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Abstract

We clarify a financial meaning of duality in the semi-infinite programming
problem which emerges in the context of determining a derivative price range
based only on the no-arbitrage assumption and the observed prices of other
derivatives. The interpretation links studies in the above context to studies
in stochastic models.
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1 Introduction

One of the most important issues in financial economics is to derive an appropriate
price of a derivative security, which is called option pricing. Option pricing is based
on the well-known fundamental assumption that the market is no-arbitrage, which
intuitively means that we cannot increase a value of our portfolio without any risk.
Under the no-arbitrage assumption, a derivative price must be the same as a value
of a portfolio that replicates the derivative if such a hedging portfolio exists. In
addition to the no-arbitrage assumption, many option pricing methods assume some
stochastic differential equations for prices of risky assets. A typical approach, the
Black-Sholes model introduced in [5] and [12] assumes a geometric Brownian motion
for the risky stock price. By this assumption, every derivative can be replicated by
a portfolio consisting of the risk-free bond and the underlying stock, and therefore
has a unique price equal to the price of the hedging portfolio. However, it is well
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known that a stock price in the actual market does not obey the geometric Brownian
motion. For example, a log-return of a stock displays a heavy tailed distribution
different from a Gaussian distribution. It seems hard to find a stochastic differential
equation that perfectly fits the dynamics of an asset price.

Thus, a natural question that arises is to derive a derivative price range based
only on the no-arbitrage assumption and the observed prices of other derivatives
without assuming any stochastic model for the dynamics of asset prices. This ques-
tion has been studied in [6], [9] and [11]. They derived upper and lower bounds on
option prices consistent with given mean and (co)variance of the underlying asset
prices under a risk-neutral measure. Bertsimas and Popescu [3] showed that the
question can be well treated in the framework of an SILP (semi-infinite linear pro-
gramming problem). They furthermore showed that several problems are reducible
to an SDP (semi-definite programming problem) by using duality in the SILP. By
the same duality technique, Han et al. [10] investigated a case in which a derivative
is written on multi-assets. While all studies mentioned above have treated the case
of a single maturity, Bertsimas and Bushueva [1, 2] derived an option price range
consistent with the prices of other derivatives with distinct maturities. This type of
study is also related to a study of implied models proposed in [8], [7] and [14] in the
sense that both studies use the observed prices of derivatives.

This paper gives a financial interpretation of duality of the SILP, which has
been used only from the computational profit in the previous studies [3] and [10].
We show that the dual problem is related to a hedging strategy called a buy-and-
hold hedging portfolio. This financial interpretation also explains the relationship
between the approach based only on the no-arbitrage assumption and the observed
prices of derivatives and the usual stochastic approach such as the B. S. model.

This paper is organized as follows. Section 2 gives a brief review of the results in
[3], after introducing two financial market models and notations. Section 3 describes
the financial interpretation of duality in the SILP.

2 Preliminaries

This section introduces two financial market models, and then gives a brief expla-
nation for the previous results in [3]. We first introduce notations and two models
which will be used throughout this paper.

Notation Let T > 0 and let m be a positive integer. Let ΦT and F T
i denote simple

claims written on m risky assets with exercise date T and payoff functions φ
and fi : Rm

+ �→ R+, respectively. Prices of ΦT and F T
i at time t are ΦT (t) and

F T
i (t) respectively. Let ∆(Rm

+ ) denote the set which consists of all probability
measures on the Borel set (Rm

+ ,B(Rm
+ )), and Q denotes a risk-neutral measure.
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Model A Assume a no-arbitrage financial market which consists of m risky assets
and one risk-free asset with constant risk-free rate r(t) = 0. The price process
of m risky assets S(t) is an m dimensional Ft adapted process defined on a
filtered probability space (Ω,F , (Ft)0≤t, P ).

Model B In addition to the assumptions in Model A, S(t) follows stochastic dif-
ferential equations under P such that

P (S(t) ∈ {|x − a| < ε}) > 0 (t, ε > 0, a ∈ Rm
+ ).

We can take any deterministic function for the risk-free rate r(t), but we assume
r(t) = 0 without loss of generality. While Model A is based only on the no-arbitrage
assumption, Model B includes conventional models such as the B. S. model assumed
in many studies in option pricing.

Since the market is no-arbitrage in both models, there exists a risk-neutral mea-
sure Q. By using Q, the price of ΦT at time t must be expressed as

ΦT (t) = EQ[φ(S(T ))|Ft], (1)

which follows from the Fundamental Theorem in option pricing (for instance, refer
to p.133 – p.153 in [4]). In Model A, the problem of finding the supremum on prices
of a simple claim ΦT consistent with observed prices of F T

i is described as follows:

maximize Q(∼P ) EQ[φ(S(T ))]

subject to EQ[fi(S(T ))] = qi (i = 1, 2, . . . , n),
(2)

where Q ∼ P means that Q is a probability measure equivalent to P . We can
also consider the problem of finding the infimum on ΦT (0) consistent with F T

i (0)
by replacing maximize with minimize in (2). Since no particular dynamics of S(t)
under P is given, the property of equivalence restricts nothing. Problem (2) with
respect to a probability measure Q on (Ω,F) can be reduced to the following SILP
with respect to a probability measure µ on (Rm

+ ,B(Rm
+ )).

maximize µ∈∆(Rm
+ )

∫
Rm

+

φ(x)dµ

subject to

∫
Rm

+

fi(x)dµ = qi (i = 1, 2, . . . , n).

(3)

The dual of problem (3) is the following SILP:

minimize y∈Rn+1 y0 +

n∑
i=1

qiyi

subject to y0 +
n∑

i=1

yifi(x) − φ(x) ≥ 0 (∀x ∈ Rm
+ ).

(4)
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Problems (3) and (4) have the same optimal value if φ and fi are continuous func-
tions having a compact support. By using this duality in the SILP, Bertsimas and
Popescu [3] reduced the problem of finding the supremum and the infimum on ΦT (0)
consistent with F T

i (0) in Model A to an SDP for n = 1, when φ and fi are continu-
ous piecewise polynomials with compact support. The problem for n > 1 has been
reduced to solving a sequence of SDPs via the same duality in [10].

However, the previous studies have employed the dual problem only from the
computational advantage and lack a financial interpretation of the duality. The
next section describes our results which reveal financial importance of the duality
in terms of a buy-and-hold hedging portfolio. The dual viewpoint gives another
importance of the problem of finding a derivative price range based only on the
no-arbitrage assumption and other derivative prices.

3 Financial Interpretation of Duality

This section clarifies the financial meaning of the duality between problems (3) and
(4). We can actually show that problem (4) itself is a meaningful problem of finding
the minimum investment cost of buy-and-hold super-hedging portfolios in Model B.
We can also show that problem (4) finds an arbitrage buy-and-hold strategy if the
observed prices of derivatives contradict the no-arbitrage assumption.

3.1 A buy-and-hold hedging portfolio

First, we explain a buy-and-hold portfolio before clarifying the meaning of the du-
ality from the viewpoint of financial economics. We consider option pricing and
hedging in Model B, which is a general approach. In Model B, buyers’ price of a
simple claim ΦT and sellers’ price of a simple claim ΦT are usually defined as

qbuy(Φ
T ) = sup

{
V (0) | V (t) :

a value process of a self-financing
portfolio such thatV (T ) ≤ φ(S(T ))

}
and

qsell(Φ
T ) = inf

{
V (0) | V (t) :

a value process of a self-financing
portfolio such that V (T ) ≥ φ(S(T ))

}

respectively, where a value process V (t) is expressed as

V (t) = h0(t) + h1(t) · S(t) (5)

for Ft adopted processes h0(t) and h1(t). Here, h0(t) and h1(t) mean the amounts
of the risk-free asset and the risky assets included in a portfolio. Generally, the
following relationship holds:

qbuy(Φ
T ) ≤ ΦT (0) ≤ qsell(Φ

T ).
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In a complete market both prices equalize, and we have

qbuy(Φ
T ) = qsell(Φ

T ) = ΦT (0).

Notice that h0(t) and h1(t) are usually continuously re-balanced in portfolios which
realize qbuy(Φ

T ) and qsell(Φ
T ). In contrast to the usual buyers’ and sellers’ prices

mentioned above, we define buyers’ and sellers’ buy-and-hold hedging prices by
restricting a portfolio to a buy-and-hold portfolio, which means a constant portfolio
with time t. For simple claims F T

i (i = 1, 2, . . . , n), we define buyers’ buy-and-hold
hedging prices qbuy(Φ

T ; F T
i ) and sellers’ buy-and-hold hedging prices qsell(Φ

T ; F T
i )

as follows:

qbuy(Φ
T ; F T

i ) = sup

{
V (0) | V (t) :

a value process of a buy-and-hold
portfolio such that V (T ) ≤ φ(S(T ))

}
, (6)

qsell(Φ
T ; F T

i ) = inf

{
V (0) | V (t) :

a value process of a buy-and-hold
portfolio such that V (T ) ≥ φ(S(T ))

}
, (7)

where a value process V (t) is expressed as

V (t) = y0 +
n∑

i=1

yiF
T
i (t), (8)

for some constants yi (i = 0, 1, . . . , n). In particular we can take F T
i (i = 1, 2, . . . , m)

as risky assets themselves, which means F T
i (t) = Si(t). In that case, we have

qbuy(Φ
T ; F T

i ) ≤ qbuy(Φ
T ) ≤ qsell(Φ

T ) ≤ qsell(Φ
T ; F T

i ),

because we restrict the set of self-financing portfolios (5) to the set of buy-and-hold
portfolios (8).

The sellers’ price qsell(Φ
T ; F T

i ) means the minimum investment costs necessary
to super-hedge the simple claim ΦT with a buy-and-hold portfolio consisting of the
risk-free asset and F T

i , and hence is a favorable price for sellers of ΦT . Conversely
the buyers’ price qbuy(Φ

T ; F T
i ) is a favorable price for buyers. In the following

subsection, we reveal the financial meaning of the duality in terms of buyers’ and
sellers’ buy-and-hold hedging prices.

3.2 Financial interpretation of duality in the SILP

Now we give a financial interpretation of duality in problems (3) and (4) which arise
as a problem of determining a derivative price range based only on the no-arbitrage
assumption and the observed prices of other derivatives. The following proposition
states the meaning of the dual problem (4).
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Proposition 1 Let the derivative prices satisfy

F T
i (0) = qi (i = 1, 2, . . . , n),

which are consistent with Model B. The optimal value in problem (4) is equivalent
to qsell(Φ

T ; F T
i ) in Model B. An optimal solution y∗ ∈ Rn+1 in problem (4) gives an

optimal buy-and-hold super-hedging portfolio for ΦT .

(Proof) By definition (7), we have

qsell(Φ
T ; F T

i ) = inf

{
V (0) | {V (t)} :

a value process of a buy-and-hold
portfolio such that V (T ) ≥ φ(S(T ))

}

= inf

{
V (0) | y ∈ Rn+1 : y0 +

n∑
i=1

yiF
T
i (T ) ≥ φ(S(T ))

}

= inf

{
V (0)| y ∈ Rn+1 : y0 +

n∑
i=1

yifi(x) ≥ φ(x) ∀x ∈ Rm
+

}
.

The last equality holds because S(T ) could be all vectors in Rm
+ by the assumptions of

Model B. By the right side of the last equality, the problem of finding qsell(Φ
T ; F T

i ) in
Model B is equivalent to problem (4), and an optimal solution y∗ ∈ Rn+1 in problem
(4) gives an optimal buy-and-hold super-hedging portfolio for ΦT if it exists. �

Remark 1 The problem in which minimizing and ≥ in the constraint in problem
(4) are replaced with maximizing and ≤, respectively, finds an optimal buy-and-hold
under-hedging portfolio for ΦT if it exists.

By the duality between problems (3) and (4), qsell(Φ
T ; F T

i ) in Model B is larger than
the supremum on ΦT (0) in Model A. Furthermore, if fi and φ are continuous and
have compact supports, then qsell(Φ

T ; F T
i ) in Model B is equal to the supremum on

ΦT (0) in Model A. This is the financial interpretation of the duality which emerges in
the context of option pricing based only on the no-arbitrage assumption and prices
of other derivatives. The strong duality between problems (3) and (4) holds under
weaker assumptions which do not require the functions to be continuous and have
compact supports. For details, refer to [13].

Problem (4) gives an arbitrage buy-and-hold portfolio in the case that problem
(3) is infeasible (i.e. observed prices F T

i (0) = qi (i = 1, 2, . . . , n) contradict the
no-arbitrage assumption of Model A).

Corollary 1 Let the derivative prices satisfy

F T
i (0) = qi (i = 1, 2, . . . , n).
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An optimal solution of the following problem gives an arbitrage buy-and-hold port-
folio, if and only if the optimal value is less than 0 :

minimize y∈Rn+1 y0 +
n∑

i=1

qiyi

subject to y0 +

n∑
i=1

yifi(x) ≥ 0 (∀x ∈ Rm
+ )

yi ∈ [−1, 1] (i = 0, 1, . . . , n).

(9)

Remark 2 Problem (9) adds the extra constraints yi ∈ [−1, 1] to problem (4) for
φ = 0, so that the optimal value is always bounded. For an investment in the actual
market, we must take the range of yi as a volume to which we can trade F T

i at the
observed prices qi, and restrict yi to be integral multiples of a minimum trade unit.

Proposition 1 shows that problem (4) itself is an important problem of finding the
minimum investment costs of super-hedging buy-and-hold portfolios for ΦT which
consist of the risk-free asset and given derivatives F T

i in Model B. This problem is
meaningful especially for practical purpose, because in the actual market continuous
hedging such as delta hedging has a problem of transaction costs. Since Corollary
1 enables us to make an arbitrage portfolio if it exists, it could be useful for a large
investment company which can trade many kinds of derivative securities with the
same maturity.

Our interpretation from the financial viewpoint also unveils the relationship be-
tween results in Model A and Model B. For instance, it is shown in [1] and [2] that
Ψµ(k) =

∫
R+

max{x − k, 0}dµ (k > 0) determines a unique risk-neutral measure µ.
This has a dual relationship with the following proposition regarding buy-and-hold
hedging in the B. S. model on p.123 in [4].

Proposition 2 Assume the B.S. model that consists of a risk-free asset and a risky
asset S, and let φ : R+ �→ R+ be a continuous function with compact support.
Then, a simple claim with payoff function φ(S(T )) can be replicated with arbitrary
precision using a buy-and-hold portfolio consisting of the risk-free asset and several
call options.

Figure 1 illustrates Proposition 2. Here, v1 and v2 represent the values of the super-
hedging and under-hedging portfolios for ΦT at T consisting of call options F T

i with
payoff fT

i = max{S(T ) − ki, 0}, that is,

v1(x) = V1(T ) ≥ φ(x) (x ∈ R+),

v2(x) = V2(T ) ≤ φ(x) (x ∈ R+),
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y = v1(x)

y = v2(x)

y = φ(x)

k1 k2 k3 k4 k5

y

x = S(T )

Figure 1: Buy-and-hold hedging portfolios

where Vj (j = 1, 2) are of the form

Vj(t) =

n∑
i=1

yi,jF
T
i (t)

with certain constants yi,j (i = 1, 2, . . . , n, j = 1, 2). The relationship V2(0) ≤
ΦT (0) ≤ V1(0) always holds, and Proposition 2 shows that Vj(0) can be made
arbitrarily close to ΦT (0) by letting n → +∞. Thus, the dual problem (4) could
be more helpful to visualize the meaning than problem (3). As a special case of
problem (3), the problem of determining a price range for a call option based on
the observed prices of call options with other strikes has been fully investigated in
[3]. From the dual viewpoint we can state that it is a problem of finding an optimal
buy-and-hold hedging portfolio consisting of given call options.

4 Conclusion

This paper has investigated the duality in the semi-infinite linear programming
problem which arises in the context of determining a derivative price range based
only on the observed prices of other derivatives. and the no-arbitrage assumption
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(Model A). A contribution of this paper is to give an interpretation of the duality
from the viewpoint of financial economics and reveal another importance of studies
in Model A.

We have actually clarified that the dual of a problem of finding the supremum
on derivative prices with the observed prices of other derivatives in Model A is
equivalent to the problem of finding the minimum investment costs of buy-and-
hold super-hedging portfolios for the derivative in the usual financial market model
(Model B). This problem is useful for investors because in the actual market re-
balancing a hedging portfolio takes transaction costs. The interpretation links some
previous studies in Model A to the results for Model B in terms of a buy-and-hold
hedging portfolio.
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