
Approximating minimum cost multigraphs of

specified edge-connectivity under degree bounds∗

Takuro Fukunaga and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University

{takuro, nag}@amp.i.kyoto-u.ac.jp

Abstract

In this paper, we consider the problem of constructing a minimum cost graph with a
specified edge-connectivity under a degree constraint. For a set V of vertices, let r :

(
V
2

)
→ Z+

be a connectivity demand, a : V → Z+ be a lower capacity, b : V → Z+ be an upper capacity
and c :

(
V
2

)
→ Q+ be a metric edge cost. The problem (V, r, a, b, c) asks to find a minimum

cost multigraph G = (V, E) with no self-loops such that λ(u, v) ≥ r(u, v) for each pair
u, v ∈ V and a(v) ≤ d(v) ≤ b(v) for each v ∈ V , where λ(u, v) (resp., d(v)) denotes the
local-edge-connectivity between u and v (resp., the degree of v) in G. We show several
conditions on functions r, a, b and c for which the above problem admits an approximation
algorithm. For example, we give a (2 + 1/ bk/2c)-approximation algorithm to (V, r, a, b, c)
with r(u, v) ≥ 2, u, v ∈ V and a uniform b(v), v ∈ V , where k = minu,v∈V r(u, v). To design
the algorithms in this paper, we use our new results on edge-splitting and detachment, which
are graph transformations to split vertices while preserving edge-connectivity.

Keywords: edge-connectivity, degree bound, edge-splitting, detachment

1 Introduction

In this paper, we let Z+, Q+ and R+ denote the set of nonnegative integers, rational numbers and
real numbers, respectively. Let graph G = (V, E) stand for an undirected multigraph with no
self-loop unless stated otherwise. Let d(v; G) (or d(v)) denote the degree of v in G, and λ(u, v; G)
(or λ(u, v)) denote the local-edge-connectivity between two vertices u and v in G. For a function
r :

(
V
2

)
→ Z+, a graph G with a vertex set V is called r-edge-connected when λ(u, v; G) ≥ r(u, v)

holds for each pair u, v ∈ V . If r(u, v) = k for all u, v ∈ V , then an r-edge-connected graph may
be called k-edge-connected. In this paper, we consider the problem of constructing a minimum
cost graph with a specified edge-connectivity under a degree constraint, which is formulated
as follows: Given a set V of vertices, a connectivity demand r :

(
V
2

)
→ Z+, a lower capacity

a : V → Z+, an upper capacity b : V → Z+ and an edge cost c :
(
V
2

)
→ Q+, the problem asks to

find a minimum cost multigraph G = (V, E) with no self-loops such that

λ(u, v; G) ≥ r(u, v) for each pair u, v ∈ V

and
a(v) ≤ d(v; G) ≤ b(v) for each v ∈ V .

∗Technical report #2005-010, September 19, 2005.

1

We denote a problem instance consisting of the above inputs by (V, r, a, b, c). For a function h
and a constant ` ∈ Q+, we denote h ≤ ` (resp., h ≥ `) to mean that the value of h is always less
than or equal to ` (resp., greater than or equal to `), where h = ` means h ≤ ` and h ≥ `.

This problem includes a wide range of classically fundamental problems such as the mini-
mum spanning tree problem (V, 1, 1, +∞, c), the steiner tree problem (V, {0, 1}, 0, +∞, c), the
steiner network problem without edge capacity constraints (V, r, 0, +∞, c), the traveling sales-
man problem (V, {1, 2}, 2, 2, c) and so on. Each of these problems is theoretically important
and has been studied extensively from the view points of computational complexity and poly-
hedral structure. The first problem admits a polynomial time algorithm for any cost function
c, but the last three are all NP-hard. In particular, the traveling salesman problem is inap-
proximable within a constant factor unless P = NP , and is shown to be approximable within
a factor of 1.5 if c is metric by N. Christofides [1]. K. Jain [7] proved that the steiner net-
work problem (V, r, 0, +∞, c) is approximable within factor of 2 based on a primal-dual method.
G. Robins and A. Zelikovsky [10] gave a 1.55-approximation algorithm for the steiner tree
problem (V, {0, 1}, 0, +∞, c). S. P. Fekete et al. [2] proved that problem (V, 1, 0, b ≥ 2, c) is
approximable within a factor of 2 − minv∈V,d(v;T)>2

b(v)−2
d(v;T)−2 , where T is a minimum spanning

tree. Although the problem (V, r, a, b, c) is a natural framework as a generalization of the above
problems, a few results on this problem setting have been obtained so far. A. Frank [3] solved
the problem of augmenting a given graph to an r-edge-connected graph by adding a smallest
number of new edges under lower and upper bounds on degrees. This implies that problem
(V, r, a, b, 1) admits a polynomial time algorithm. Moreover, an extended result by A. Frank [3]
suggests that (V, r, a, b, c) is polynomially solvable in a special case where cost c(e) for each edge
e = uv is given by w(u) + w(v) for some vertex weight w : V → Q+.

In this paper, we consider problem (V, r, a, b, c) with a metric cost c, and show several con-
ditions on functions r, a, b and c for which the problem admits an approximation algorithm. To
design most algorithms proposed in this paper, we use edge-splitting and detachment, which
are graph transformations that split vertices while preserving edge-connectivity. Use of such
operations to design a minimum cost graph is new. Only edge-splitting has been used to solve
the edge-connectivity augmentation problem. However, the way of using edge-splitting in this
paper is different from those methods in the edge-connectivity augmentation.

The paper is organized as follows. Section 2 derives new results on edge-splitting and de-
tachment, which will be the basis of our algorithms in this paper. It also considers the relation
between that result and parsimonious property of the steiner network problem. Section 3 deals
with the case of b=+∞, i.e., each degree is bounded only from below, and Section 4 considers
the case of a=0, i.e., each degree is bounded only from above. Section 5 shows an approximation
algorithm for problem (V, r≥2, a, `, c). Section 6 considers the case of a=b, i.e., each degree is
specified, and gives an approximation algorithm for problem (V, 1≤ r≤ 2, a, a, c). This section
also shows an approximation algorithm for constructing a minimum cost strongly connected
spanning digraph whose in-degrees and out-degrees are specified.

2 Edge-splitting and detachment

Edge-splitting is an operation to replace edges e = us and f = vs by a new edge uv. The resulting
graph by splitting a pair {e, f} of edges in a graph G is denoted by Gef . Note that splitting a
pair {e = us, f = vs} of edges decreases only the degree of vertex s while keeping degrees of the
other vertices. Also in a metric cost c :

(
V
2

)
→ Q+, splitting a pair {e = us, f = vs} of edges does

not increase the cost of the graph since c(us) + c(vs) ≥ c(uv) holds by the triangle inequality.
However, this may decrease the local-edge-connectivity between some pairs of vertices. Mader
[4, 8] proved that, for a designated vertex s ∈ V , there always exists a pair of edges such that

2

the local-edge-connectivity between every pair of vertices in V −{s} is preserved (except for the
case where d(s) = 3 or a cut-edge is incident to s).

Theorem 1 (Mader) Let G = (V, E) be a connected graph and s ∈ V be a vertex with d(s) 6= 3.
If no cut-edge is incident to s, then there is at least one pair {e, f} of edges incident to s such
that λ(x, y; Gef) = λ(x, y; G) for each x, y ∈ V − s.

Edge-splitting has been used as a useful technique for solving many connectivity problem.
In particular, it plays a key role to solve the edge-connectivity augmentation problem (see [3]).
However, the above result on edge-splitting has not been used to design a minimum cost graph
even if a cost function is metric. Moreover, in Mader’s theorem, the local-edge-connectivity
between the designated vertex s and other vertices is not taken into account. Our algorithms
discussed in the following sections utilize edge-splitting in order to make solutions satisfy degree
constraints. For this, we need to preserve the local-edge-connectivity between s and other
vertices as well. We now show the following slightly stronger result which also preserves the
local-edge-connectivity between s and the other vertices (up to d(s) − 2). The proof is given in
Appendix A .

Theorem 2 Let G = (V,E) be a connected graph and s ∈ V be a vertex with d(s) 6= 3. Moreover
let

r(x, y) =

{
λ(x, y; G) for x, y ∈ V − s,
min{d(s) − 2, λ(s, y; G)} for x = s and y ∈ V − s.

If no cut-edge is incident to s, then there is at least a pair {e, f} of edges incident to s such
that λ(x, y; Gef) = r(x, y) for each x, y ∈ V , where edges e = us and f = vs can be chosen so
that u 6= v unless s is adjacent to only one vertex. No new cut-edge will be created after splitting
{e, f}.

This theorem has a close relationship to the parsimonious property of the steiner network
problem, which tells that a LP relaxation of the steiner network problem

minimize
∑

e∈(V
2)

c(e)x(e)

subject to
∑

e∈δ(X) ≥ maxu∈X,v∈V −X r(u, v) for each X ⊂ V , X 6= V ,

x(e) ∈ R+ for each e ∈
(
V
2

)
,

is equivalent to

minimize
∑

e∈(V
2)

c(e)x(e)

subject to
∑

e∈δ(X) ≥ maxu∈X,v∈V −X r(u, v) for each X ⊂ V , X 6= V ,∑
e∈δ({v}) x(e) = maxu∈V −v r(u, v) for each v ∈ V ,

x(e) ∈ R+ for each e ∈
(
V
2

)
,

where δ(X) denotes a set of edges whose one end vertex is in X and the other is in V − X. In
fact, M. X. Goemans and D. J. Bertsimas [5] proved this property by showing that every eulerian
graph admits a pair {e, f} of edges incident to s such that Gef is r-edge-connected, which is a
weaker of Theorem 2. From Theorem 2, we can derive an integer pragramming version of the
parsimonious property for the steiner network problem.

Corollary 1 If a cost function c :
(
V
2

)
→ Q+ is metric, the steiner network problem (V, r, 0, +∞, c)

has an optimal solution such that the degree of each vertex v is maxu∈V −v r(u, v) or maxu∈V −v r(u, v)+
1.

3

Proof: Let G be an optimal solution for (V, r, 0, +∞, c), and suppose d(v; G) > maxu∈V −v r(u, v)+
1 for a vertex v ∈ V . From Theorem 2, we can obtain another r-edge connected graph G′ with
d(v;G′) = d(v; G) − 2 ≥ maxu∈V −v r′(u, v) by splitting an appropriate pair of edges incident to
v, and since c is metric, cost of G′ is at most that of G. Hence, by repeating this operation, we
can obtain another optimal solution such that the degree of each vertex v is maxu∈V −v r(u, v)
or maxu∈V −v r(u, v) + 1. ¤

Detachment is an extension of edge-splitting. For a vertex s in a graph G, a degree spec-
ification g(s) for s consists of a set Vs of new vertices and a function ρ : Vs → Z+ such that∑

s′∈Vs
ρ(s′) = d(s; G). Let E(s; G) be the set of edges incident to s. A g(s)-detachment G′ of

G at s is a graph obtained from G by replacing s with vertices in Vs changing the end vertex of
each edge us ∈ E(s; G) from s to a vertex s′ ∈ Vs so that d(s′; G′) = ρ(s′) holds for each s′ ∈ Vs.
In other words, G is regained from G′ by contracting Vs into a single vertex s.

Corollary 2 For a vertex s ∈ V with d(s;G) ≥ 4 which has no incident cut-edge in a connected
graph G = (V,E), and degree specification g(s) = (Vs = {s1, s2}, {ρ(s1) = d(s;G)−2, ρ(s2) = 2},
let

r(x, y) =





λ(x, y; G) if {x, y} ∩ {s1, s2} = ∅,
min{λ(s, z; G), ρ(si)} if {si} = {x, y} ∩ {s1, s2} and {z} = {x, y} − {s1, s2},
2 if {x, y} = {s1, s2}.

Then there is an r-edge-connected g(s)-detachment of G at s. Two edges incident to s2 in it are
not parallel unless s is adjacent to only one vertex in G

Proof: By Theorem 2, G has a splittable pair {e = us, f = vs}. That is, λ(x, y; Ge,f) ≥
λ(x, y;G) holds for all pairs x, y ∈ V − s, and λ(s, y; Ge,f) ≥ min{d(s) − 2, λ(s, y;G)} holds for
all y ∈ V − s. Let G′ be a graph obtained from Ge,f by regarding s as s1 and by replacing
edge uv with two edges us2 and vs2 introducing a new vertex s2. Observe that λ(x, y; G′) =
λ(x, y; Ge,f) ≥ r(x, y) for vertices x, y with {x, y}∩{s2} = ∅. We first show that λ(s1, s2;G′) ≥ 2.
Assume λ(s1, s2; G′) ≤ 1; there is a minimal subset X with s2 ∈ X ⊆ (V − s) ∪ {s2} and
d(X; G′) ≤ 1. By the minimality, X induces a connected component. Suppose h is an edge
whose one end vertex is in X and the other is in V ∪ {s2} − (X ∪ {s}), i.e., d(X; G′) = 1. Then
removing h disconnects X from the other vertices in G′ but does not do so in G. This implies
h is a new cut-edge, a contradiction. If d(X; G′) = 0, then λ(s1, v; G′) = λ(s1, v; Ge,f) = 0
for each v ∈ X − s2, which contradicts the splittability of {e, f}. Hence λ(s1, s2; G′) ≥ 2
holds. Finally we show that λ(s2, y; G′) ≥ r(s2, y) = min{λ(s, y;G), ρ(s2) = 2} holds. Assume
λ(s2, y;G′) < min{λ(s, y; G), ρ(s2) = 2}. Then λ(s2, y; G′) ≤ 1. Then by λ(s1, s2; G′) ≥ 2, there
is a subset Y ∈ V − s with y ∈ Y and d(Y ; G′) = λ(s2, y; G′) ≤ 1. This also implies that
λ(s1, y;G′) ≤ d(Y ;G′) = λ(s2, y; G′) < min{λ(s, y; G), ρ(s2) = 2}, which is a contradiction to
the splittability of {e, f}. Therefore G′ is a desired g(s)-detachment of G. ¤

The next corollary is immediate from Corollary 2.

Corollary 3 For a vertex s ∈ V which has no incident cut-edge in a connected graph G =
(V,E), and a degree specification g(s) = (Vs = {s1, . . . , sp}, ρ) with ρ(s1) = d(s; G)−2(p−1) ≥ 2
and ρ(si) = 2, si ∈ Vs − s1, let

r(x, y) =





λ(x, y; G) if {x, y} ∩ Vs = ∅,
min{λ(s, z; G), ρ(si)} if {si} = {x, y} ∩ Vs and {z} = {x, y} − Vs,

2 if {x, y} ⊆ Vs.

Then there is an r-edge-connected g(s)-detachment of G at s.

4

We now introduce a global detachment of a graph G = (V, E). Let a degree specification g
on V consist of a family {Vv | v ∈ V } and a function ρ : ∪v∈V Vv → Z+ such that

∑
v′∈Vv

ρ(v′) =
d(v;G) for all v ∈ V . A g-detachment G′ of G is a graph obtained from G by replacing each
v ∈ V with vertices in Vv changing the end vertex of each edge uv ∈ E(v; G) from v to a
vertex v′ ∈ Vv so that d(v′; G′) = ρ(v′) holds for each v′ ∈ Vv. Hence G is obtained from G′ by
contracting each Vv into a single vertex v.

Corollary 4 For a graph G = (V, E), let g be a degree specification such that ρ(v1) = d(v; G)−
2(pv − 1) ≥ 2 and ρ(vi) = 2 (i = 2, . . . , pv) hold for Vv = {v1, . . . , vpv}, where |Vv| = 1 if
d(v;G) ≤ 3 or a cut-edge is incident to v. Let

r(x, y) =

{
min{λ(u, v; G), ρ(x), ρ(y)} if x ∈ Vu, y ∈ Vv with u 6= v,

2 otherwise.

Then there is an r-edge-connected g-detachment of G. Furthermore, if |V | ≥ 3 and ρ(v1) is
uniform for all v ∈ V , then two edges incident to vi ∈ Vv −{v1} are not parallel for each v ∈ V .

Proof: In a g(s)-detachment of G, there is no new cut-edge as stated in Theorem 2. Hence
we can adopt Corollary 3 consecutively for each vertex in G and this gives an r-edge-connected
g-detachment of G as required.

Then, let us consider the case where |V | ≥ 3 and ρ(v1) = ρ for all v ∈ V . Let s ∈ V be a
vertex with d(s; G) > ρ. If s is adjacent to only one vertex (say w), then w has another neighbor
in V − s. Hence d(w; G) > d(s; G) > ρ. This implies that if G has a vertex with degree of
more than ρ, G also has a vertex such that the number of its neighbors is at least 2. Hence by
repeating to separate such a vertex, we can obtain an r-edge-connected g-detachment of G ¤

3 Problem with lower capacity

In this section, we consider the problem (V, r, a, +∞, c). We remark that assuming that edge
cost c is metric does not lose the generality as in the steiner network problem, as observed in [5].
For a given cost function c which is not metric, we define a new edge cost c′(e) for each e ∈

(
V
2

)

to be the cost of a shortest path between u and v. Then c′ is metric, and for any feasible solution
E to the problem, we obtain another feasible solution E′ with c(E′) ≤ c′(E) by replacing each
edge in E by the edges in the corresponding shortest path. Hence we can reduce each instance
to an instance with a metric edge cost. However, we do not assume that c is metric in this
section because analysis of our algorithm does not require the triangle inequality.

We construct a feasible solution to this problem (V, r, a, +∞, c) in two phases. The first
phase finds a graph G1 = (V, E1) which satisfies only the connectivity requirement, i.e., solve
(V, r, 0, +∞, c). For an ` ∈ Z+ with a ≥ `, an approximate solution G1 to (V, r, `,+∞, c) also
suffices in the first phase. The second phase constructs a graph G2 = (V, E2) which satisfies
only the lower degree bound, i.e., solve (V, 0, a,+∞, c), which is the problem called the a-edge
cover problem and is known to be solved in a polynomial time [9]. Let G = (V, E1 ∪ E2) be a
solution to the original problem (V, r, a,+∞, c). The approximation factor of this algorithm is
the sum of the approximation factors from these two phases. Therefore we have the following
theorem.

Theorem 3 Suppose that there is an α-approximation algorithm for (V, r, 0,+∞, c). Then prob-
lem (V, r, a,+∞, c) is approximable within a factor of 1 + α. If there is an α′-approximation
algorithm for (V, r, `,+∞, c) with ` ∈ Z+, then problem (V, r, a,+∞, c) is approximable within a
factor of 1 + α′.

5

As mentioned in Section 1, (V, r, 0, +∞, c) is equivalent to the steiner network problem,
which is approximable within a factor of α = 2 [7]. Therefore (V, r, a,+∞, c) is approximable
within a factor of 3. For r = 1, (V, 1, 0, +∞, c) is equivalent to the steiner tree problem, a
subproblem of the steiner network problem, which is shown to be approximable within a factor
of α = 1.55 [10]. Hence (V, 1, a,+∞, c) is approximable within a factor of 2.55. Furthermore,
(V, 1, 1, +∞, c) is the minimum spanning tree problem, which can be solved in polynomial time.
Then (V, 1, a ≥ 1, +∞, c) is approximable within a factor of 2.

In the following, we investigate the polyhedral aspect of approximating (V, 1, a ≥ 1,+∞, c).
An LP relaxation of this problem is given as

c(LP) = minimize
∑

e∈(V
2)

c(e)x(e)

subject to x(δ({v})) ≥ a(v) for each v ∈ V ,
x(δ(P)) ≥ |P | − 1 for each partition P of V ,
x ∈ RE

+,

(1)

where a partition P denotes a set of disjoint nonempty subsets V1, . . . , Vm whose union is V ,
δ(P) = {e = uv ∈

(
V
2

)
| u ∈ Vi, v ∈ Vj , i 6= j}, and x(F) =

∑
e∈F x(e) for a set F of edges. Let

c(LP) denote the minimum cost of the above LP.

Theorem 4 Let T be a minimum spanning tree and C be a minimum cost a′-edge cover, where
a′(v) = max{0, a(v) − d(v; T)}, v ∈ V . Then c(T) + c(C) ≤ 2c(LP) if a ≥ 1.

Proof: First, we show that c(T) ≤ c(LP). A connector is defined as a set E of edges such that
a graph (V, E) is connected. The connector polytope, i.e., the convex hull of incidence vectors
of connectors is known [11] to be represented by

0 ≤ x(e) ≤ 1 for each e ∈
(
V
2

)
,

x(δ(P)) ≥ |P | − 1 for each partition P of V .
(2)

We note that inequality x(e) ≤ 1 is not necessary in a minimization problem with respect to

a nonnegative cost c ∈ Q(V
2)

+ . Hence the connector polytope contains the feasible region of (1),
which implies c(T) ≤ c(LP).

Next, we show that c(C) ≤ c(LP). Note that the incidence vector of C achieves the minimum

cost over all vectors x ∈ R(V
2)

+ such that

x(e) ≥ 0 for each e ∈
(
V
2

)
,

x(δ({v})) ≥ a′(v) for each v ∈ V ,

x(E[U]) + x(δ(U)) ≥
⌈

a′(U)
2

⌉
for each U ⊆ V such that a′(U) is odd,

(3)

where E[U] denotes a set of edges whose both end vertices are in U [11]. First and second
inequalities in (3) are implied by constraints in (1) apparently. It holds

2x(E[U]) + 2x(δ(U)) ≥ 2x(E[U]) + x(δ(U)) ≥ a(U),

from (1), which implies

x(E[U]) + x(δ(U)) ≥ a(U)
2

≥
⌈

a′(U)
2

⌉
.

Therefore the third inequality of (3) is also lead by constraints of (1). This means that (3) is a
relaxation of the feasible region of (1). Hence we have c(C) ≤ c(LP). ¤

6

Let us introduce two integer polyhedra. One is a convex hull of incidence vectors of connec-
tors, which is called a connector polytope while a connector is a set E of edges such that a graph
(V, E) is connected [11]. The other is a convex hull of incidence vectors of a-edge covers, which
is called a-edge cover polyhedron [11]. Theorem 4 implies the following useful corollary.

Corollary 5 Let T be a minimum spanning tree and a′(v) = max{0, a(v) − d(v; T)}, v ∈ V .
Minimizing over the Mincowski addition of connector polytope and a′-edge cover polyhedron gives
a 2-approximate solution for the problem (V, 1, a ≥ 1, +∞, c).

For a general r, we can also obtain an analogous result with Theorem 4, i.e., the cost of
a solution to (V, r, a, b, c) obtained by our algorithm can be bounded by 3c(LP) for an LP
relaxation.

4 Problem with upper capacity

In this section, we discuss the approximability of problem (V, r, 0, b, c). Notice that the problem
has no feasible solution if there is a vertex v ∈ V with b(v) < maxu∈V −v r(u, v). Therefore we
assume that b(v) ≥ maxu∈V −v r(u, v) for each v ∈ V . In addition, we can assume without loss
of generality that

∑
v∈V b(v) is even. In order to show this fact, let us assume that

∑
v∈V b(v)

is odd. For such b, any optimal solution G = (V, E) to (V, r, 0, b, c) has a vertex u∗ with
d(u∗; G) < b(u∗) since

∑
v∈V d(v; G) is even. Hence G is also optimal for (V, r, 0, b′, c), where

b′(u∗) = b(u∗) − 1 and b′(v) = b(v) for v ∈ V − u∗. Therefore, any approximation algorithm for
instances with even

∑
v∈V b(v) can be used to approximate those instances with odd

∑
v∈V b(v);

Apply the algorithm to at most |V | instances each of which is obtained by decreasing b(v) by 1
for a vertex v ∈ V , and then output the best of the obtained solutions.

Our algorithm for (V, r ≥ 2, 0, b, c) consists of the following three phases. The first phase finds
an approximate solution G1 to (V, r ≥ 2, 0, +∞, c), where G1 is an r-edge-connected graph. Let
V ′ = {v ∈ V | |b(v)−d(v; G1)| is odd}, where |V ′| is even since

∑
v∈V b(v) and

∑
v∈V d(v; G1) are

even. The second phase computes a minimum cost 1-factor M on |V ′|, (i.e., solves (V ′, 0, 1, 1, c)),
and adds M to G1 to obtain a graph G2. At this point, there may be some vertices v that violate
degree constraints (i.e., d(v; G2) > b(v)). Note that |b(v) − d(v; G2)| is even for all v ∈ V . The
third phase reduces the degree of each vertex v with d(v; G2) to at most b(v). This can be
done by computing a global g-detachment G of G2 for a degree specification g such that, for
each v ∈ V , Vv = {v1, . . . , vpv}, ρ(v1) = min{b(v), d(v; G2)}, and ρ(vi) = 2 (vi ∈ Vv − {v1}),
where |Vv| = 1 if d(v; G2) ≤ b(v). Note that G2 has no cut-edge since it is an r-edge-connected
graph with r ≥ 2. By Corollary 4, we have a g-detachment G of G2 which preserves the r-edge-
connectivity. By neglecting all vertices vi ∈ Vv − {v1} (v ∈ V) (i.e., replacing edges uvi, viu

′

with uu′), we obtain an r-edge-connected graph G′ on V satisfying the degree constraint. The
last process may create self-loops, which will be simply eliminated whenever created. Although
this may further reduce the degree of a vertex v with d(v; G2) ≤ b(v), the resulting graph G′

remains feasible since a = 0.

Theorem 5 Suppose that there is an α-approximation algorithm for (V, r ≥ 2, 0,+∞, c). Prob-
lem (V, r ≥ 2, 0, b, c) is approximable within a factor of α + 1/ bk/2c for k = minu,v∈V r(u, v).

Proof: It suffices to show that M is at most 1/K times the optimal cost, where K = bk/2c. Let
G∗ be an optimal solution, which is k-edge-connected. It is known that any k-edge-connected
graph G∗ contains K edge-disjoint spanning trees {T1, . . . , TK} [6]. Let j = arg min1≤i≤K c(Ti).
Then c(Tj) ≤ c(G∗)/K. Observe that a spanning tree Tj has |V ′|/2 edge-disjoint paths whose

7

end vertices are V ′. By shortcutting intermediate vertices in the paths, we can obtain a 1-factor
on V ′ whose cost is at most c(Tj) ≤ c(G∗)/K, as required. ¤

Since (V, r, 0, +∞, c) is approximable within factor of α = 2 [7], (V, r ≥ 2, 0, b, c) is approx-
imable within a factor of 2 + 1/ bk/2c.

5 Problem with lower and upper capacities

We now consider the problem (V, r ≥ 2, a, b, c) with lower and upper capacities. In general, a
detachment from a loop-less graph may give a self-loop. Hence our algorithm in the previous
section cannot be applied to this general case. In this section, we show that the problem
(V, r ≥ 2, a, b, c) is approximable if an upper bound is uniform, i.e., b(v) = `, v ∈ V for some
` ∈ Z+.

Theorem 6 Suppose that there is an α-approximation algorithm for (V, r ≥ 2, a,+∞, c). If
k = minu,v∈V r(u, v) ≥ 2 and b(v) = `, v ∈ V for an ` ∈ Z+, then (V, r ≥ 2, a, b = `, c) is
approximable within a factor of α + 1/ bk/2c.

Proof: Let G = (V, E) be an approximate solution of (V, r, a,+∞, c) and V ′ = {v ∈ V |
a(v) = ` and |d(v; G) − a(v)| is odd}. If |V ′| is odd, let |V ′| be even by adding a vertex u with
a(u) < ` to V ′. Such vertex u exists by the following reason; Suppose a(v) = b(v) = ` for all
v ∈ V . If ` is even, then V ′ = {v ∈ V | d(v) is odd}, which leads to the contradiction that∑

v∈V d(v) is odd. If ` is odd, |V | must be even since otherwise problem is infeasible. Because
V ′ = {v ∈ V | d(v) is even} and |V ′| is odd, the size of V − V ′ = {v ∈ V | d(v) is odd} is
also odd, which leads to the above contradiction again. Hence we can let |V ′| be even. Then,
compute a minimum cost 1-factor on V ′ and let it be M .

Let G′ = (V,E ∪ M). Since λ(u, v; G′) ≥ r(u, v) ≥ 2 for u, v ∈ V , there is no cut-edge in
G′. Hence we can obtain an r′-edge-connected g-detachment of G′ by Corollary 4, where g(v) =
{Vv = {v1, . . . , vpv}, {ρ(v1) = min{d(v; G′), `}, ρ(v2) = 2, . . . , ρ(vpv) = 2}}, pv = (d(v; G′) − `)/2
if d(v; G′) > ` and 1 otherwise, r′(x, y) = r(u, v) for x ∈ Vu, y ∈ Vv, u 6= v and r′(x, y) = 2
otherwise while two edges incident to vi (i ≥ 2) are not parallel. Then splitting two edges
incident to vi (i ≥ 2) does not generate any self-loops. Therefore we can obtain a feasible
solution for (V, r, a, b, c), whose cost is at most c(E) and c(M).

We can see that c(E) is at most α times the optimal cost of (V, r, a, b, c) because the optimal
solutions of (V, r, a, b, c) is feasible for (V, r, a, +∞, c). It also holds that c(M) is at most 1/ bk/2c
times the optimal cost as stated in Theorem 5. ¤

From the 3-approximability of (V, r, a,+∞, c) stated in Section 3, (V, r ≥ 2, a, b = `, c) is
approximable within a factor of 3 + 1/ bk/2c.

6 Problem with degree specification

In this section, we deal with the case where the degree of each vertex v ∈ V is prescribed, i.e.,
a(v) = b(v) for all v ∈ V , to which we refer by (V, r, a, a, c). In the following, we first prove that
(V, 1 ≤ r ≤ 2, a, a, c) is approximable, and then show that the argument can be applied to the
problem of finding a strongly connected spanning digraph under degree specification. We may
denote (V, 1 ≤ r ≤ 2, a, a, c) by (V, {1, 2}, a, a, c). Notice that (V, {1, 2}, 2, 2, c) is equivalent to
the traveling salesman problem. First, we consider the feasibility of (V, 1, a, a, c).

Theorem 7 Problem (V, 1, a, a, c) is feasible if and only if A =
∑

v∈V a(v) is even, A ≥ 2(|V |−
1), and a(v) ≤ A/2 for each v ∈ V .

8

Proof: Necessity is trivial. We show the sufficiency. When V = {v1, v2} (i.e., |V | = 2), theorem
apparently holds because the conditions are equivalent to a(v1) = a(v2). Therefore let us suppose
|V | ≥ 3. In addition, we assume a(v) ≥ 1 for each v ∈ V . If A > 2(|V |−1), then prepare an edge
zw and let a(z) := a(z)− 1 and a(w) := a(w)− 1 for a vertex z = arg maxv∈V a(v) and a vertex
w(6= z) with a(w) ≥ 2 (such a w exists since

∑
v∈V −z a(v) = A−a(z) ≥ A−A/2 = A/2 > |V |−1).

Obviously A remains even. We show that a(v) ≤ A/2 still holds for each v ∈ V after the above
operation. For v ∈ {z, w}, the inequality holds because its both sides are decreased by 1. In
order to prove the other case, let us suppose indirectly that there is a vertex v ∈ V −{z, w} with
a(v) > A/2 after the operation. It must hold a(v) > (A − 2)/2 for the A before the operation.
Then we would have 2 ≤ a(w) ≤ A − (a(z) + a(v)) ≤ A − 2a(v) ≤ 1, a contradiction.

Hence we can assume without loss of generality that A = 2(|V | − 1). From |V | ≥ 3,
A = 2(|V | − 1) > |V | holds, indicating that there is a vertex w ∈ V with a(w) ≥ 2. Moreover,
from A = 2(|V | − 1) < 2|V |, there is a vertex z ∈ V with a(z) = 1. Then prepare an edge wz,
set a(w) := a(w) − 1, and remove z from V . Also after this, all assumptions hold. Hence it is
possible to obtain a connected multigraph by repeating this operation until |V | = 2 holds. ¤

In the following, we propose an algorithm for (V, {1, 2}, a ≥ 2, a, c). We suppose that∑
v∈V a(v) is even, and a(v) ≤ 1

2

∑
u∈V a(u) for each v ∈ V , which are necessary for the existence

of a feasible solution as explained in Theorem 7.
Our algorithm for (V, {1, 2}, a ≥ 2, a, c) consists of the following two phases. The first phase

constructs a minimum cost a-factor F without any self-loops and a hamiltonian cycle H whose
cost is at most 2 times the minimum cost of a minimum spanning tree while a-factor denotes
a graph in which the degree of each vertex v is exactly a(v). We know that F exists from
Theorem 7, and that F and H can be obtained in a polynomial time (Theorem 7 indicates
the connectivity of F , but we do not use it). Then, construct graph G = (V, F ∪ H), where
d(v;G) = a(v) + 2 holds for each v ∈ V . The second phase decreases the degree of each vertex
v by 2 by splitting a pair of edges incident to v without creating self-loops. Since c is assumed
to be metric, this phase does not increase the cost of the graph. The remaining task is to show
that such a sequence of edge-splittings exists.

Lemma 1 Let F be an a-factor on V and H be a hamiltonian cycle on V . It is possible to
obtain a 2-edge-connected loopless a-factor whose cost is at most c(F) + c(H).

Proof: Let G = (V, F ∪H). We call a vertex s with d(s; G) = a(s)+2 an excess vertex. Initially
all vertices in G are excess vertices. Before finding a sequence of edge-splitting, we remove an
arbitrary cycle C ⊆ F from F ; such C, which is possibly a pair of multiple edges, exists since
a ≥ 2. (Removing C can be regarded as a series of edge-splittings which ends up by removing
a self-loop). Hence we know that the number of vertices which are not excess vertices after this
preprocessing is at least two. We call such a vertex initial non-excess vertex. In the next, we
repeat choosing an excess vertex s in the current graph and splitting a pair of edges incident
to s until d(v; G) = a(v) holds for every vertex v ∈ V . The key point of our algorithm is to
maintain an edge set H as a Hamiltonian cycle that passes through all excess vertices (possibly
together with some non-excess vertices). For this, after splitting a pair of edges incident to an
excess vertex, we update two disjoint edge sets H and F so that the following four conditions
hold during the sequence of splitting.

(1) G has no self-loops.

(2) H forms a hamiltonian cycle on the set VH of vertices in H.

(3) VH contains all excess vertices in G and all initial non-excess vertices.

9

F

H

H

H

t

w
s s

w

H
FF

H

u
F

v

F F

F

H
y

H

H
s

x

Operation 1 Operation 2 Operation 3

F H

Figure 1: Three operations to split on s (undirected version)

(4) The set F ′ ⊆ F of edges incident to a non-excess vertex in V − VH has the following
properties: the graph G′ = (V, F ′) has no cut-edge or cycle of length > 2, and each of the
components in G′ contains exactly one vertex in VH .

First, let us explain how to split edges incident to an excess vertex, inductively proving
that the above conditions are maintained. Let N(s; E) denote the set of vertices adjacent to
a vertex s by edges in an edge set E . Suppose that conditions (1)-(4) hold for the current
graph G = (V, F ∪H) (these conditions trivially hold for the initial graph G = (V, F ∪H) with
VH = V and F ′ = ∅). We then choose an arbitrary excess vertex s ∈ VH in the current graph
G = (V, F ∪ H). Note that |VH | ≥ 3 by (3) and |N(s; H)| ≥ 2 by (2). Moreover s also has at
least two incident edges in F , since d(s; G) = a(s) + 2 ≥ 4. We here distinguish three cases.

Case-1. |N(s; F −F ′)| ≥ 2, i.e., there are two edges us, vs ∈ F −F ′ with u 6= v and u, v ∈ VH :
We split such a pair {us, vs} into a new edge uv, generating no self-loop, and classify the new
edge uv into F , without changing H and F ′ (see Operation 1 in Figure 1). Hence conditions
(1)-(4) still hold after the operation.

Case-2. |N(s; F −F ′)| = 1 and there are at least two parallel edges between s and the vertex
{t} = N(s; F − F ′): Since |VH | ≥ 3, |N(s; H)| = 2. Let {x,w} = N(s; H). We split the pair
{xs,ws} of edges in H into a new edge wx, generating no self-loop, and classify the new edge
wx into H (see Operation 2 in Figure 1). We can easily see that conditions (1)-(3) also hold
after this operation. Hence let us see that condition (4) also holds. Before the splitting, s and
t belong to different components G′

s and G′
t in the graph G′ = (V, F ′). After the splitting, s

belongs to V − VH and all parallel edges ts now belong to F ′, implying that components G′
s

and G′
t are merged by these parallel into one component, in which t is the only vertex in VH .

From this construction, we see that the new component satisfies the properties in (4). Hence
condition (4) also holds after the splitting, as required.

Case-3. Neither Case 1 nor 2 holds: Then the number of edges incident to s in F − F ′ is
at most 1. Since d(s;G) = 2 + a(s) ≥ 4, it must be |N(s; F ′)| ≥ 1. Let y ∈ N(s; F ′) (i.e.,
y ∈ V − VH). Note that there are at least two parallel edges between s and y from condition
(4). Let w ∈ N(s; H) be a vertex adjacent to s. Then we split edges sy ∈ F and ws ∈ H
into a new edge yw without creating a self-loop (see Operation 3 in Figure 1). We classify the
new edge yw and an edge parallel to ys into H so that H remains to form a hamiltonian cycle
containing all remaining excess vertices and the initial non-excess vertices, where the new VH

includes y after the operation. Hence condition (2) still holds. In the graph G′, the component

10

which contained s is divided into two components such that one of which contains s and the
other contains y because parallel edges sy move from F ′ to F −F ′ after the splitting. It is easy
to see that both of new components satisfy the condition stated in (4). Hence condition (4) still
holds. Conditions (1) and (3) trivially hold.

Therefore we can split a pair of edges incident to each excess vertex while maintaining the
above four conditions. Condition (1) implies the resulting graph has no self-loops. We can see
that it is 2-edge-connected from condition (2) and (4). ¤

We can derive the following theorem immediately from Lemma 1.

Theorem 8 Problem (V, {1, 2}, a, a, c) is approximable within a factor of 3.

Proof: It is easy to see that c(F) is at most the optimal cost. Since c(H) is at most two times
the cost of the minimum spanning tree and an optimal solutions contains a spanning tree as a
subgraph, c(H) is at most two time the optimal cost. Since the cost of the obtained solution is
at most c(F) + c(H), the approximation factor of the solution is at most 3 as required. ¤

The above algorithm indicates a necessary and sufficient condition for the feasibility of
(V, 2, a, a, c).

Corollary 6 There is a 2-edge-connected graph G = (V, E) such that d(v; G) = a(v) for each
v ∈ V if and only if

∑
v∈V a(v) is even and 2 ≤ a(v) ≤ 1

2

∑
u∈V a(u) for each v ∈ V .

If a(v) is even for all v ∈ V , then we can obtain a hamiltonian cycle whose cost is at most
1.5 times the optimal cost. Then we can approximate the problem within a better factor.

Theorem 9 If a(v) is even for all v ∈ V , then problem (V, {1, 2}, a, a, c) is approximable within
a factor of 2.5.

Proof: There is a 1.5-approximation algorithm to obtain a minimum cost hamiltonian cycle [1].
Hence it suffices to show that the minimum cost of hamiltonian cycles is at most the optimal
cost of (V, {1, 2}, a, a, c). Let G be an optimal solution of (V, {1, 2}, a, a, c). Since G is connected
and the degree of each vertex is even in G, it has an euler tour in it. If degree of a vertex is more
than two in G, then split pairs of edges incident to the vertex while keeping 2-edge connectivity
so that the degree is reduced to 2. Then we have obtained a hamiltonian cycle whose cost is at
most the cost of G. This indicates that the cost of G is at least the minimum cost of hamiltonian
cycles, as required. ¤

Before closing this section, we show that the above algorithm can be modified to approximate
a digraph version of the problem. We denote the in-degree and the out-degree of a vertex v in a
digraph G by din(v; G) and dout(v; G), respectively. Given a set V of vertices, a symmetry metric
edge cost c :

(
V
2

)
→ Q+, an in-degree specification ain : V → Z+ and an out-degree specification

aout : V → Z+, the problem asks to find a minimum cost strongly connected spanning graph
G = (V, A) which has in-degree din(v; G) = ain(v), out-degree dout(v; G) = aout(v) for each
v ∈ V , and no self-loop.

Theorem 10 The problem of finding a minimum cost strongly connected spanning digraph with
in-degree and out-degree specifications on a symmetric metric cost is approximable within a factor
of 3.

11

Proof: We can assume that if ain ≥ 1 and aout ≥ 1 (otherwise the instance is infeasible). The
first phase computes a minimum cost loopless digraph G = (V,A) with din(v; G) = ain(v) and
dout(v;G) = aout(v) for all v ∈ V . This can be done by reducing to the minimum cost bipartite
matching problem [11]. Moreover compute a directed hamiltonian cycle H whose cost is at most
2 times the optimal cost.

The second phase reduces the in-degree and the out-degree of each vertex by 1. This can
be done in a similar way as in Lemma 1. We describe how to reduce the in-degrees and the
out-degrees of each vertex by 1 while keeping the strong connectivity, which is mentioned in the
proof of Theorem 10. We call a vertex v ∈ V an excess vertex (resp., a non-excess vertex) if
din(s;G) = ain(s)+ 1 and din(s; G) = aout(s)+ 1 (resp., din(s; G) = ain(s) or din(s; G) = aout(s))
in this problem. In the second phase, we first remove an arbitrary directed cycle C ⊆ A from
A. From the assumption that ain ≥ 1 and aout ≥ 1, this generates at least two initial non-excess
vertices. After this preprocessing, we repeat choosing an excess vertex s in the current graph
and splitting a pair of arcs entering and leaving s until there is no excess vertex. Again the key
point of our algorithm is to maintain an arc set H as a hamiltonian cycle that passes through
all excess vertices (possibly together with some non-excess vertices). For this, after splitting a
pair of arcs incident to an excess vertex, we update two disjoint arc sets H and A so that the
following four conditions hold during the sequence of splitting.

(1) G has no self-loops.

(2) H forms a hamiltonian cycle on the set VH of vertices in H.

(3) VH contains all excess vertices in G and all initial non-excess vertices.

(4) The set A′ ⊆ A of arcs incident to a non-excess vertex in V −VH has the following properties:
the graph G′ = (V, A′) contains no directed cycle of length > 2, and each of the undirected
components in G′ is a strong component and contains exactly one vertex in VH

First, let us explain how to split arcs incident to an excess vertex, inductively proving that
the above conditions are maintained. Let Nin(s; E) (resp., Nout(s; E)) denote the set of vertices
adjacent to a vertex s by arcs with the head (resp., tail) of s in an arc set E . Suppose that
conditions (1)-(4) hold for the current graph G = (V, A ∪ H) (these conditions trivially hold
for the initial graph G = (V,A ∪ H) with VH = V and A′ = ∅). We then choose an arbitrary
excess vertex s ∈ VH in the current graph G = (V,A ∪ H). Note that |Nin(s; H)| ≥ 1 and
|Nout(s; H)| ≥ 1 by (2), and |VH | ≥ 3 by (3). Moreover A contains at least an arc leaving s and
one entering s, since din(s; G) = ain(s)+1 ≥ 2 and dout(s; G) = aout(s)+1 ≥ 2. In what follows,
we distinguish three cases.

Case-1. Nin(s,A − A′) 6= Nout(s,A − A′), Nin(s,A − A′) 6= ∅ and Nout(s,A − A′) 6= ∅, i.e.,
there are arcs vs, su ∈ A − A′ with u 6= v: We split such a pair {vs, su} into vu, generating
no self-loop, and classify new arc vu into A, without changing H and A′ (see Operation 1 in
Figure 2). Hence conditions (1)-(4) still hold after the operation.

Case-2. Nin(s,A − A′) = Nout(s, A − A′) = {t}, i.e., there are arcs ts, st ∈ A, where t ∈ VH :
We split a set {xs, sw} of arcs in H and classify new arc xw into H (see Operation 2 in Figure 2).
Since |VH | ≥ 3, it holds new arc xw is not a self-loop, which implies (1). It is easy to check
that conditions (2) and (3) also hold. Moreover, the component containing s in G′ before the
splitting is connected to the component containing t by arcs ts and st, which are reclassified
into A′. Since s is reclassified into VA, the new component contains only one vertex t ∈ VH and
becomes a strong component, as stated in (4). Hence we can see that condition (4) also holds
after the splitting.

Case-3. Neither Case 1 nor 2 holds: It must hold either Nin(s,A′) ≥ 1 or Nout(s,A′) ≥ 1.
Let Nin(s,A′) ≥ 1 by symmetry and y ∈ Nin(s, A′). From (4), there are both of arcs ys, sy ∈ A′.

12

s s

x

u v

s

t

y

w

Operation 2 Operation 3Operation 1

w

H
H

H

H
H

H

H

A H

H
A

A

A
A

AA

A

Figure 2: Three operations to split s (directed version)

Then, we split a pair of ys and an arc sw in H. New arc yw and ys are reclassified into H
(see Operation 3 in Figure 2). After this, condition (2) holds because H remains to form a
hamiltonian cycle over VH containing y. The component containing s is separated into two
strong components such that one of which contains s and the other contains y because arcs sy
and ys move from A′ to A−A′ after the operation. It is easy to see that both of new components
satisfies the condition stated in (4). Hence condition (4) remains valid. Conditions (1) and (3)
trivially hold.

Therefore, we can split a pair of arcs leaving and entering each vertex while maintaining the
above four conditions, as required. ¤

7 Conclusion

We considered the problem (V, r, a, b, c) of finding a minimum cost undirected multigraph with
a connectivity requirement under degree bounds. This framework contains a number of funda-
mental and important problems. To develop a unified treatment of the framework, we in this
paper derived new results on edge-splitting and detachment, and showed several conditions on
functions r, a, b and c for which the above problem admits an approximation algorithm.

We still have some open problems. One is to find a constant-factor approximation algorithm
for (V, r, a, b, c) where b is not uniform. In this case, edge-splitting may generate a self-loop.
Hence we may have to consider a method to split edges without generating self-loops. In Sec-
tion 4, we considered to approximate (V, r, 0, b, c) under the assumption that b ≥ 2. However, a
constant factor approximation for the case where b(v) can be 1 is still open.

Acknowledgement

This research was partially supported by the Scientific Grant-in-Aid from Ministry of Education,
Culture, Sports, Science and Technology of Japan.

References

[1] N. Christofides, Worst-case analysis of a new heuristics for the traveling salesman problem,
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon Univer-

13

sity, Pittsburgh, PA, 1976.

[2] S. P. Fekete, S. Khuller, M Klemmstein, B. Raghavachari, and N. Young, A network-flow
technique for finding low-weight bounded-degree spanning trees, Journal of Algorithms,
vol. 24, pp. 310–324, 1997.

[3] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal on
Discrete Mathematics, vol. 5, pp. 25–53, 1992.

[4] A. Frank, On a theorem of Mader, Discrete Mathematics, vol. 191, pp. 49–57, 1992.

[5] M. X. Goemans and D. J. Bertsimas, Survivable networks, linear programming relaxations
and the parsimonious property, Mathematical Programming, vol. 60, pp. 145–166, 1993.

[6] D. Gusfield, Connectivity and edge-disjoint spanning trees, Information Processing Letters,
vol. 16, pp. 87–89, 1983.

[7] K. Jain, A factor 2 approximation algorithm for the generalized steiner network problem,
Combinatorica, vol. 21, pp. 39–60, 2001.

[8] W. Mader, A reduction method for edge-connectivity in graphs, Annals of Discrete Math-
ematics, vol. 3, pp. 145–164, 1978.

[9] K. G. Murty and C. Perin, A 1-matching blossom-type algorithm for edge covering problems,
Networks, vol. 12, pp. 379–391, 1982.

[10] G. Robins and A. Zelikovsky, Improved steiner tree approximation in graphs, In Proceedings
of 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779, 2000.

[11] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

A Proof of Theorem 2

Our proof is based on a shorter proof of Theorem 1 by A. Frank [4]. In what follows, we suppose
that d(s; G) ≥ 4, which does not lose the generality because d(s; G) ∈ {1, 3} does not meet
the preconditions (d(s; G) = 1 indicates existence of a cut-edge) and s has one splittable pair
apparently if d(s; G) = 2. For a vertex set X ⊆ V , let d(X; G) (or d(X)) denotes the number of
edges whose one end vertex is in X and the other end vertex is in V −X in a graph G. Moreover,
let

R(X) = maxu∈X,v∈V −X r(u, v) and h(X) = d(X) − R(X).

Note that h(X) ≥ 0 for all nonempty subsets X ⊂ V . A vertex set X ⊆ V − s is called tight
if h(X) = 0, and dangerous if h(X) ≤ 1. A pair {su, sv} of edges is called to be splittable if
λ(x, y;Gsu,sv) ≥ r(x, y) for each x, y ∈ V . This is equivalent to that no dangerous set X contains
both u and v. For arbitrary X, Y ⊆ V , it is known that

d(X) + d(Y) = d(X ∩ Y) + d(X ∪ Y) + 2d(X,Y) (4)

and
d(X) + d(Y) = d(X − Y) + d(Y − X) + 2d̄(X,Y), (5)

hold, where d(X, Y) (resp., d̄(X, Y)) denotes the number of edges whose one end vertex is in
X − Y (resp., X ∩ Y) and the other end vertex is in Y −X (resp., V − (X ∪ Y)). Furthermore,
the following proposition is proven in [4].

14

Proposition 1 For arbitrary X, Y ⊆ V , at least one of the following inequalities holds:

R(X) + R(Y) ≤ R(X ∩ Y) + R(X ∪ Y), (6)

R(X) + R(Y) ≤ R(X − Y) + R(Y − X). (7)

From the above, we can also see the following fact.

Proposition 2 For arbitrary X, Y ⊆ V , at least one of the following inequalities holds:

h(X) + h(Y) ≥ h(X ∩ Y) + h(X ∪ Y) + 2d(X,Y), (8)

h(X) + h(Y) ≥ h(X − Y) + h(Y − X) + 2d̄(X, Y). (9)

By the following claim, we can assume without loss of generality that the all tight sets are
singletons.

Claim 1 For a tight set T , let G′ = G/T be the graph obtained from G by contracting T into
a single vertex. Moreover let e′ = u′s and f ′ = v′s be edges in G′ corresponding to e = us and
f = vs in G, respectively. Then a pair {e, f} is splittable in G if the corresponding pair {e′, f ′}
is splittable in G′.

Proof: For a subset Z of vertices of G for which either Z ⊆ V − T or T ⊆ Z ⊆ V , let Z ′

denote the subset of vertices of G′ corresponding to Z. For such a Z, clearly R(Z ′) ≥ R(Z) and
d(Z ′) = d(Z). Therefore if Z is dangerous in G, then Z ′ is dangerous in G′.

Suppose {e, f} is not splittable in G. We prove the claim by indicating that {e′, f ′} is not
splittable in G′. There is a dangerous subset X containing both u and v. If Z := X ∪ T
is dangerous in G, then we are done because Z ′ is dangerous in G′, implying that {e′, f ′} is
not be splittable in G′, either. Hence let us consider the case where Z is not dangerous, i.e.,
h(X ∪ T) ≥ 2. For such X and T , (8) cannot hold since otherwise we would have

0 + 1 ≥ h(T) + h(X) ≥ h(X ∩ T) + h(X ∪ T) ≥ 0 + 2.

Hence (9) must hold. In this case, we have

0 + 1 ≥ h(T) + h(X) ≥ h(T − X) + h(X − T) + 2d̄(X, T) ≥ 0 + 0 + 2d̄(X, T),

from which 2d̄(X, T) = 0 and h(X −T) ≤ 1 follow. By d̄(X, T) = 0, we have u, v ∈ W := X −T
while h(X−T) ≤ 1 means that W is dangerous in G. Then W ′ remains dangerous in G′ showing
that {e′, f ′} is not splittable in G′, as required. ¤

Claim 2 Suppose that every tight set consists of one element. Then

r(x, y) =

{
min{d(x), d(y)} for x, y ∈ V − s,

min{d(x), d(s) − 2} for x ∈ V − s and y = s.

Proof: Let x, y be two distinct vertices in V . Observe that λ(x, y) ≤ min{d(x), d(y)} and that
there is a subset X ⊆ V −s such that |{x, y}∩X| = 1 and λ(x, y) = d(X). If x, y ∈ V −s (or one
of x and y is s and λ(x, s) ≥ d(s)− 2), then r(x, y) = λ(x, y) = d(X) holds and X is a tight set,
which consists of a single vertex, implying that min{d(x), d(y)} = d(X) = r(x, y). Assume that
one of x and y (say y) is s and λ(x, s) > d(s)−2. In this case, r(x, s) = min{d(s)−2, λ(x, s)} =
min{d(s) − 2, d(x)} since d(s) − 2 < λ(x, s) ≤ d(x). ¤

Let S denote the set of neighbors of s and t ∈ S be a vertex of the minimum degree.

15

Claim 3 R(X − t) ≥ R(X) holds for every set X ⊆ V with t ∈ X and |S ∩ X| ≥ 2.

Proof: For any u ∈ S ∩ (X − t), d(u) ≥ d(t) holds by the choice of t. R(X) = r(v, z) for some
v ∈ X, z ∈ V − X. If v 6= t, then R(X − t) ≥ r(v, z) = R(X), as required. If v = t and z = s,
then by Claim 2 we have

R(X) = r(t, s) = min{d(t), d(s) − 2} ≤ min{d(u), d(s) − 2} = r(u, s) ≤ R(X − t).

If v = t and z 6= s, then by Claim 2 we have

R(X) = r(t, z) = min{d(t), d(z)} ≤ min{d(u), d(z)} = r(u, z) ≤ R(X − t),

as required. ¤
Assume that {st, su} is not splittable for every vertex u ∈ S − t (otherwise we are done).

Let L be a minimal family of dangerous set containing t so that ∪X∈LX ⊇ S holds. First, we
show that |L| = 2.

Claim 4 |L| 6= 1.

Proof: Let L = {X} and R(X) = r(u, v), where u ∈ X and v ∈ V − X. First assume v 6= s.
Then d(X,V − X − s) = d(V − X − s) ≥ λ(u, v) = r(u, v) = R(X). Since

d(X) = d(s) + d(X,V − X − s) ≥ 4 + d(X, V − X − s) ≥ 4 + R(X),

X is not dangerous, a contradiction. Next assume v = s. Then R(X) = r(u, s) ≤ d(s) − 2, and
hence d(X) ≥ d(s) ≥ R(X) + 2, a contradiction. ¤

Claim 5 For every two members X and Y of L, |X − Y | = |Y − X| = 1 and d̄(X, Y) = 1.

Proof: First we show that (9) holds for every two members X and Y of L. Assume that (8)
holds (otherwise (9) holds). By the minimality of L, h(X ∪ Y) ≥ 2. Therefore

1 + 1 ≥ h(X) + h(Y) ≥ h(X ∩ Y) + h(X ∪ Y) ≥ 0 + 2

and hence h(X∩Y) = 0 follows, that is, X∩Y is tight. Hence X∩Y = {t}. Since X−Y = X−t
and Y −X = Y −t, and by Claim 3, it holds R(X) ≤ R(X−Y) and R(Y) ≤ R(Y −X). Therefore,
by (5), h(X) + h(Y) ≥ h(X − Y) + h(Y − X) + 2d̄(X, Y), that is, (9) holds.

Then we have

1 + 1 ≥ h(X) + h(Y) ≥ h(X − Y) + h(Y − X) + 2d̄(X,Y) ≥ 0 + 0 + 2.

Hence d̄(X, Y) = 1 and h(X − Y) = h(Y − X) = 0. Since both X − Y and Y − X are tight, it
holds |X − Y | = |Y − X| = 1 from the assumption. ¤

Claim 6 |L| ≤ 2.

Proof: Assume |L| ≥ 3, and choose three members X1, X2, X3 of L. Let M = X1 ∩ X2 ∩ X3.
From Claim 5 and from the minimality of L, it follows that Xi = M ∪ {xi} for 1 ≤ i ≤ 3 and
d̄(Xi, Xj) = 1 (1 ≤ i < j ≤ 3). This implies that the only edge leaving M is st. That is to say,
st is a cut edge, contradicting the assumption. ¤

16

Claim 7 If |L| = 2, then there is a splittable pair {e = us, f = vs} of edges incident to s such
that u 6= v.

Proof: For L = {X, Y }, let X − Y = {x} and Y − X = {y}. Because pair {xs, ys} of edges is
not splittable, there is a dangerous set Z for which x, y ∈ Z, where t 6∈ Z holds by the minimality
of L. Let M = (X ∩Y)−Z. Note that R(Z)+1 ≥ d(Z) ≥ d(s)+d(M)−2 because d(s,M) = 1
and d(M, V − (X ∪ Y ∪ {s})) = 0 by Claim 5.

Let us consider the case where R(Z) = r(s, v) with v ∈ Z. Then d(s) − 2 ≥ R(Z). Hence it
holds

d(s) − 1 ≥ R(Z) + 1 ≥ d(Z) ≥ d(s) + d(M) − 2.

Therefore 1 ≥ d(M), which implies that edge st is a cut edge incident to s, a contradiction.
Next, suppose that R(Z) = r(u, v) with u ∈ M and v ∈ Z. Then d(M) ≥ R(Z) and hence

d(M) + 1 ≥ R(Z) + 1 ≥ d(Z) ≥ d(s) + d(M) − 2.

Therefore we have 3 ≥ d(s), which contradicts the assumption that d(s) ≥ 4.
In the end, suppose that R(Z) = r(u, v) with u ∈ Z and v ∈ V − (Z ∪ M ∪ {s}). Then

d(Z) = d(s) − 1 + d(Z, V − (Z ∪ M ∪ {s})) ≥ 3 + d(Z, V − (Z ∪ M ∪ {s})).

Since it holds that d(Z, V − (Z ∪ M + s)) ≥ r(u, v) = R(Z), we have d(Z) ≥ R(Z) + 3, which
contradicts the fact that Z is dangerous. ¤

From Claims 4, 7 and 6, we have proven that there is at least one splittable pair. In addition,
edges in such a pair are not parallel if |S| ≥ 2.

Finally we show that edge-splitting by a splittable pair does not generate a new cut-edge.
For a splittable pair {e = us, f = vs} of edges in G, assume that Ge,f contains a new cut-edge
e′ = zw. If e′ = zw is an existing edge in G, then 1 = λ(z, w; λ(z, w; Ge,f) ≥ r(z, w), implying
that λ(z, w; G) = 1 by the definition of r(z, w), contradicting that zw was not a cut-edge in
G. Next assume that e′ = zw is a new edge in Ge,f , i.e., zw = uv. In this case, Ge,f − e′ is
not connected and has a component not containing s, implying that s and this component was
joined by a cut-edge, a contradiction to the assumption.

This completes the proof of Theorem 2. ¤

17

