B = (B1, ..., BT ),
V = (V1, ..., VT−1), L = (L1, ..., LT ), u+ = ((u1)+, ..., (uT )+) and u− = ((u1)−, ..., (uT )−).

5 Numerical Experiments and Sensitivity Analysis

In this section, we present some results of numerical experiments with the proposed
models. To value a CMO, we first describe the mortgage rate model, incentive prepayments,
and cash flows. Then we consider the sensitivity of some special parameters on the structure
of the CMO, such as cash reserve sensitivity factor and the tradeoff coefficient to the absolute
deviation of the companion bond.
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Figure 1: Sample paths of mortgage rate, cash flow and prepayment

5.1 Monte Carlo (MC) Simulation Method

For convenience, we will consider a 5% standard 30-year fixed-rate mortgage with original
par value x̄0 = 1000. Of course, our model can be extended in a straightforward manner to
other CMO mortgage designs.

First, we generate cash flows through Monte Carlo simulation. To model the mortgage
rates, we adopt the CIR model (Cox, Ingersoll and Ross, 1985), which is given by

rt+∆t = rt + κ(θ − rt)∆t + σ
√

rt∆Bt, (28)

where ∆Bt ∼ N(0,∆t). In the present paper, κ = 0.20, θ = 0.05, σ = 0.02, and ∆t = 0.01.

Once we generate J paths of T standard normal random numbers:

(εj
1, ε

j
2, ..., ε

j
T ), j = 1, 2, ..., J, (29)

each sequence in (29) gives a path of mortgage rates (rj
1, r

j
2, ..., r

j
T ) via (28). Hence, we gener-

ate the corresponding prepayment factors (πj
0, π

j
1, ..., π

j
T−1) and in turn cash flows (Cj

1 , C
j
2 , ..., C

j
T ).

In our simulation, we use J = 1000 sample paths for approximation.

As an illustration, a realization of the sample paths of the mortgage rates, prepayments,
and cash flows is graphed in Figure 1. The upper panel displays a random mortgage rate
generated by the CIR model and the lower panel displays the corresponding cash flows and
prepayment behaviors based on the Schwartz-Torous prepayment model. This graph shows
that the cash flows and prepayments in the first 10 years overwhelmingly dominate those
in the later years. Moreover, the dominating prepayment behaviors in the first 10 years
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Figure 2: Outstanding repayment balance with and without prepayments

are closely related to the low level of the mortgage rates relative to the coupon rate for the
assumed mortgage loans.

To demonstrate the necessity for the structurer to reassign cash flows from mortgagors and
to develop derivatives, such as generic CMO, PAC, and other bond classes with schedule, for
example, a target amortization class (TAC), Figure 2 provides a comparison of outstanding
mortgage with and without prepayments. The significant prepayments in the early life of
mortgage in both Figures 1 and 2, consistent with the conclusions in Stanton (1995), Kariya
and Kobayashi (2000), and Kariya et al. (2002), also support the general validity of the
Schwartz and Torous model for prepayments.

According to probability theory, we can approximate expressions (1), (4), and (19) as

R(v) =
1
J

J∑

j=1

T−1∑

t=1

αt(τt − ξt · πj
t x

j
t ),

L(C,V,a) =
1
J

J∑

j=1

T∑

t=1

αtL
j
t ,

D(B) =
1
J

J∑

j=1

T∑

t=1

|Bj
t − bt|.

Therefore, using the results from the Monte Carlo simulation, we can solve the model (P3),
which is equivalent to the basic problem (P1), and the extended model (P4).

We implement our models with modelling language MatLab6.5 and linear programming
package of SeDuMi1.05 (Sturm, 2001) on the platform of RedHat 8 with Intel Pentium 4
CPU 3.00GHz, 1.5GB memory. The computation time spent to solve a problem with 1000
sample paths is about 4 minutes.
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Table 1: Sensitivity with respect to λ in the basic model (UL = 1)

λ W (a) R(v)

0.00 987.1874 >100
0.10 974.8692 71.5790
0.20 968.2137 23.5035
0.40 964.5092 9.7962
0.60 962.5144 5.5418
0.80 960.7618 2.9489
1.00 960.6580 2.8441
5.00 956.4835 2.3764

5.2 Numerical Results of the Basic Model

In this subsection, we show experimental results of the basic model which does not take
into account the quality of the companion bond. In Table 1, we report W (a) and R(v) at
the optimal solution when UL = 1 and λ varying from 0 to 5. Generally speaking, W (a) and
R(v) decrease as λ increases with the other parameters being fixed. This is natural because
a decrease in the sensitivity λ of the cash reserve allows more cash reserve, and increases the
possibility of issuing more PAC bonds.

The left panel of Figure 3 illustrates the actual mean of the cash reserve and the mean
upper bound of the cash reserve, and the right panel graphs all sample paths of shortfall the
PAC bondholders face at the optimal solution. Note that the actual mean of the cash reserve
at time t is calculated as

E[Ṽt] =
1
J

J∑

j=1

Ṽ j
t ,

where Ṽ j
t is given in Lemma 1. Clearly it is observed from the left panel of Figure 3 that

the dynamic upper bound of the cash reserve is very close to the real reserve, particularly for
the last 15 years. This implies that the dynamic strategy for the upper bound of the cash
reserve adopted in this paper, to some extent, can fit well the simulated scenarios. Moreover,
due to the significant prepayments occurring in the first half of the life of the mortgage pool,
especially from the 5th to the 15th years, the amount of the actual cash reserve and its upper
bound are much larger than those in other years.

Next, we define the mean present value of the actual cash flow for the PAC bondholders
Aj

t , the real cash flow for the companion bondholders Bj
t , and the real cash reserve Ṽ j

t , which
are denoted by E[W0(A)], E[W0(B)], and E[W0(V)], respectively, with the discount rate at
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Figure 3: The upper bound of the cash reserve, the actual cash reserve (left), and the actual
PAC bondholder shortfall (right) for the basic model at the optimal solution (UL = 1, λ =
0.1).

Table 2: Real cash flow allocation for the basic model (UL = 1)
λ E[W0(A)] E[W0(B)] E[W0(V)] E[W0(A)]+E[W0(B)]

0.00 986.1874 5.8161 169.9254 992.0036
0.10 973.8692 23.0658 64.3654 996.9350
0.20 967.2137 31.7259 22.2689 998.9396
0.40 963.5092 36.0445 9.3734 999.5536
0.60 961.5144 38.2279 5.4110 999.8106
0.80 959.7618 40.0985 2.9328 999.8603
1.00 959.6580 40.2074 2.8281 999.8653
5.00 955.4835 44.4144 2.1447 999.8979

period t being simplified as (1 + r0)−t:

E[W0(A)] =
1
J

J∑

j=1

T∑

t=1

Aj
t

(1 + r0)t
,

E[W0(B)] =
1
J

J∑

j=1

T∑

t=1

Bj
t

(1 + r0)t
,

E[W0(V)] =
1
J

J∑

j=1

T−1∑

t=1

Ṽ j
t

(1 + r0)t
.

Table 2 shows the values of E[W0(A)], E[W0(B)], E[W0(V)], and E[W0(A)]+E[W0(B)] at
the optimal solution of the basic model where the total shortfall is fixed UL = 1 and parameter
λ varies from 0 to 5.

Both Tables 1 and 2 show that the the mean present value of the actual payment for the
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PAC bonds decreases as λ increases with the other parameters fixed. This is natural because
the structurer pays more attention to the cash reserve, i.e., the structurer makes the total
cash reserve as small as possible, which in turn decreases the postponement of the receipt of
principal paid to the companion bondholders. The fact that the sum of E[W0(A)]+E[W0(B)]
approaches x0 when parameter λ tends to 5 also illustrates an increase in the sensitivity for the
cash reserve decreases the postponement of principal receipt for the companion bondholders
because the total amount of the cash reserve declines. In fact, this can be explained as follows:
From the definition of Bt in Section 2, we have

At + Bt = Ct + Ṽt−1 − Ṽt, (t = 1, ..., T ),

which means

Aj
t + Bj

t = Cj
t + Ṽ j

t−1 − Ṽ j
t , (t = 1, ..., T )

hold for each j = 1, ..., J . Hence,

1
J

J∑

j=1

T∑

t=1

Aj
t

(1 + r0)t
+

1
J

J∑

j=1

T∑

t=1

Bj
t

(1 + r0)t

=
1
J

J∑

j=1

T∑

t=1

Cj
t

(1 + r0)t
+

1
J

J∑

j=1

T∑

t=1

Ṽ j
t−1

(1 + r0)t
− 1

J

J∑

j=1

T∑

t=1

Ṽ j
t

(1 + r0)t

=
1
J

J∑

j=1

T∑

t=1

Cj
t

(1 + r0)t
− r0

1 + r0
· 1
J

J∑

j=1

T∑

t=1

Ṽ j
t

(1 + r0)t

≈ x0 − r0

1 + r0
· 1
J

J∑

j=1

T∑

t=1

Ṽ j
t

(1 + r0)t
,

i.e.,

E[W0(A)] + E[W0(B)] ≈ x0 − r0

1 + r0
E[W0(Ṽ)],

where we use the initial and terminal conditions of cash reserve V j
0 = V j

T = 0. Thus, the sum
of E[W0(A)] and E[W0(B)] decreases as E[W0(Ṽ)] increases. If there is no cash reserve, the
present value of the cash flow paid to the holders of the PAC bonds and the companion bond
is equal to the initial principal balance.

5.3 Numerical Results of the Extended Model

In this subsection, we report the numerical results for the extended model which incorpo-
rates the quality of the companion bond and relaxes the PAC bondholder shortfall constraint
for each period.

Table 3 shows the present value of W (a) and R(v) at the optimal solution when UL =
1, ρ = 0, and λ varies from 0 to 5. In view of Table 3, we emphasize that the extended model
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Table 3: Sensitivity with respect to λ in the extended model (UL = 1, ρ = 0)

λ W (a) R(v)

0.00 986.6716 >100
0.10 974.8292 69.1782
0.20 968.3741 22.4040
0.40 964.8793 9.4483
0.60 962.9691 5.3683
0.80 961.2563 2.8373
1.00 961.0620 2.6405
5.00 961.0254 2.5873

can achieve the same or even better results compared with the basic model. For example,
the present value of the scheduled cash flow paid to the PAC bondholders at the optimal
solution is very close to and always a little larger than that of the basic model, while the
amount of the cash reserve is a bit lower, which is preferable for the reason presented in
Section 2. In fact, it is imaginable that by relaxing the PAC bondholder shortfall constraint
of the basic model, the trustee achieves more freedom to decide when and how to execute
a PAC bondholder shortfall so long as the total shortfall for the PAC bondholders does not
exceed the preset threshold. Figure 4 graphs the actual mean of the cash reserve, the actual
mean of the upper bound of the cash reserve, and the actual PAC bondholder shortfall at the
optimal solution when UL = 1, λ = 0.1, and ρ = 0. Apparently, Figure 4 has many common
characteristics with Figure 3, such as the shape and the trend of the actual cash reserve, the
upper bound, and the actual PAC bondholder shortfall. However, the ranges of fluctuation
of the actual mean of the cash reserve and of the upper bound of Figure 4 are significantly
different from those of Figure 3. This provides a persuasive explanation that the extended
model is superior to the basic model since both the general upper bound and the actual cash
reserve are lower than those of the basic model. Furthermore, the persistently low level of the
cash reserve in the extended model decreases the shortfall of the PAC bondholders. Another
difference is that the actual mean of the cash reserve of the extended model is less closer to
the mean upper bound from the 5th to the 15th years than that of other periods. This is
mainly because the extended model does not rely on Lemma 2 and Lemma 3.

To demonstrate the effect of λ on the amount of the PAC bonds that can be issued, the
cash reserve and the absolute deviation of the companion bond, Table 4 shows the values of
W (a), R(v) and D(B) at the optimal solution when UL = 1.0, ρ = 0.5, and λ is changed from
0 to 5. In this situation, because of taking into account the quality of the companion bond, the
amount of the PAC bonds as well as the cash reserve decreases generally as λ increases, while
the absolute deviation of the companion bond D(B) increases consistently. This is natural
because when other parameters are fixed, an increase of λ implies that the structurer pays
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Figure 4: The upper bound of the cash reserve, the actual cash reserve (left), and the
actual PAC bondholder shortfall (right) for the extended model at the optimal solution
(UL = 1, λ = 0.1, ρ = 0).

Table 4: Sensitivity with respect to λ in the extended model (UL = 1, ρ = 0.5)

λ W (a) R(v) D(B)

0.00 870.1363 >1000 444.2072
0.10 955.8715 692.7244 831.3734
0.20 969.7926 209.7110 984.3243
0.40 967.1359 32.2754 1072.6
0.60 963.9518 14.8819 1082.5
0.80 961.8528 7.8826 1087.9
1.00 961.5790 4.4925 1092.9
5.00 961.5549 4.3781 1092.1

more attention to the postponement of principal of receipt paid to the companion bondholders
caused by the cash reserve, and hence decreases the possibility of taking on a shortfall for
the PAC bondholders, and naturally affects the quality of the companion bond.

The effect of ρ on the amount of the PAC bonds that can be issued, the cash reserve, and
the absolute deviation of the companion bond is reported in Table 5, where UL = 0, λ = 0.5,
and ρ is changed from 0 to 5. As expected, in this situation, the amount of the total cash
reserve R(v) significantly increases from 6.6412 to 139.9275, the absolute deviation of the
companion bond consistently decreases as ρ increases, while the movement of the amount of
the PAC bonds that can be issued stays at a high level.

Furthermore, in Figure 5 we show the actual mean of the cash reserve, the mean upper
bound, and the actual PAC bondholder shortfall at the optimal solution when UL = 1, λ =
0.1, and ρ = 0.5. In this case, there is a very strange but interesting phenomenon that the
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Table 5: Sensitivity with respect to ρ in the extended model (UL = 1, λ = 0.5)

ρ W (a) R(v) D(B)

0.00 963.6553 6.6412 >1500
0.10 964.0379 7.5558 1094.9
0.20 964.2927 8.6110 1093.2
0.40 964.8102 16.8256 1082.1
0.60 964.8250 24.2560 1074.9
0.80 965.3639 61.8374 1047.2
1.00 963.2470 130.0867 1010.0
5.00 963.5471 139.9275 1007.2
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Figure 5: The upper bound of the cash reserve, the actual cash reserve (left), and the
actual PAC bondholder shortfall (right) for the extended model at the optimal solution
(UL = 1, λ = 0.1, ρ = 0.5).

actual PAC bondholder shortfall is separated into two parts, before the 10th year and after
the 11th year. The reason for this phenomenon is that, as seen in the left panel of Figure 5,
the amount of the cash reserve during the 10th and 11th years is much larger than that of
other years.

It should be mentioned that we omit some results for the basic model and the extended
model when λ > 5 and ρ > 5 because the results for larger values of λ and ρ differ only
slightly from those of λ = 5 and ρ = 5.
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6 Conclusion

As the securitization of mortgage loans and the customization of securitized products con-
tinue to increase in countries throughout the world, optimization methods will be employed to
design the optimal structure. In this paper, we propose a new model for optimally designing
a CMO (a special type of MBS) with PAC-companion structure which assumes that a part of
the cash flow from the underlying mortgage pool can be reserved to the next period. This is
done to reduce the extension risk to the PAC bondholders but increase the risk of interest loss
to the companion bondholders. We transform the design problem of the CMO structure into
a standard stochastic linear programming problem which maximizes the objective function of
the CMO structurer under PAC bondholder shortfall and cash reserve constraints. We then
extend the model and find that the modified model yields a more desirable performance than
the basic one.

Of course, there remains much room for enhancing the model. For example, we consider
only the prepayment risk in this paper. It may be of interest in practice to incorporate the
credit risk, i.e., default risk (Kau et al., 1992, 1995). As another example, in our model
we use the Monte Carlo approach to generate the mortgage rate process, which has an
inherent drawback that any two sample paths have no correlation. Therefore, the binomial
tree simulation may be more plausible and preferred.
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