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Abstract Multi-class classification is an important and on-going research

subject in machine learning. Current support vector methods for multi-class

classification implicitly assume that the parameters in the optimization prob-

lems to be known exactly. However, in practice, the parameters have per-

turbations since they are estimated from the training data which are usually

subject to measurement noise. In this paper, we propose linear and nonlin-

ear robust formulations for multi-class classification based on M-SVM method.

The preliminary numerical experiments confirm the robustness of the proposed

method.
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1 Introduction

Given L labeled examples known to come from K(> 2) classes

T = {(xp, θp)}L
p=1 ⊂ X × Y ,

where X ⊂ RN and Y = {Θ1, · · · , ΘK}, multi-class classification refers to the construction

of a discriminate function from the input space X onto the unordered set of classes Y .

Support vector machines (SVMs) serve as a useful and popular tool for classification.

Recent developments in the study on SVMs show that there are roughly two types of
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approaches to tackle multi-class classification problem. One is to construct and fuse sev-

eral binary classifiers, such as ‘one-against-all’ [7, 20], ‘one-against-one’ [12, 14], directed

acyclic graph SVM (DAGSVM) [17], ‘error-correcting output code (ECOC)’ [2, 9], K-

SVCR method [3] and ν-K-SVCR method [23] and so on. The other, called ‘all-together’,

is to consider all data in one optimization formulation [4, 5, 11, 20, 21, 22]. In this paper,

we focus on the second approach.

There are several all-together methods. The method independently proposed in [20]

and [21] is similar to ‘one-against-all’. It constructs K two-class discriminants where each

discriminant separates a single class from all the others. Hence there are K decision

functions but all are obtained by solving one optimization problem. In [4] a piecewise-

linear discriminant for the K-class classification is constructed by a single linear program.

The method called M-SVM [5] extends the method in [4] to generate a kernel based

nonlinear K-class discriminant by solving a convex quadratic program. Although the

original forms proposed in [20, 21] and [5] are different, it is pointed out in [11] that

they are not only equivalent to each other, but also equivalent to that in [11]. Based on

M-SVM, the linear programming formulations are proposed in a low dimensional feature

subspace [22].

In the above mentioned methods, the parameters in the optimization problems are

implicitly assumed to be known exactly. However, in practice, these parameters have

perturbations since they are estimated from the training data which are usually corrupted

by measurement noise. As pointed out in [10], the solutions to the optimization problems

are sensitive to parameter perturbations. Errors in the input space tend to get amplified

in the decision function, which often results in misclassification. So it will be useful to

explore formulations that can yield discriminants robust to such estimation errors. In

this paper we propose a robust formulation of M-SVM, which is represented as a second-

order cone program (SOCP). The second-order cone (SOC) in Rn (n ≥ 1), also called the

Lorentz cone, is the convex cone defined by

Kn =

{[
z0

z̄

]
: z0 ∈ R, z̄ ∈ Rn−1, ‖z̄‖ ≤ z0

}
,

where ‖·‖ denotes the Euclidean norm. The SOCP is a special class of convex optimization

problems involving SOC constraints, which can be efficiently solved by interior point

methods. The work related to SOCP can be seen, for example, in [1, 8, 13, 15] and the

references therein.
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The paper is organized as follows. We first propose a robust formulation for piecewise-

linear M-SVM in Section 2, and then construct a robust classifier based on the dual SOCP

formulation in Section 3. In Section 4, we extend the robust classifier to the piecewise-

nonlinear M-SVM case. Section 5 gives numerical results. The last section concludes the

paper.

2 Robust Piecewise-Linear M-SVM Formulation

For each i, let Ai be a set of examples in the N -dimensional real spaceRN with cardinality

li. Let Ai be an li×N matrix whose rows are the examples in Ai. The pth example in Ai

and the pth row of Ai are both denoted Ai
p. Let ei denote the vector of ones of dimension

li. For each i, let wi be a vector inRN and bi be a real number. The sets Ai, i = 1, · · · , K,

are called piecewise-linearly separable [5] if there exist wi and bi, i = 1, · · · , K, such that

Aiwi − biei > Aiwj − bjei, i, j = 1, · · · , K, i 6= j.

Piecewise-linear M-SVM can be formulated as follows [5]:

min
w, b, y

ν

(
1

2

K∑
i=1

i−1∑
j=1

‖wi −wj‖2 +
1

2

K∑
i=1

‖wi‖2

)
+ (1− ν)

K∑
i=1

K∑

j=1,j 6=i

(ei)T yij

s.t. Ai(wi −wj)− (bi − bj)ei + yij ≥ ei, (1)

yij ≥ 0, i, j = 1, · · · , K, i 6= j,

where ν ∈ (0, 1],

w =
[
(w1)T , (w2)T , · · · , (wK)T

]T ∈ RKN , (2)

b =
[
b1, b2, · · · , bK

]T ∈ RK , (3)

y =
[
(y12)T , · · · , (y1K)T , · · · , (yK1)T , · · · , (yK(K−1))T

]T ∈ RL(K−1), (4)

and L =
∑K

i=1 li. When ν = 1, (1) is the formulation for the piecewise-linearly separable

case. Otherwise, it is the formulation for the piecewise-linearly inseparable case. Figure

1 shows an example of a piecewise-linearly separable M-SVM for three classes in two

dimensions.

The training data Ai, i = 1, · · · , K, used in problem (1) are implicitly assumed to be

known exactly. However, in practice, training data are often corrupted by measurement

noises. Errors in the input space tend to get amplified in the decision function, which
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*

A1

A2

A3

(w1 −w2, b1 − b2)

(w1 −w3, b1 − b3) (w2 −w3, b2 − b3)

(w1 −w2)T x = (b1 − b2) + 1

(w1 −w2)T x = (b1 − b2)− 1
s y

Figure 1: Three classes separated by piecewise-linear M-SVM discriminants.

*
* * *

*

A1

A2

A3

Figure 2: An example of the effect of measurement noises.
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often results in misclassification. For example, suppose each example in Figure 1 is al-

lowed to move in a sphere (see Figure 2). The original discriminants cannot separate the

training data sets in the worst case. It will be useful to explore formulations which can

yield discriminants robust to such estimation errors. In the following, we discuss such a

formulation.

We assume

Âi
p = Ai

p + ρi
p(a

i
p)

T , (5)

where Âi
p is the actual value of the training data, and ρi

p(a
i
p)

T is the measurement noise

with ai
p ∈ RN , ‖ai

p‖ = 1 and ρi
p ≥ 0 being a given constant. Denote the unit sphere in

RN by U = {a ∈ RN : ‖a‖ = 1}. The robust version of formulation (1) can be stated as

follows:

min
w, b, y

ν

(
1

2

K∑
i=1

i−1∑
j=1

‖wi −wj‖2 +
1

2

K∑
i=1

‖wi‖2

)
+ (1− ν)

K∑
i=1

K∑

j=1,j 6=i

(ei)T yij

s.t. Ai
p(w

i −wj) + ρi
p(a

i
p)

T (wi −wj)− (bi − bj) + yij
p ≥ 1, ∀ai

p ∈ U , (6)

yij
p ≥ 0, p = 1, · · · , li, i, j = 1, · · · , K, i 6= j.

Since

min{ρi
p(a

i
p)

T (wi −wj) : ai
p ∈ U} = −ρi

p‖wi −wj‖,
problem (6) is equivalent to the following SOCP:

min
w, b, y

ν

(
1

2

K∑
i=1

i−1∑
j=1

‖wi −wj‖2 +
1

2

K∑
i=1

‖wi‖2

)
+ (1− ν)

K∑
i=1

K∑

j=1,j 6=i

(ei)T yij

s.t. Ai
p(w

i −wj)− ρi
p‖wi −wj‖ − (bi − bj) + yij

p ≥ 1, (7)

yij
p ≥ 0, p = 1, · · · , li, i, j = 1, · · · , K, i 6= j.

Denote

Q = (K + 1)IKN − Φ

with IKN being the identity matrix of order KN and

Φ =




IN IN · · · IN

IN IN · · · IN

...
...

. . .
...

IN IN · · · IN



∈ RKN×KN.
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Denote e = [(e1)T , · · · , (e1)T

︸ ︷︷ ︸
K−1

, · · · , (eK)T , · · · , (eK)T

︸ ︷︷ ︸
K−1

]T ∈ RL(K−1). The objective function

of problem (7) can then be expressed compactly as

ν

2
wT Qw + (1− ν)eT y. (8)

Additionally, Q is a symmetric positive definite matrix, which can be inferred from the

following proposition. The proof of the proposition is omitted since it is similar to that

in [22].

Proposition 2.1 Denote C =
√

K + 1IKN −
√

K+1−1
K

Φ. Then

(1). Q = C2.

(2). C is nonsingular, and C−1 = 1√
K+1

IKN +
√

K+1−1
K
√

K+1
Φ.

Let H ij be the KN ×N matrix with all blocks being N ×N zero matrices except the

ith block being IN and the jth block being −IN :

H ij = [O, · · · , O, IN , O, · · · , O,−IN , O, · · · , O]T . (9)

Then by (2) we get

wi −wj = (H ij)T w. (10)

Let rij be the K-dimensional vector with all components being zero except the ith com-

ponent being 1 and the jth component being −1:

rij = [0, · · · , 0, 1, 0, · · · , 0,−1, 0, · · · , 0]T . (11)

Then by (3) we get

bi − bj = (rij)T b. (12)

Let hij
p be the L(K − 1)-dimensional vector with all components being zero except the(

(K − 1)
∑i−1

k=1 lk + (j − 1)li + p
)
th component being 1:

hij
p = [0, · · · , 0, · · · , 0, 1, 0, · · · , 0, · · · , 0]T . (13)

Then by (4) we get

yij
p = (hij

p )T y. (14)

By (10), (12) and (14), the first constraint in problem (7) can be rewritten as follows:

ρi
p‖(H ij)T w‖ ≤ Ai

p(H
ij)T w − (rij)T b + (hij

p )T y − 1. (15)
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Therefore, by (8), (15) and Proposition 2.1, formulation (7) can be written as follows:

min
w, b, y, t

νt + (1− ν)eT y

s.t.
1

2
‖Cw‖2 ≤ t,

ρi
p‖(H ij)T w‖ ≤ Ai

p(H
ij)T w − (rij)T b + (hij

p )T y − 1, (16)

p = 1, · · · , li, i, j = 1, · · · , K, i 6= j,

y ≥ 0.

Furthermore, formulation (16) can be cast as the following SOCP:

min
w, b, y, t

νt + (1− ν)eT y

s.t.

∥∥∥∥∥

[ √
2Cw

1− t

]∥∥∥∥∥ ≤ 1 + t,

ρi
p‖(H ij)T w‖ ≤ Ai

p(H
ij)T w − (rij)T b + (hij

p )T y − 1, (17)

p = 1, · · · , li, i, j = 1, · · · , K, i 6= j,

y ≥ 0.

3 Robust Piecewise-Linear M-SVM Classifier

In this section, we construct a robust piecewise-linear M-SVM classifier based on the dual

formulation of (17).

3.1 Dual of the Robust Piecewise-Linear M-SVM Formulation

Denote

Ā = [BT
1 , BT

2 , · · · , BT
K ]T ∈ RL(K−1)×KN (18)

with

Bi =




−Ai · · · O Ai O · · · O
...

. . .
...

...
...

...

O · · · −Ai Ai O · · · O

O · · · O Ai −Ai · · · O
...

...
...

...
. . .

...

O · · · O Ai O · · · −Ai




∈ Rli(K−1)×KN .
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Denote

H̄ = [M̄T
1 , M̄T

2 · · · , M̄T
K ]T ∈ RLN(K−1)×KN , (19)

where

M̄i =




−Mi · · · O Mi O · · · O
...

. . .
...

...
...

...

O · · · −Mi Mi O · · · O

O · · · O Mi −Mi · · · O
...

...
...

. . .
...

O · · · O Mi O · · · −Mi




∈ RliN(K−1)×KN ,

with

Mi := Mi(ρ) = [ρi
1IN , · · · , ρi

li
IN ]T ∈ RliN×N , i = 1, · · · , K.

Denote

Ē = [ET
1 , ET

2 , · · · , ET
K ]T ∈ RL(K−1)×K (20)

with

Ei =




−ei · · · 0 ei 0 · · · 0
...

. . .
...

...
...

...

0 · · · −ei ei 0 · · · 0

0 · · · 0 ei −ei · · · 0
...

...
...

...
. . .

...

0 · · · 0 ei 0 · · · −ei




∈ Rli(K−1)×K .

We can derive the following dual of problem (17) (see Appendix A):

max
α,s,σ,τ

eT α− (σ + τ)

s.t. ĒT α = 0,

α ≤ (1− ν)e, (21)

σ − τ = ν,∥∥∥∥∥∥


 − 1√

2(K+1)
(ĀT α + H̄T s)

τ




∥∥∥∥∥∥
≤ σ,

‖sij
p ‖ ≤ αij

p , p = 1, · · · , li, i, j = 1, · · · , K, j 6= i,
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where

α = [(α12)T , · · · , (α1K)T , · · · , (αK1)T , · · · , (αK(K−1))T ]T ∈ RL(K−1), (22)

s =
[
(s12

1 )T , · · · , (s12
l1

)T , · · · , (s1K
1 )T , · · · , (s1K

l1
)T , · · · ,

· · · , (s
K(K−1)
1 )T , · · · , (s

K(K−1)
lK

)T
]T

∈ RLN(K−1). (23)

In addition, we get the following complementary equations at optimality:

[
αij

p

sij
p

]T [
Ai

p(H
ij)T w − (rij)T b + (hij

p )T y − 1

ρi
p(H

ij)T w

]
= 0, (24)

p = 1, · · · , li, i, j = 1, · · · , K, j 6= i,



σ

− 1√
2(K+1)

(ĀT α + H̄T s)

τ




T 


1 + t√
2Cw

1− t


 = 0, (25)

((1− ν)e−α)T y = 0. (26)

3.2 Robust Classifier

From formulation (21) we get σ > 0. In fact, if σ = 0, then τ = 0. The third constraint

of formulation (21) becomes ν = 0, which contradicts ν > 0. By the complementary

equation (25), we have the following implications (see Appendix B for the complementary

conditions in SOCP, i.e., (57)–(59)):

If

∥∥∥∥∥∥


 − 1√

2(K+1)
(ĀT α + H̄T s)

τ




∥∥∥∥∥∥
< σ, then

∥∥∥∥∥

[ √
2Cw

1− t

]∥∥∥∥∥ = 1 + t = 0. But this

contradicts t ≥ 0. So we must have

∥∥∥∥∥∥


 − 1√

2(K+1)
(ĀT α + H̄T s)

τ




∥∥∥∥∥∥
= σ. Since σ > 0, we

have

∥∥∥∥∥

[ √
2Cw

1− t

]∥∥∥∥∥ = 1 + t. Hence there exists µ > 0 such that

√
2Cw =

µ√
2(K + 1)

(ĀT α + H̄T s) and 1− t = −µτ. (27)

In addition, it is easy to get the following equalities by Proposition 2.1:

C−1ĀT =
1√

K + 1
ĀT and C−1H̄T =

1√
K + 1

H̄T . (28)
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Hence by (27) and (28), we get

w =
t− 1

2τ(K + 1)
(ĀT α + H̄T s).

Furthermore, by (2), (18) and (19), we get

wi =
t− 1

2τ(K + 1)

K∑

j=1,j 6=i








li∑
p=1

αij
p (Ai

p)
T −

lj∑
p=1

αji
p (Aj

p)
T


 +




li∑
p=1

ρi
ps

ij
p −

lj∑
p=1

ρj
ps

ji
p






 .

Therefore, the decision functions are given by

fi(x) = xT wi − bi

=
t− 1

2τ(K + 1)

K∑

j=1,j 6=i








li∑
p=1

αij
p xT (Ai

p)
T −

lj∑
p=1

αji
p xT (Aj

p)
T


 +




li∑
p=1

ρi
px

T sij
p −

lj∑
p=1

ρj
px

T sji
p






− bi, i = 1, · · · , K.(29)

In particular, if we set ρi
p = 0, i = 1, · · · , K, p = 1, · · · , li, then (29) becomes

fi(x) =
t− 1

2τ(K + 1)

K∑

j=1,j 6=i




li∑
p=1

αij
p xT (Ai

p)
T −

lj∑
p=1

αji
p xT (Aj

p)
T


− bi, i = 1, · · · , K. (30)

Since ρi
p = 0, p = 1, · · · , li, i = 1, · · · , K, imply that the parameter perturbations are not

considered (cf. (5)), (30) corresponds to the discriminants for the case of no measurement

noise.

With these decision functions, the classification of an example x is to find a class i

such that fi(x) = max{f1(x), · · · , fK(x)}.

4 Robust Piecewise-Nonlinear M-SVM Classifier

The above discussion is concerned with the piecewise-linear case. In this section, the

analysis will be extended to the nonlinear case.

To construct separating functions in a higher dimensional feature space, a nonlinear

mapping ψ : X → F is used to transform the original examples into the feature space

which is equipped with the inner product defined by

k(x, x′) = 〈ψ(x), ψ(x′)〉,
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where k(·, ·) : RN × RN → R is a function called a kernel. Typical choices of kernels

include polynomial kernels k(x, x′) = (xT x′ + 1)d with an integer parameter d and RBF

kernels k(x, x′) = exp(−‖x− x′‖2/κ) with a real parameter κ.

4.1 Robust Piecewise-Nonlinear M-SVM Formulation

We assume

ψ((Âi
p)

T ) = ψ((Ai
p)

T ) + ρ̃i
pã

i
p, ãi

p ∈ Ũ , (31)

where Ũ is a unit sphere in the feature space. For the nonlinear case, ρ̃i
p in the feature

space associated with a kernel k(·, ·) can be computed as

ρ̃i
p = ‖ψ((Âi

p)
T )− ψ((Ai

p)
T )‖

=
(
〈ψ((Âi

p)
T ), ψ((Âi

p)
T )〉 − 2〈ψ((Âi

p)
T ), ψ((Ai

p)
T )〉+ 〈ψ((Ai

p)
T ), ψ((Ai

p)
T )〉

)1/2

=
(
k((Âi

p)
T , (Âi

p)
T )− 2k((Âi

p)
T , (Ai

p)
T ) + k((Ai

p)
T , (Ai

p)
T )

)1/2

.

For example, for RBF kernels, since

k((Âi
p)

T , (Âi
p)

T ) = 1, k((Âi
p)

T , (Ai
p)

T ) = exp(−(ρi
p)

2/κ), and k((Ai
p)

T , (Ai
p)

T ) = 1,

we have

ρ̃i
p =

(
2− 2 exp(−(ρi

p)
2/κ)

)1/2
. (32)

The robust version of the piecewise-nonlinear M-SVM can be expressed as follows:

min
w,b,y

ν

(
1

2

K∑
i=1

i−1∑
j=1

‖wi −wj‖2 +
1

2

K∑
i=1

‖wi‖2

)
+ (1− ν)

K∑
i=1

K∑

j=1,j 6=i

(ei)T yij

s.t. (ψ((Ai
p)

T ))T (wi −wj) + ρ̃i
p(ã

i
p)

T (wi −wj)− (bi − bj) + yij
p ≥ 1, ∀ ãi

p ∈ Ũ ,

yij
p ≥ 0, p = 1, · · · , li, i, j = 1, · · · , K, i 6= j,

which can be rewritten as the following SOCP:

min
w,b,y

ν

(
1

2

K∑
i=1

i−1∑
j=1

‖wi −wj‖2 +
1

2

K∑
i=1

‖wi‖2

)
+ (1− ν)

K∑
i=1

K∑

j=1,j 6=i

(ei)T yij

s.t. (ψ((Ai
p)

T ))T (wi −wj)− ρ̃i
p‖wi −wj‖ − (bi − bj) + yij

p ≥ 1, (33)

yij
p ≥ 0, p = 1, · · · , li, i, j = 1, · · · , K, i 6= j.

Denote

Ã =
[
B̃T

1 , B̃T
2 , · · · , B̃T

K

]T

,
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where

B̃i =




−Ψ(Ai) · · · O Ψ(Ai) O · · · O
...

. . .
...

...
...

...

O · · · −Ψ(Ai) Ψ(Ai) O · · · O

O · · · O Ψ(Ai) −Ψ(Ai) · · · O
...

...
...

...
. . .

...

O · · · O Ψ(Ai) O · · · −Ψ(Ai)




with

Ψ(Ai) =
[
ψ((Ai

1)
T ), · · · , ψ((Ai

li
)T )

]T
.

Denote

H̃ = [M̃T
1 , M̃T

2 · · · , M̃T
K ]T ,

where

M̃i =




−M ′
i · · · O M ′

i O · · · O
...

. . .
...

...
...

...

O · · · −M ′
i M ′

i O · · · O

O · · · O M ′
i −M ′

i · · · O
...

...
...

. . .
...

O · · · O M ′
i O · · · −M ′

i




with

M ′
i := M ′

i(ρ̃) = [ρ̃i
1IN , · · · , ρ̃i

li
IN ]T . (34)

In a similar manner to that of getting formulation (21), we get the dual of problem (33)

as follows:

max
α,s,σ,τ

eT α− (σ + τ)

s.t. ĒT α = 0,

α ≤ (1− ν)e, (35)

σ − τ = ν,∥∥∥∥∥∥


 − 1√

2(K+1)
(ÃT α + H̃T s)

τ




∥∥∥∥∥∥
≤ σ,

‖sij
p ‖ ≤ αij

p , p = 1, · · · , li, i, j = 1, · · · , K, j 6= i.
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4.2 Robust Classifier in a Feature Subspace

In the previous subsection, we have gotten the robust formulation (35) in the feature

space. However, the feature space F may have an arbitrarily large dimension, possibly

infinite. Usually the kernel principal component analysis (KPCA) [18, 22] is used for

feature extraction. In this subsection, we first reduce the feature space F to an S-

dimensional subspace with S < L by KPCA, and then construct the corresponding robust

classifier of piecewise-nonlinear M-SVM in the subspace.

Consider the kernel matrix G = (k((Ai
p)

T , (Aj
p)

T )) ∈ RL×L associated with a ker-

nel k(·, ·). Since G is a symmetric positive semi-definite matrix, there is an orthog-

onal matrix V such that G = V ΛV T , where Λ is a diagonal matrix whose diagonal

elements are the eigenvalues λi ≥ 0, i = 1, · · · , L, of G, and vi, i = 1, · · · , L, the

columns of V , are the corresponding eigenvectors. Suppose λ1 ≥ λ2 ≥ · · · ≥ λL. Se-

lect the S(< L) largest positive eigenvalues and the corresponding eigenvectors. Denote

DS =
[√

λ1v1,
√

λ2v2, · · · ,
√

λSvS

]
, where the components of vi are written as follows:

vi = [v1
i,1, · · · , v1

i, l1
, v2

i,1, · · · , v2
i, l2

, · · · , vK
i,1, · · · , vK

i, lK
]T .

Define the vectors

ui :=

∑K
j=1

∑lj
p=1 vj

i,p ψ((Aj
p)

T )√
λi

, i = 1, · · · , S.

Then we have

ui
T ui =

1

λi

vT
i Gvi = 1,

and

ui
T uj =

1√
λiλj

vT
i Gvj = 0, i 6= j.

Therefore, {u1, u2, · · · , uS} forms an orthogonal basis of an S-dimensional subspace of

F . Let ψS(x) be the S-dimensional sub-coordinate of ψ(x), which is given by

ψS(x) =


 1√

λ1

K∑
j=1

lj∑
p=1

vj
1,p k(x, (Aj

p)
T ), · · · ,

1√
λS

K∑
j=1

lj∑
p=1

vj
S,p k(x, (Aj

p)
T )




T

. (36)

Then, similarly to (29), we can get the decision functions associated with the robust

13



formulation of piecewise-nonlinear M-SVM in the feature subspace as follows:

fi(x) =
t− 1

2τ(K + 1)

K∑

j=1,j 6=i








li∑
p=1

αij
p ψS(x)T ψS((Ai

p)
T )−

lj∑
p=1

αji
p ψS(x)T ψS((Aj

p)
T )




+




li∑
p=1

ρ̃i
pψS(x)T sij

p −
lj∑

p=1

ρ̃j
pψS(x)T sji

p






− bi, i = 1, · · · , K. (37)

5 Preliminary Numerical Results

In this section, through numerical experiments, we examine the performance of the robust

piecewise-nonlinear M-SVM formulation and the original model for multi-class classifica-

tion problems. We use RBF kernel in the experiments. As we have described in Subsection

4.2, we first construct an L× L kernel matrix G associated with the RBF kernel for the

training dataset. Then we decompose G and select an appropriate number S. Using (36),

we obtain the S-dimensional sub-coordinate of each point. The problems used in the

experiments are the robust model (35) and the original model obtained by setting ρ̃ = 0

in (34). In the latter model, we have H̃ = O. Thus we may write the problem as follows:

max
α,σ,τ

eT α− (σ + τ)

s.t. ĒT α = 0,

α ≤ (1− ν)e, (38)

σ − τ = ν,∥∥∥∥∥∥


 − 1√

2(K+1)
ÃT α

τ




∥∥∥∥∥∥
≤ σ.

Table 1: Description of Iris, Wine and Glass datasets.

name dimension (N) #classes (K) #examples (L)

Iris 4 3 150

Wine 13 3 178

Glass 9 6 214

14



Table 2: Results for Iris, Wine and Glass datasets with noise (ρ = 0.3, κ = 2, ν = 0.05).

Ra

Robust (I) Iris Wine Glass

Original (II) S Rt PT∗ S Rt PT S Rt PT

0.5
I 1 0.5364 62.67 5 0.5179 90.0 1 0.5737 35.24

II 1 0.5364 60.67 5 0.5179 88.89 1 0.5737 31.43

0.6
I 2 0.7950 89.33 9 0.6102 88.89 2 0.6826 66.67

II 2 0.7950 87.33 9 0.6102 80.0 2 0.6826 32.86

0.7
I 2 0.7950 89.33 16 0.7103 87.78 3 0.7523 66.67

II 2 0.7950 87.33 16 0.7103 82.22 3 0.7523 38.57

0.8
I 3 0.8836 85.33 — — — 4 0.8002 66.67

II 3 0.8836 84.0 — — — 4 0.8002 45.24

0.99
I 12 0.9911 88.0 — — — — — —

II 12 0.9911 86.67 — — — — — —

∗PT: Percentage of tenfold testing correctness on validation set.

The experiments were implemented on a PC (1GB RAM, CPU 3.00GHz) using Se-

DuMi1.05 [19] as a solver. This solver is developed by J. Sturm for optimization problems

over symmetric cones including SOCP. Some experimental results on real-world datasets

taken from the UCI machine learning repository [6] are reported below. Table 1 gives a

description of the datasets. In the experiments, the datasets were normalized to lie in

between −1 and 1. For simplicity, we set all ρi
p in (5) to be a constant ρ. The measure-

ment noise ai
p was generated randomly from the normal distribution and scaled on the

unit sphere. Two experiments were performed. In the first, an appropriate value of S for

getting reasonable discriminants was sought. The second experiment was conducted on

the three datasets with the measurement noise. Ten-fold cross validation was used in the

experiments.

In order to seek an appropriate value of S, a ratio Ra is set. It is chosen from the set

{0.5, 0.6, 0.7, 0.8, 0.99}. For each value of Ra, we find the smallest integer S such that∑S
i=1 λi/

∑L
i=1 λi ≥ Ra and let Rt :=

∑S
i=1 λi/

∑L
i=1 λi. At the same time, we test the

accuracy on the validation set by computing the percentage of tenfold testing correctness.

Table 2 contains these three kinds of results for the robust model and the original model
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Table 3: Percentage of tenfold test correctness for the datasets with noise (κ = 2, ν = 0.05).

Dataset Robust (I) ρ

(S) Original (II) 0.1 0.2 0.3 0.4 0.5

Iris I 88.67 88.0 89.33 91.33 90.0

(2) II 87.33 87.33 87.33 86.67 85.33

Wine I 91.11 90.0 90.0 87.78 84.44

(5) II 88.89 88.83 88.89 85.56 82.22

Glass I 66.19 65.71 66.67 66.67 66.67

(4) II 46.19 45.71 45.24 49.05 49.52

on Iris, Wine and Glass datasets with the measurement noise scaled by ρ = 0.3. When

Ra is large, we were unable to solve the problems for Wine and Glass datasets because

of memory limitations. Nevertheless, it can be seen from Table 2 that the values of Rt

around 50% up to 70% yield reasonable discriminants. Moreover, in all cases, S is much

smaller than the data size L.

Table 3 shows the percentage of tenfold testing correctness for the robust model and

the original model on the three datasets with various noise levels ρ. It can be observed

that the performance of the robust model is consistently better than that of the original

model, especially for Glass dataset.

6 Conclusion

In this paper, we have established the robust linear and nonlinear formulations for multi-

class classification based on M-SVM method. KPCA has been used to reduce the feature

space to an S-dimensional subspace. The preliminary numerical experiments show that

the performance of the robust model is better than that of the original model.

Unfortunately, the conic convex optimization solver SeDuMi1.05 [19] used in our nu-

merical experiments could only solve problems for small datasets. The sequential minimal

optimization (SMO) techniques [16] are essential in large-scale implementation of SVM.

The future subjects include developing SMO-based robust algorithms for multi-class clas-
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sification.

Appendix A. Dual of Formulation (17)

In order to get the dual of problem (17), we first state a more general primal and dual

form of the SOCP. The notations used in A.1 are independent of those in the other part

of the paper.

A.1. A General Primal and Dual Pair

For the SOCP

min
x, y, z

cT x + dT y + eT z

s.t. AT x + BT y + CT z = f , (39)

y ≥ 0,

z ∈ Kn1 × · · · × Knl ,

its dual is written as follows:

max
w,u,v

fT w

s.t. Aw = c,

Bw + u = d,

Cw + v = e, (40)

u ≥ 0,

v ∈ Kn1 × · · · × Knl .

Now consider the problem

min
x,y,z

cT x + dT y

s.t. ‖ḠT
i x + qi‖ ≤ gT

i x + hT
i y + rT

i z + ai, i = 1, · · · ,m, (41)

y ≥ 0.

This problem can be formulated as follows:

min
x,y,z,ζ

cT x + dT y

s.t. ζi −
[

gT
i x + hT

i y + rT
i z + ai

ḠT
i x + qi

]
= 0, i = 1, · · · ,m,

ζi ∈ Kni , i = 1, · · · ,m,

y ≥ 0,
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which can be further rewritten as

min
x,y,z,ζ

cT x + dT y

s.t.




−G1 −G2 · · · −Gm

−H1 −H2 · · · −Hm

−R1 −R2 · · · −Rm

I O · · · O

O I · · · O
...

...
. . .

...

O O · · · I




T 


x

y

z

ζ1

ζ2

...

ζm




=




β1

β2

...

βm




ζi ∈ Kni , i = 1, · · · ,m,

y ≥ 0,

where Gi = [gi, Ḡi], Hi = [hi, O], Ri = [ri, O], βi = [ai, q
T
i ]T , i = 1, · · · ,m. In view of

the primal-dual pair (40) and (41), we obtain the dual of problem (41) as follows:

max
η, λ

−
m∑

i=1

βT
i ηi

s.t.
m∑

i=1

Giηi = c,

m∑
i=1

Hiηi + λ = d, (42)

m∑
i=1

Riηi = 0,

λ ≥ 0,

ηi ∈ Kni , i = 1, · · · ,m.

A. 2. Dual of Problem (17)

In the following we derive the dual of formulation (17). The primal problem (17) can be

18



put in the following equivalent form:

min
x, b, y

[
0T , ν

]
x + (1− ν)eT y

s.t.

∥∥∥∥∥

[ √
2C 0

0T −1

]
x +

[
0

1

]∥∥∥∥∥ ≤
[
0T , 1

]
x + 1,

∥∥[
ρi

p(H
ij)T ,0

]
x
∥∥ ≤ [

Ai
p(H

ij)T ,0
]
x + (hij

p )T y − (rij)T b− 1,

p = 1, · · · , li, i, j = 1, · · · , K, i 6= j,

y ≥ 0,

where x =
[
wT , t

]T
. Then, by (42), we get the dual of problem (17) as follows:

max
α, s,σ, τ

K∑
i=1

K∑

j=1,j 6=i

li∑
p=1

αij
p − (σ + τ) (43)

s.t.
√

2CT ξ +
K∑

i=1

K∑

j=1,j 6=i

li∑
p=1

(
αij

p H ij(Ai
p)

T + ρi
pH

ijsij
p

)
= 0, (44)

σ − τ = ν, (45)
K∑

i=1

K∑

j=1,j 6=i

li∑
p=1

αij
p hij

p + λ = (1− ν)e, (46)

−
K∑

i=1

K∑

j=1,j 6=i

li∑
p=1

αij
p rij = 0, (47)

∥∥∥∥∥

[
ξ

τ

]∥∥∥∥∥ ≤ σ, (48)

‖sij
p ‖ ≤ αij

p , p = 1, · · · , li, i, j = 1, · · · , K, i 6= j, (49)

λ ≥ 0. (50)

By (9), (18) and (22) we get

K∑
i=1

K∑

j=1,j 6=i

li∑
p=1

αij
p H ij(Ai

p)
T = ĀT α. (51)

By (19) and (23) we get
K∑

i=1

K∑

j=1,j 6=i

li∑
p=1

ρi
pH

ijsij
p = H̄T s. (52)

Hence by (51) and (52), we can express (44) compactly as follows:

√
2CT ξ + ĀT α + H̄T s = 0. (53)
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By (53) and (28), we get the following equation:

ξ = − 1√
2(K + 1)

(ĀT α + H̄T s). (54)

By (13) and (22), we have
K∑

i=1

K∑

j=1,j 6=i

li∑
p=1

αij
p hij

p = α.

Hence (46) can be expressed as follows:

(1− ν)e− λ−α = 0. (55)

By (11), (20) and (22), we can rewrite (47) as follows:

−ĒT α = 0. (56)

Combining (54)–(56), problem (43)–(50) can be written as (21).

Appendix B. Complementarity Conditions of SOCP

Let bdKn denote the boundary of Kn:

bdKn =

{[
z0

z̄

]
∈ Kn : ‖z̄‖ = z0

}
.

Let intKn denote the interior of Kn:

intKn =

{[
z0

z̄

]
∈ Kn : ‖z̄‖ < z0

}
.

For two elements

[
z0

z̄

]
∈ Kn and

[
z′0
z̄′

]
∈ Kn,

[
z0

z̄

]T [
z′0
z̄′

]
= 0 if and only if the

following conditions are satisfied [15]:
[

z0

z̄

]
∈ intKn ⇒ ‖z̄′‖ = z′0 = 0, (57)

[
z′0
z̄′

]
∈ intKn ⇒ ‖z̄‖ = z0 = 0, (58)

[
z0

z̄

]
∈ bdKn \ {0},

[
z′0
z̄′

]
∈ bdKn \ {0} ⇒

[
z0

z̄

]
= µ

[
z′0
−z̄′

]
, (59)

where µ > 0 is a constant. These three conditions are regarded as a generalization of the

complementary slackness conditions in linear programming.
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[3] C. Angulo, X. Parra and A. Català (2003). K-SVCR. A support vector machine for

multi-class classification. Neurocomputing, 55, 57–77.

[4] K. P. Bennett and O.L. Mangasarian (1994). Multicategory discrimination via linear

programming. Optimization Methods and Software. 3, 27–39.

[5] E. J. Bredensteiner and K. P. Bennett (1999). Multicategory Classification by support

vector machines. Computational Optimization and Applications, 12, 53–79.

[6] C. L. Blake and C. J. Merz (1998). UCI repository of machine learning databases. Uni-

versity of California. [www http://www.ics.uci.edu/∼mlearn/MLRepository.html]

[7] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U.

A. Müller, E. Sackinger, P. Simard and V. Vapnik (1994). Comparison of classifier

methods: a case study in handwriting digit recognition. in: IAPR (Ed.), Proceedings

of the International Conference on Pattern Recognition, pp. 77–82. IEEE Computer

Society Press.

[8] M. Fukushima, Z.Q. Luo and P. Tseng (2002). Smoothing functions for second-order-

cone complementarity problems. SIAM Journal on Optimization, 12, 436–460.

[9] T.G. Dietterich and G. Bakiri (1995). Solving multi-class learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2, 263–286.

[10] D. Goldfarb and G. Iyengar (2003). Robust convex quadratically constrained pro-

grams. Mathematical Programming, 97, 495–515.

[11] Y. Guermeur (2002). Combining discriminant models with new multi-class SVMs.

Pattern Analysis and Applications, 5, 168–179.

21



[12] T. J. Hastie and R. J. Tibshirani (1998). Classification by pairwise coupling. in: M.

I. Jordan, M. J. Kearns and S. A. Solla (Eds.), Advances in Neural Information

Processing Systems, 10, 507–513. MIT Press, Cambridge, MA.

[13] S. Hayashi, N. Yamashita and M. Fukushima (2005). A combined smoothing and

regularization method for monotone second-order cone complementarity problems.

SIAM Journal on Optimization, 15, 593–615.

[14] U. Kreßel (1999). Pairwise classification and support vector machines. in: B.

Schölkopf, C. J. C. Burges and A. J. Smola (Eds.), Advances in Kernel Methods:

Support Vector Learning, pp. 255–268. MIT Press, Cambridge, MA.

[15] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lébret (1998). Applications of second-
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