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Abstract. Various models of traffic equilibrium problems (TEPs) with nonadditive route costs

have been proposed in the last decade. However, equilibria of those models are not easy to obtain

because the variational inequality problems (VIPs) derived from those models are not monotone

in general. In this paper, we consider a TEP whose route cost functions are nonadditive disutility

functions of time (with money converted to time). We show that the TEP with the disutility

functions can be reformulated as a monotone Mixed Complementarity Problem (MCP) under

appropriate conditions. We then establish the existence and uniqueness results for an equilibrium

of the TEP. Numerical experiments are carried out using various sample networks with different

disutility functions for both the single-mode case and the case of two different transportation modes

in the network.
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1 Introduction

In the study of the traffic equilibrium problem (TEP), the researchers have presented
various formulations in which many different assumptions are made to represent the “real”
traffic conditions (Aashtiani and Magnanti (1981), Chen, et al. (1999), Dafermos (1980)).
One of the standard assumptions used is that the route costs faced by the users in the
network are additive. That is, the route costs are simply the sum of the arc costs for all
the arcs on the route being considered.

There are many situations, however, where this additivity assumption on the route
costs is inappropriate. Gabriel and Bernstein (1997) discussed some of the situations where
nonadditive route costs occur. They claimed that almost all toll and fare schemes being
implemented around the world are nonadditive. For example, the different pricing policies
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such as congestion pricing and the collection of emission fees add to the nonadditivity
of travel costs. Moreover, different individuals have different valuations of time, which
contributes to the nonadditivity of route costs.

Although nonadditivity is important in presenting a more realistic view of the traffic
situation, it causes a difficulty in the analysis and computation of an equilibrium, which
are usually done by formulating the TEP as the variational inequality problem (VIP). The
VIP is generally stated as follows (Facchinei and Pang, 2003): Find a vector x ∈ K such
that

(y − x)T G(x) ≥ 0, ∀y ∈ K, (1.1)

where K is a nonempty closed convex subset of <n and G : K → <n is a continuous
function. Special cases of the VIP include the Nonlinear Complementarity Problem (NCP)
and the Mixed Complementarity Problem (MCP). The NCP is the VIP with K = <n

+ ≡
{x ∈ <n|xi ≥ 0, i = 1, . . . , n} and the MCP is the VIP with K = {x ∈ <n|ai ≤ xi ≤ bi,

i = 1, . . . , n}, where ai ∈ < ∪ {−∞}, bi ∈ < ∪ {+∞}, ai ≤ bi, i = 1, . . . , n. We denote the
NCP with the function G by NCP(G) and the MCP with the function G and the set K

by MCP(G,K).
In the last decades, the VIP has been studied extensively. The monotonicity of G

particularly plays an important role in the existence and uniqueness of solutions of VIP.
Moreover, the monotonicity is also important for solution methods for VIP to work effi-
ciently. We recall that a function G : <n → <n is called

(i) monotone if (x− y)T
(
G(x)−G(y)

) ≥ 0,∀x, y ∈ <n; and

(ii) strictly monotone if (x− y)T
(
G(x)−G(y)

)
> 0,∀x, y ∈ <n(x 6= y).

We also say that VIP or NCP or MCP is monotone if G is monotone. Most of the existing
results for the VIP rely on the assumption that the function G involved satisfies certain
conditions such as strong or strict monotonicity (Facchinei and Pang, 2003).

A VIP equivalent to the TEP with additive costs may usually be formulated as a
monotone VIP (Facchinei and Pang, 2003). However, a VIP derived from the TEP with
nonadditive costs does not immediately possess monotonicity unless restrictive assump-
tions are made or a certain reformulation is introduced.

Lo and Chen (2000) considered a special case of the TEP with nonadditive cost func-
tions. Specifically, they introduced a route-specific cost structure, where the route cost is
assumed to be the sum of the travel time and an additional charge which is route-specific
(a specific travel cost, possibly in the form of toll, is added only to a particular route in the
network). This additional cost is only incurred by travelers on that route. They showed
that the equivalent NCP becomes monotone. However, they reported that other users of
the network (not necessarily using this route) are affected by this added route cost when
they share a common link with the route with the added cost. Moreover, the route cost
function they considered was very simple, hence not so realistic. In order to solve the TEP,
they converted the NCP formulation into an equivalent optimization problem by using a
merit function.

Gabriel and Bernstein (1997) proposed a more general route cost function. They
also used some assumptions on the route costs in order to ensure monotonicity of their
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formulation. However, as will be shown in Section 2.3, those assumptions imply that the
cost function is an affine function of time. In their work, they proposed a merit function
approach to solve the NCP formulation of the TEP with nonadditive costs. Their method
was based on transforming the NCP first into a problem of finding a zero of a system of
nonsmooth equations. The problem can be solved by using an existing method when the
NCP is monotone.

In this paper, we modify the model presented by Gabriel and Bernstein (1997) by
introducing a disutility function. We show that the equivalent VIP can be transformed
into a monotone MCP, and then give the existence and uniqueness results for the proposed
model.

This paper is organized as follows. In the next section, we provide an overview of the
important concepts used in this paper, namely, the traffic equilibrium principle, the MCP
formulation of the TEP, and the nonadditive travel costs. The proposed TEP and its
monotone MCP reformulation are presented in Section 3. We also establish the existence
and uniqueness results in this section. Computational results for TEPs with different
disutility functions and various networks to compare our reformulation to the original
VIP formulation are given in Section 4. We give a brief conclusion in Section 5.

2 Preliminaries

In this section, we introduce some important concepts used in this paper. We also
present the general MCP formulation of the TEP.

2.1 Traffic Equilibrium Principle

In what follows we consider the formulation of the traffic equilibrium problem (TEP)
with nonadditive route costs. Throughout our discussion, we consider a network G =
(A,N ), where A is the set of arcs (with cardinality nA) and N is the set of nodes (with
cardinality nN ). We denote by W the set of origin-destination (OD) pairs in G (with
cardinality nW ). For every OD pair w ∈ W , there corresponds the set Rw of routes
connecting the OD pair w. We denote by R the set of all routes (with cardinality nR),
i.e., R =

⋃
w∈W Rw. We assume that the network G is connected, that is, there exists a

route between each pair of nodes.
The Wardrop user equilibrium principle states that users of the traffic network

will choose the route having the minimum cost between each OD pair, and through this
process, the routes that are used will have equal costs; moreover, routes with costs higher
than the minimum will have no flow.

The cost experienced by a person using route r is denoted by Cr. In general, route
costs can be a function of the entire vector of route flows. The demand associated with
each OD pair w, denoted by Dw, is a function of the vector of minimum OD travel costs.

Mathematically, the Wardrop equilibrium principle, together with the condition im-
posed on the travel demand function, can be written as
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0 ≤ Cr(F )− uw ⊥ Fr ≥ 0, ∀r ∈ Rw, w ∈ W, (2.1)

∑

r∈Rw

Fr = Dw(u), ∀w ∈ W, (2.2)

uw ≥ 0, ∀w ∈ W. (2.3)

where F ∈ RnR
+ is the vector of route flows Fr, uw is the minimal route cost for the OD

pair w, and u ∈ RnW
+ is the vector with components uw. The notation “x ⊥ y” means

that vectors x and y are orthogonal and thus (2.1) implies (Cr(F ) − uw)Fr = 0 for all
r ∈ Rw, w ∈ W .

Here, (2.2) means that the travel demand must be satisfied, while (2.3) indicates that
the minimum travel costs must be nonnegative.

2.2 MCP Formulation of the TEP

The traffic user equilibrium problem is to find a vector pair (F ,u) of route flows and
minimum route costs such that conditions (2.1) – (2.3) are satisfied. When the travel
cost and the demand functions Cr(F ) and Dw(u) are nonnegative, and for each OD pair
w ∈ W ,

[ ∑

r∈Rw

FrCr(F ) = 0, F ≥ 0
]

=⇒ [Fr = 0, ∀ r ∈ Rw], (2.4)

then conditions (2.1) – (2.3) are equivalent to the NCP(H) with the function H defined
by

H(F, u) ≡
(

C(F )− Γu

ΓT F −D(u)

)
, (2.5)

where C(F ) is the vector of route costs Cr(F ), and Γ = (Γrw) is the route-OD pair
incidence matrix whose entries are given by

Γrw =

{
1 if r ∈ Rw

0 otherwise.

Remark 2.1. If the route cost function Cr is positive, then since for each w ∈ W , Fr is
positive for some r ∈ Rw, we have Cr(F ) − uw = 0 from (2.1), hence, uw = Cr(F ) > 0.
Thus, the NCP(H) can be rewritten as

0 ≤ C(F )− Γu ⊥ F ≥ 0,

ΓT F −D(u) = 0,

which is the MCP(H,L) with the set L defined by

L = <nR
+ ×<nW . (2.5′)
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Various approaches for solving the MCP have been proposed. Those solution methods
include the generalized Newton’s method (Jiang and Qi, 1997), the smoothing method
(Chen, 2000) and the regularization method (Facchinei and Kanzow, 1999). Another
method is to reformulate the VIP as a minimization problem by the introduction of a
merit function (Gabriel and Bernstein, 1997). Convergence results for these approaches
have been established under the key assumption of monotonicity on H.

2.3 Nonadditive travel costs

Previous studies on the TEP focused on the assumption that the cost on route r is
simply the sum of the costs on each arc a comprising the route r, that is ,

Cr(F ) =
∑

a∈A
δarta(f) for all r ∈ Rw, w ∈ W, (2.7)

where δar are the elements of the arc-route incidence matrix ∆, i.e.,

δar =

{
1 if route r passes through link a

0 otherwise,

and ta(f) is the travel time on arc a ∈ A, fa is the flow on arc a ∈ A, and f is the vector
of arc flows.

Although the additivity assumption is convenient, there are various situations in which
the route costs in the network are no longer additive. A particular case of a nonadditive
route cost model considers both time and money in the formulation. Moreover, different
individuals normally have different values for time. Hence, the additivity assumption is
no longer appropriate for such a case. A detailed discussion on various situations where
route costs are nonadditive can be found in Gabriel and Bernstein (1997).

Gabriel and Bernstein (1997) and Larsson, et al. (2002) presented two different for-
mulations of the nonadditive route cost functions:

(i) Gabriel and Bernstein (1997):

Cr(F ) = ϕr

( ∑

a∈A

δarta(f)
)

+ η1

∑

a∈A

δarta(f) + Λr(F ), ∀r ∈ Rw, w ∈ W, (2.8)

where η1 > 0 is the time-based operating costs factor (e.g., gasoline consumption),
ϕr is a function which converts time into money, and Λr(F ) is the route-specific
financial costs (e.g., tolls) which are allowed to vary in cost according to route flows.

(ii) Larsson et al. (2002):

Cr(F ) =
∑

a∈A

δarta(f) + φr(mr), ∀r ∈ Rw, w ∈ W, (2.9)

where mr is the monetary outlay (e.g., route-specific financial cost which is allowed
to vary according to route) and the function φr converts money into time.
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In Gabriel and Bernstein (1997) the route cost function is based on money (“money-
based”), while in the formulation of Larsson et al. (2002), the route cost is expressed in
terms of time (“time-based”). There has been no clear explanation as to which formulation
is better, or as to why the route costs should be represented as such. It has been noted by
Bernstein and Wynter (2000), however, that even if one chooses φr = ϕ−1

r in (2.9), this
will not make the two formulations equivalent.

We point out that, although the route cost function in Gabriel and Bernstein (1997)
is a general form of the route cost function, the assumptions they used to establish its
monotonicity are somewhat restrictive. They assumed that there exists a function α :
<nR → < such that ϕ′r(ωr) = α(ω) ≥ 0, for all r = 1, . . . , nR, where ω is the vector of
route travel times, i.e., ω = ∆T t(∆F ). This assumption implies that α(ω) is a constant
independent of ω and hence the function ϕr must be affine. To see this, consider ω and ω

such that ωr = ωr for all r except for some r, and ωr = ωr+δ. Then α(ω) = ϕ′r(ωr) = α(ω).
This holds for all δ and for any r. Therefore, α(ω) must be constant, and hence, ϕr(ω) is
affine.

In our proposed model, we will present a route cost function that can deal with both
linear and nonlinear cases by introducing a particular disutility function, and show its
monotonicity.

3 TEP with Disutility Functions and Its Monotone MCP

Reformulation

In this section, we propose a new formulation of the TEP with nonadditive costs that
can be reformulated as a monotone MCP. We then establish the existence and uniqueness
result for an equilibrium of this reformulation.

3.1 TEP Model with Disutility Function

We consider a special case of the “time function” given in the form

Tr(F ) =
∑

a∈A
δarta(f) + gr(Λr), ∀r ∈ Rw, w ∈ W, (3.1)

where Λr is the route toll (assumed to be fixed) and gr is a function that converts money
into time. Next, we introduce a disutility function Uw for each OD pair w ∈ W .

We propose the following new route cost function:

Cr(F ) = Uw

(
Tr(F )

)
= Uw

( ∑

a∈A
δarta(f) + gr(Λr)

)
, ∀r ∈ Rw, w ∈ W. (3.2)

Note that when each disutility function Uw is the identity function, the route cost function
(3.2) reduces to the route cost function (2.9) proposed by Larsson et al. (2002). Also,
when gr(Λr) and Λr(F ) are absent, (3.2) becomes equivalent to (2.8) by letting Uw(ωr) =
ϕr(ωr)+η1ωr. The model (2.8) may describe more realistic situations than (3.2). However,
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in (2.8), ϕr must be affine to ensure the monotonicity of the equivalent MCP as pointed
out in Section 2.3. We stress that the disutility function Uw includes both linear and
nonlinear cases. Moreover, formulation (3.2) can be used to deal with the multimodal
TEP where different modes (such as trucks, cars, etc.) use different disutility functions.

In what follows, we make use of (3.2) in order to obtain a monotone MCP reformulation
of the TEP.

3.2 A Monotone MCP Reformulation

In this subsection, we present a monotone MCP equivalent to the TEP with (3.2). In
the succeeding discussions, we assume that the functions Dw, Uw and Cr are continuous.

We also assume the following conditions for our purpose.

Assumption 1. For all w ∈ W , the demand function Dw is always positive, Uw : [0,∞) →
[0,∞) is a strictly increasing function such that Uw(0) = 0 and limv→∞ Uw(v) = ∞. Also,
for each r, Tr(F ) > 0 for all F ≥ 0, and gr(Λr) in (3.1) is nonnegative.

Assumption 1 holds in general, since most network users would prefer the shortest
travel time, and hence the disutility function is strictly increasing.

Note that Assumption 1 implies that Cr defined by (3.2) is positive and thus we can
reformulate the TEP with (3.2) as the following MCP(H,L):

Uw(Tr(F ))− uw ≥ 0, Fr ≥ 0,
(
Uw(Tr(F ))− uw

)
Fr = 0, ∀r ∈ Rw, w ∈ W,∑

r∈Rw

Fr = Dw(u), ∀w ∈ W,

where

H(F, u) ≡
(

U(T (F ))− Γu

ΓT F −D(u)

)
,

U(T (F )) =
(
. . . , Uw(Tr(F )), . . .

)T , and L = RnR
+ ×RnW .

However, the above MCP formulation is not monotone in general. In what follows, we
reformulate MCP(H,L) into an MCP with cost functions Tr(F ). We then show that this
reformulation is monotone under appropriate conditions.

Proposition 3.1. Suppose that Assumption 1 holds. Then MCP(H,L) is equivalent to
MCP(H̃,L) with

H̃(F, v) ≡
(

T (F )− Γv

ΓT F −D(U(v))

)
(3.3)

and U(v) =
(
. . . , Uw(vw), . . .

)T .

Proof. First we show that MCP(H,L) implies MCP(H̃,L). Let (F ∗, u) be a solution of
MCP(H,L). By Assumption 1, for each w ∈ W there exists a unique vw ≥ 0 such that
Uw(vw) = uw. If F ∗

r > 0, then Uw(Tr(F ∗)) = uw = Uw(vw). Thus, Tr(F ∗) = vw,
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and hence
(
Tr(F ∗) − vw

)
F ∗

r = 0. If F ∗
r = 0, then Uw(Tr(F ∗)) ≥ uw = Uw(vw). Since

Uw is strictly increasing, we have Tr(F ∗) ≥ vw and
(
Tr(F ∗) − vw

)
F ∗

r = 0. Moreover,∑
r∈Rw

Fr − Dw(u) =
∑

r∈Rw
Fr − Dw

(
U(v)

)
= 0. Therefore, (F ∗, v) is a solution of

MCP(H̃,L).
To show that MCP(H̃,L) implies MCP(H,L), let (F ∗, v) be a solution of MCP(H̃,L).

Then, since, F ∗
r ≥ 0 and

∑
r∈Rw

F ∗
r = Dw

(
U(v)

)
, we can find, for each w ∈ W , a route

jw ∈ Rw such that F ∗
jw

> 0. For such jw ∈ Rw, Tjw(F ∗) = vw. Since a route cost function
is assumed to be always positive, we have Tjw(F ∗) > 0 and vw > 0.

Let uw = Uw(vw). Since Uw(vw) > 0, we have uw > 0,∀w ∈ W . To complete the
proof, we need to show that Uw(Tr(F ∗)) − uw ≥ 0 and

(
Uw(Tr(F ∗)) − uw

)
F ∗

r = 0 for all
r ∈ Rw.

Now, suppose F ∗
r > 0. Then Tr(F ∗) = vw. This implies that Uw(Tr(F ∗)) = Uw(vw) =

uw. Hence, Uw(Tr(F ∗)) = uw and
(
Uw(Tr(F ∗))−uw

)
F ∗

r = 0. If F ∗
r = 0, then Tr(F ∗) ≥ vw

and Uw(Tr(F ∗)) ≥ Uw(vw). Thus, Uw(Tr(F ∗)) − uw ≥ 0 and
(
Uw(Tr(F ∗)) − uw

)
F ∗

r = 0.
Consequently, (F ∗, u) is a solution of MCP(H,L).

Having shown that MCP(H,L) is equivalent to MCP(H̃,L), in the succeeding dis-
cussions we focus our attention to MCP(H̃,L). Note that MCP(H,L) is not monotone
in general. However, we can show that under the following additional assumption the
MCP(H̃,L) becomes monotone.

Assumption 2. There exist a nonincreasing function dw : < → < and a strictly increasing
function t̄a : < → < such that Dw(u) = dw(uw) for each w ∈ W and ta(f) = t̄a(fa) for
each a ∈ A.

Assumption 2 means that Dw is a nonincreasing function of uw only for each w ∈ W ,
and ta is an increasing function of arc flow fa only for each a ∈ A.

Theorem 3.2. Suppose that Assumptions 1 and 2 hold. Then MCP(H̃,L) is monotone.

Proof. Since t̄a is an increasing function and ta(f) = t̄a(fa) for each a ∈ A from Assump-
tion 2, T is monotone. Also, since dw is a nonincreasing function and Dw(u) = dw(uw)
for each w ∈ W from Assumption 2, it follows that −D

(
U(v)

)
is monotone. For any

(F1, v1)T , (F2, v2)T ∈ <nR ×<nW , we have

(
H̃(F1, v1)− H̃(F2, v2)

)T
((

F1

v1

)
−

(
F2

v2

))

=
(
T (F1)− T (F2)

)T
(F1 − F2)−

(
Γv1 − Γv2

)T
(F1 − F2)

+
(
ΓT (F1 − F2)

)T
(v1 − v2)−

(
D(U(v))−D(U(v))

)T
(v1 − v2)

=
(
T (F1)− T (F2)

)T
(F1 − F2)−

(
D(U(v))−D(U(v))

)T
(v1 − v2) ≥ 0,

where the last inequality follows from the monotonicity of T (F ) and −D(U(v)). Hence
MCP(H̃,L) is monotone.

Using a similar argument, we can show the following result.

Corollary 3.3. If Dw(u) is constant for each w ∈ W , then MCP(H̃,L) is monotone. ¤
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3.3 Existence and Uniqueness Results

In this subsection, we present some existence and uniqueness results for our proposed
model (3.2).

The first result ensures that MCP(H̃,L) has a solution, i.e., our model has an equilib-
rium. To prove it, we make use of a result by Facchinei and Pang (2003).

Assumption 3. The function Cr defined by (3.2) is nonnegative, and Dw is bounded
above on the set {u ∈ <nW |u > 0}.
Theorem 3.4. Suppose Assumption 3 holds. Then MCP(H̃,L) has a nonempty bounded
solution set. Moreover, if Assumptions 1 and 2 hold, the set of solutions is convex.

Proof. Since Cr is nonnegative and Dw is bounded above by Assumption 3, it follows from
Proposition 2.2.14 in Facchinei and Pang (2003) that MCP(H̃,L) has a solution. Next we
show that the solution set is bounded. Let S be its solution set and let SF = {F |(F, v) ∈ S}
and Sv = {v|(F, v) ∈ S}. Since

∑
r∈Rw

Fr = Dw(U(v)), ∀w ∈ W for all (F, v) ∈ S and, by
assumption, the demand function D is bounded, it follows that SF is bounded. Moreover,
we note that Tr(F ) ≥ vw ≥ 0, ∀r ∈ Rw, w ∈ W , from Assumption 1 and the definitions
of MCP(H̃,L). Hence, Sv is bounded since SF is bounded. Thus, the solution set S of
MCP(H̃,L) is bounded.

Suppose that Assumptions 1 and 2 hold. Since MCP(H̃,L) is monotone by Theorem
3.2, it follows that the set of solutions is convex (Facchinei and Pang, 2003).

Next we show that the set of solutions of MCP(H̃,L) is a singleton under the following
assumption together with Assumption 1.

Assumption 2′. There exist a strictly decreasing function dw : < → < such that Dw(u) =
dw(uw) for each w ∈ W . Moreover, T (F ) = (. . . , ta(F ), . . .)T is a strictly monotone
function.

Under Assumption 2′, both T and −D(U(·)) are strictly monotone.

Theorem 3.5. Suppose that Assumptions 1, 2′ and 3 hold. Then MCP(H̃,L) has a unique
solution.

Proof. It follows from Theorem 3.4 that MCP(H̃,L) has a solution. To show that this
solution is unique, let x1 = (F T

1 , vT
1 )T and x2 = (F T

2 , vT
2 )T be two solutions of MCP(H̃,L).

Since x1, x2, H̃(x1) and H̃(x2) are nonnegative, from the complementarity conditions
xT

1 H̃(x1) = 0 and xT
2 H̃(x2) = 0, we have

(x1 − x2)T
(
H̃(x1)− H̃(x2)

) ≤ 0.

From the definition (3.3) of H̃ and x, the above inequality can be rewritten as

(F1 − F2)T
(
T (F1)− Γv1 − T (F2) + Γv2

)
+ (v1 − v2)T

(
ΓT F1 −D(U(v1))− ΓT F2 + D(U(v2))

) ≤ 0,

which implies that

(F1 − F2)T
(
T (F1)− T (F2)

)
+ (v1 − v2)T

(−D(U(v1)) + D(U(v2))
) ≤ 0. (3.4)

Since T and −Dw(U(·)) are strictly monotone from Assumption 2′, the inequality (3.4)
implies that F1 = F2 and v1 = v2. Therefore, the solution set is a singleton.
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4 Numerical Results

In this section, we present our computational results. Under Assumption 1, we can
easily verify that NCP(H) and NCP(H̃) are equivalent to MCP(H,L) and MCP(H̃,L),
respectively. In our numerical experiments, we try to obtain an equilibrium solution of the
TEP with (3.2) by solving NCP(H) and NCP(H̃) instead of MCP(H,L) and MCP(H̃,L).
To solve NCPs, we use the Generalized Newton Method (GNM) of Jiang (1999). The
main reason for choosing the GNM is due to the fact that our proposed model satis-
fies monotonicity properties, and the GNM has nice convergence properties under these
conditions.

The numerical experiments consist of two parts. In the first part we check the validity
of our model by comparing it with the traditional model with additive costs. Here, we use
a network with two transportation modes. Our model uses different disutility functions
for the different transportation modes.

In the second part of the experiments, we aim to find a solution for the two NCP
formulations, namely, NCP(H) and NCP(H̃), in order to compare the two formulations.

The coding was done in Matlab 6.5. In our experiments, we used three different sample
networks (Figures 1, 2 and 3). The network shown in Figure 1 is taken from Chen et al.
(1999), the one shown in Figure 2 is taken from Yang (1997) and the one in Figure 3 is
taken from Yang and Bell (1997).

Figure 1: The 7-arc Network A.

Figure 2: The 7-arc Network B.

The routes and OD pairs are given in Table 1. The demand function used is

Dw(uw) = −b1
w(exp(−b2

wuw)),
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Figure 3: The 11-arc Network.

where b1
w and b2

w are given in Table 2 (for the 2-mode case) and Table 4 (for the single-mode
case). The arc cost function used is

ta(f) = c1
w(1.0 + 0.15(f/c2

w)4),

where c1
w and c2

w are given in Table 3 (for the 2-mode case) and Table 5 (for the single-mode
case).

Table 1: Network routes and OD pairs.

Network OD pair Route

7-arc A

1-2 {a}, {b,c,d}
1-3 {b,c,f}
4-2 {c,d,e}
4-3 {c,e,f}, {g}

7-arc B
1-4 {c,f,g}, {a,c}, {d,f}
1-5 {b,c,g}, {c,e}, {b,d}

11-arc

1-7 {a,c}, {b,d}
2-7 {h,i}, {b,d,e}, {e,k}, {a,c,e}
3-7 {j}, {c,g}
6-7 {i}, {d,f}

Table 2: Coefficients of the demand function of the 7-arc Network A for the 2-mode case.

Coefficients of the OD pair
demand function MODE A MODE B

1-2 1-3 4-2 4-3 1-2 1-3 4-2 4-3
b1
w 400 400 400 400 400 400 400 400

b2
w 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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Table 3: Coefficients of the arc cost function of the 7-arc Network A for the 2-mode case.

Coefficients of the Arc
demand function a b c d e f g

c1
w 60 10 5 8 12 5 70

c2
w 200 300 700 300 300 300 200

Table 4: Coefficients of the demand function for the single-mode case.

Network
Coefficients of the demand function

b1
w b2

w

7-arc A

600 0.04
500 0.03
500 0.05
400 0.05

7-arc B
200 0.2
220 0.2

11-arc

600 0.04
500 0.03
500 0.05
400 0.05

4.1 Comparison of the Proposed Model and the Traditional Model

We have tested the validity of our proposed formulation. In this experiment, we
compare our proposed model to that of the traditional model on the 7-arc Network A
with two transportation modes.

In this experiment, we suppose that both modes have the same OD pairs (Table 1),
set of routes (Table 1) and demand functions (Table 2). For the traditional model, we use
the same route cost functions for both modes A and B, that is, Cr(F ) = Tr(F ). On the
other hand, for the proposed model we use different route cost functions for mode A and
for mode B, that is, CA

r (F ) = Tr(F ) and CB
r (F ) = Tr(F ) + 0.001(Tr(F ))2, respectively.

The results are shown in Table 6. In the table, FA
r , r = 1, . . . , 6, stand for the route

flows corresponding to mode A, and FB
r , r = 1, . . . , 6, stand for the route flows correspond-

ing to mode B. The results show that, compared to the route flows for the traditional TEP
model, there is a significant difference in the route flows of the two modes for our proposed
model. As expected, the routes with lower travel costs (i.e., lower disutility function val-
ues) have higher route flows (in the case of mode A), while routes with higher disutility
function values have lesser flows (in the case of mode B).
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Table 5: Coefficients of the arc cost function for the single-mode case.

Network Arc
Coefficients of the Arc Cost Function

c1
w c2

w

7-arc A

a 60 50
b 10 2
c 5 6
d 8 2
e 12 13
f 5 6
g 70 60

7-arc B

a 6 15
b 4 15
c 3 30
d 5 30
e 6 15
f 4 15
g 1 15

11-arc

a 6 200
b 5 200
c 6 200
d 7 200
e 6 100
f 1 100
g 5 150
h 10 150
i 11 200
j 11 200
k 15 200

4.2 Comparison of NCP(H) and NCP(H̃) Formulations

We have also compared the NCP formulations of the TEP, namely, NCP(H) and
NCP(H̃). The networks are tested using nonlinear link cost functions, an elastic de-
mand function and various disutility functions. Here we introduce two disutility functions,
namely,

(i) Uw(Tr(F )) = (Tr(F ))2; and

(ii) Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2

for the route cost functions on each network.
The computational results are shown in Tables 7 and 8. In these tables, “NETWORK”

stands for the sample network used, the columns NCP(H) and NCP(H̃) under “RESID-
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Table 6: Route flows of 7-arc Network A for the 2-mode case.

Route Flow
MODEL

Traditional Proposed
FA

1 0.0000 0.0000
FA

2 75.8216 76.8721
FA

3 101.9756 103.2007
FA

4 144.9559 146.1842
FA

5 104.7306 105.5160
FA

6 0.0000 0.0000
FB

1 0.0000 0.0000
FB

2 75.8216 72.8016
FB

3 101.9756 99.4810
FB

4 144.9559 143.2517
FB

5 104.7306 101.8342
FB

6 0.0000 0.0000

UAL” respectively show the values of the residuals for the two NCP formulation. The
residual is defined as r(x) = |xT H(x)| + ∑nR+nW

i=1 min{0, xi} +
∑nR+nW

i=1 min{0,Hi(x)}
and it is computed in order to evaluate the quality of the solutions. Therefore, the resid-
uals should be as small as possible; a value very close to zero is ideal.

Table 7: Residuals when Uw(Tr(F )) = (Tr(F ))2.

NETWORK initial point of GNM
RESIDUAL

NCP(H) NCP(H̃)

7-arc A
(0,0,0,0,0,0,0,0,0,0) 7.047E-003 1.1479E-005
(1,1,1,1,1,1,1,1,1,1) 6.645E-003 1.7912E-005

(10,10,10,10,10,10,10,10,10,10) 3.499E-003 2.5162E-005

7-arc B
(0,0,0,0,0,0,0,0) 2.1822E-009 8.0737E-006
(1,1,1,1,1,1,1,1) 1.9485E-009 2.9617E-008

(10,10,10,10,10,10,10,10) 1.7703E-009 2.9615E-008

11-arc
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 6.5077E-009 1.4218E-006
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 9.8253E-007 2.9473E-009

(10,10,10,10,10,10,10,10,10,10,10,10,10,10,10) 7.5163E-007 6.5297E-007

We have also tested our proposed reformulation for the case where there are two
different transportation modes in the network. In this example, we use Network A (Figure
1). The results for this case are shown in Table 9.

In both cases, the results reveal that our proposed reformulation NCP(H̃) success-
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Table 8: Residuals when Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2.

NETWORK initial point of GNM
RESIDUAL

NCP(H) NCP(H̃)

7-arc A
(0,0,0,0,0,0,0,0,0,0) 3.9814E+004 6.1748E-013
(1,1,1,1,1,1,1,1,1,1) 3.8881E+004 4.3999E-014

(10,10,10,10,10,10,10,10,10,10) 1.2173E-008 1.7146E-011

7-arc B
(0,0,0,0,0,0,0,0) 8.7901E-006 5.0343E-009
(1,1,1,1,1,1,1,1) 9.8626E-007 4.2881E-010

(10,10,10,10,10,10,10,10) 9.1695E-007 1.1765E-012

11-arc
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 3.6525E-006 1.5524E-006
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 3.6775E-006 1.0126E-008

(10,10,10,10,10,10,10,10,10,10,10,10,10,10,10) 2.0176E-006 1.6949E-008

Table 9: Residuals for the 7-arc Network A for the case when there are 2 modes of
transportation using the routes in the network.

NETWORK initial point of GNM
RESIDUAL

NCP(H) NCP(H̃)

Uw(Tr(F )) = (Tr(F ))2
(0,0,0,0,0,0,0,0,0,0) 2.3817E-002 2.2658E-006
(1,1,1,1,1,1,1,1,1,1) 8.8063E-004 3.2301E-005

(10,10,10,10,10,10,10,10,10,10) 4.2729E-002 3.3028E-005

Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2
(0,0,0,0,0,0,0,0,0,0) 1.9057E+004 7.9972E-009
(1,1,1,1,1,1,1,1,1,1) 1.8794E+004 7.9962E-009

(10,10,10,10,10,10,10,10,10,10) 9.1208E-010 7.9978E-009

fully yields an equilibrium of the original TEP as evident by the computed residual for
each formulation (see for example, in Table 8 for the 7-arc A Network and Table 9 for
Uw(Tr(F )) = Tr(F ) + 0.01(Tr(F ))2 ). However, we have a difficulty in obtaining an equi-
librium of the TEP by solving NCP(H) as it lacks the monotonicity.

5 Conclusions

In this paper, we have formulated the TEP with nonadditive route costs by intro-
ducing a disutility function, then presented its monotone MCP reformulation. For this
reformulation, we have established the existence and uniqueness of the equilibrium of the
proposed model. Moreover, we have shown through numerical experiments that our new
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MCP reformulation is useful in identifying an equilibrium of the TEP.
Extending our monotone MCP formulation for the TEP with nonadditive costs to

the more general multiclass network or cost functions will be another important topic to
explore.
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M. Labbé Eds.), Transportation Planning – State of the Art. Kluwer Academic Publish-
ers, Boston, MA., 19–31.

Lo, H.K., Chen, A., 2000. Traffic equilibrium problem with route-specific costs: For-
mulation and algorithms. Transportation Research Part B 34, 493–513.
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