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Abstract

This paper derives, in closed forms, upper and lower bounds on risk-neutral
cumulative distribution functions of the underlying asset price from the ob-
served prices of European call options, based only on the no-arbitrage as-
sumption. The computed bounds from real data show that the gap between
the upper and lower bounds is large near the underlying asset price but gets
smaller away from the underlying asset price. Since the bounds can be easily
computed and visualized, they could be practically used by investors in vari-
ous ways.
Keywords: Option pricing, Risk-neutral measure, Semi-infinite programming,
Risk-neutral cumulative distribution function

1 Introduction

One of the most important issues in financial economics is option pricing, i.e., to
derive an appropriate price of a derivative security, from the well-known funda-
mental assumption that the market is no-arbitrage (i.e., intuitively, the value of a
portfolio can not be increased without any risk of the loss). Under the no-arbitrage
assumption, a derivative price must become the same as the value of a portfolio that
replicates the derivative, assuming that such a hedging portfolio exists. In addition
to the no-arbitrage assumption, existing option pricing methods assume other con-
ditions described by stochastic differential equations for prices of risky assets. A
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typical approach, the Black-Scholes model introduced in [5] and [13], assumes a
geometric Brownian motion for the risky stock price. By this assumption, every
derivative can be replicated by a portfolio consisting of the risk-free bond and the
underlying stock, and therefore has the unique price equal to the price of the hedging
portfolio. However, precisely speaking, a stock price in the actual market does not
obey the geometric Brownian motion. For example, a log-price of a stock displays
a heavy tailed distribution, which is different from the Gaussian distribution. How-
ever, it is hard to find a stochastic differential equation that perfectly describes the
dynamics of real asset prices.

Thus, a natural question that arises is to derive a derivative price range from
the observed prices of other derivatives, based only on the no-arbitrage assumption
without assuming any stochastic model for the dynamics of asset prices. This ques-
tion has been studied in [6], [10] and [12]. They derived upper and lower bounds
on option prices consistent with the given mean and (co)variance of the underlying
asset prices under a risk-neutral measure. Bertsimas and Popescu [3] have shown
that the question can be treated in the framework of an SILP (semi-infinite linear
programming problem). In particular, they reduced the problem to an LP, assum-
ing that the payoff functions are continuous and piecewise linear functions over a
compact support. This approach is also related to the study of the implied binomial
and trinomial models proposed in [7], [8] and [15] in the sense that both use the
observed prices of derivatives.

In this paper, we investigate the problem of finding bounds on risk-neutral cumu-
lative distribution functions of the underlying asset price from the observed prices of
call options, based only on the no-arbitrage assumption. By considering this special
case, we can analytically derive the bounds on risk-neutral measures, which saves us
from computing the numerous corresponding LPs as discussed in [3]. We then com-
pute the bounds from Nikkei-225 option data in Japan. To derive the risk-neutral
measure implied from the real data is important, because the risk-neutral measure
plays a decisive role in pricing financial securities, and it represents market’s view
of risk. Actually, several studies such as [9] and [11] have investigated this problem,
but they restrict their attention to a class of densities with heavy tails and the Garch
model, respectively.

This paper is organized as follows. Section 2 explains the problem formulation
and the results obtained in [1]. Section 3 describes our main result, that is, the
bounds on risk-neutral measures in closed forms. Section 4 illustrates computational
results obtained from Nikkei-225 option data in Japan.
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2 The Problem Formulation

This section introduces the problem and describes some results obtained in [1], [2]
and [3] for future use.

We consider the problem of finding bounds on risk-neutral cumulative distribu-
tion functions of the underlying asset price from the observed prices of call options,
based only on the no-arbitrage assumption. By the Fundamental Theorem in op-
tion pricing (see a standard textbook such as p.133 – p.153 in [4]), the no-arbitrage
assumption is equivalent to the existence of a risk-neutral measure Q which is equiv-
alent to the observed probability measure P. Let S(t) and r(t) denote the price of
the underlying asset at time t and the risk-free rate, respectively. Formally, S(t)
is an Ft adapted process defined on a filtered probability space (Ω,F , P ;Ft). This
intuitively means that for each t (≥ 0), the value of S(t) is observed (determined) at
time t. Let us observe n (≥ 1) types of European call options on the same underlying
asset, with the same exercise date and different strikes. For i = 1, 2, . . . , n, let qi

denote the observed prices of European call options with exercise date T and strikes
ki at time 0. Without loss of generality, we assume 0 ≤ k1 < k2 < · · · < kn in the
rest of this paper.

Since the price of European option with payoff φ(S(T )) is expressed as

EQ[e−
∫ T
0 r(t)dtφ(S(T ))] (1)

for a risk-neutral measure Q, a risk-neutral measure Q implied by the observed
prices qi must satisfy

EQ[e−
∫ T
0 r(t)dt max{S(T ) − ki, 0}] = qi (i = 1, 2, . . . , n). (2)

Here, EQ denotes the mean under the probability measure Q. Note that the payoff
of the call option is defined by max{S(T )− ki, 0}, because the holder of the option
receives S(T ) − ki by exercising the option on the exercise date T. Thus, the prob-
lem of finding the supremum and the infimum on values of risk-neutral cumulative
distribution functions of S(T ) at each a (≥ 0) can be formulated as follows: For
each a ≥ 0,

maximize Q(∼P ) Q[S(T ) ∈ [0, a]]
(or minimize)

subject to EQ[e−
∫ T
0 r(t)dt max{S(T ) − ki, 0}] = qi (i = 1, 2, . . . , n),

(3)

where Q moves over the set of probability measures on (Ω,F) such that Q is equiv-
alent to the observed probability measure P (Q ∼ P in problem (3) denotes that Q
is a probability measure equivalent to P ). If we could derive the optimal values of
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problem (3) for all a ≥ 0, the upper and lower bound functions can be obtained as
functions of a ≥ 0. Note that the obtained bounds may not be tight in the following
sense: It is likely that no single risk-neutral probability measure Q gives the upper
(or lower) bound function for all a ≥ 0, though for any fixed a ≥ 0 there exists a
Q that attains the bound at a. To determine the bounds on risk-neutral cumulative
distribution functions is a fundamental question, because every European option on
S(T ) can be priced via (1), from the implied risk-neutral measure.

Since no particular dynamics of S(t) under P is assumed, the equivalence Q ∼ P
in problem (3) does not add any restriction. Thus, by taking µ as a distribution of
S(T ) under Q, the price of call option with exercise date T and strike a is given by

Ψµ(a) =

∫
R+

e−
∫ T
0 r(t)dt max{x − a, 0}dµ(x). (4)

Then, problem (3) can be reduced to the following SILP to determine a probability
measure µ on the Borel space (R+,B(R+)): For each a ≥ 0,

maximize µ∈∆(R+) µ([0, a])
(or minimize)

subject to

∫
R+

e−
∫ T
0 r(t)dt max{x − ki, 0}dµ(x) = qi (i = 1, . . . , n),

(5)
where R+ denotes [0,∞), and ∆(R+) denotes the set of probability measures on the
Borel space (R+,B(R+)). This problem is a concrete and solvable problem compared
with the abstract problem (3) on the probability space (Ω,F).

Problem (5) is a special case of the problems investigated in [3], because µ([0, a])
is the same as

∫
R+

1[0,a]µ(x), where 1[0,a](x) denotes the defining function of the set

[0, a]. Although it involves the discontinuous payoff function 1[0,a](x), for a fixed
a ≥ 0, problem (5) can be reduced to an LP by using the same dual technique
proposed in [3]. In Section 3 of this paper, however, we derive the infimum and
the supremum of problem (5) as functions of a (≥ 0) in closed forms. In other
words, we can compute the upper and lower bounds without actually solving the
numerous LPs. From the dual viewpoint revealed in [14], problem (5) is equivalent
to finding the minimum costs necessary to super-hedge a binary option with payoff
1{S(T )∈[0,a]}(S(T )) with a buy-and-hold portfolio including the given call options.

Formulation (5) permits any deterministic function as the risk-free rate r(t), but
we assume r(t) = 0 in the rest of this paper. In this case, the above price Ψµ(a) of
(4) becomes

Ψµ(a) =

∫
R+

max{x − a, 0}dµ(x). (6)
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If r(t) �= 0, we just replace qi (i = 1, 2, . . . , n) with e
∫ T
0

r(t)dtqi. In most cases, not
only the prices of the call options but also the underlying asset price S(0) itself is
observed. In this case, we have only to put k1 = 0 and take S(0) as q1, as the
underlying asset price is equal to the price of the call option with strike 0, i.e.,
S(0) = Ψµ(0). If S(0) is observed the results in this paper can be also applied to
European put options, because the prices of the corresponding European call options
can be derived from S(0) and the prices of put options via the put-call parity (e.g.,
see p.123 in [4]), which is deduced only from the no-arbitrage assumption.

We note that the results in this paper can also be applied to the modified prob-
lems, in which S(T ) in problem (3) are replaced with the maximum asset price

max0≤t≤T S(t) and the average asset prices 1/T
∫ T

0
S(t)dt, by taking µ as distribu-

tions of max0≤t≤T S(t) and 1/T
∫ T

0
S(t)dt, respectively.

Now, we describe the result derived in [1] before explaining our results. The
following condition will be assumed in the subsequent analysis:

Condition A The observed prices of European call options qi with strikes ki (where
0 ≤ k1 < k2 < · · · < kn) satisfy

q1 ≥ q2 ≥ · · · ≥ qn ≥ 0,
α1 ≤ α2 ≤ · · · ≤ αn+1,

where αi = (qi − qi−1)/(ki − ki−1) (i = 2, . . . , n), α1 = −1 and αn+1 = 0. If
there exists an m (< n) such that qm = qm+1, then qm = qm+1 = · · · = qn = 0.

Condition A tells that the piecewise linear price function obtained by connecting
points (ki, qi) (i = 1, 2, . . . , n) is convex and monotonically decreasing (see Figure
1). The following proposition proved in [1] shows that Condition A is a necessary
and sufficient condition for the existence of a risk-neutral measure µ.

Proposition 1 At least one probability measure µ on (R+,B(R+)) exists such that

Ψµ(ki) = qi (i = 1, . . . , n)

if and only if Condition A holds, where Ψµ is defined by (6).

Remark 1 Condition A is usually observed to hold on real data when the trade
volume is large. We will discuss this in Section 4 (see Figure 3).

3 Bounds on Risk-neutral Measures

This section derives the optimal values of problem (5) in closed forms, for both
versions of maximizing and minimizing the objective function. We then discuss
potential applications of the results.
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Figure 1: Convexity of call option prices.

Let fmax(a) and fmin(a) denote the optimal values of problem (5) to maximize
and to minimize, respectively. First, we introduce the following notations:

βi = qi − αiki (i = 1, 2, . . . , n),

βn+1 = qn,

li =
βi − βi+2

αi+2 − αi

(i = 1, 2, . . . , n − 1),

ln = −βn

αn
,

where αi (i = 1, 2, . . . , n + 1) are defined in Condition A. Figure 2 illustrates the
meaning of these quantities. The following proposition, giving close forms of fmax(a)
and fmin(a), is our main theoretical result. With this proposition, we no longer need
to solve the corresponding LP for each a, as proposed in [3].
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Proposition 2 For strikes ki (i = 1, 2, . . . , n), let qi (i.e., the prices of call options
with payoff max{S(T )−ki, 0}) be given. If prices qi satisfy Condition A and qn > 0,
then fmax(a) and fmin(a) are expressed as follows:

fmax(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + α2 (0 ≤ a < k1)

1 + αi +
qi+1 − αiki+1 − βi

ki+1 − a
(ki ≤ a < li, i = 1, 2, . . . , n − 1)

1 + αi+2 (li ≤ a < ki+1, i = 1, 2, . . . , n − 1)

1 (kn ≤ a),

(7)

fmin(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (0 ≤ a < k1)

1 + αi+2 +
βi+2 + αi+2ki − qi

a − ki
(li ≤ a < ki+1, i = 1, 2, . . . , n − 1)

1 + αi (ki ≤ a < li, i = 1, . . . , n)

1 − qn

a − kn

(ln ≤ a).

(8)

(Proof)
Assume that Condition A and qn > 0 hold. Let Ψµ : R+ �→ R+ be given by (6).
The following equality was proved in [1]:

Ψ′
µ(a+) = −µ((a,∞])

= −1 + µ([0, a]), (9)

where Ψ′
µ(a+) denotes the right derivative of Ψµ at a. By (9) and the definition of

fmax and fmin (i.e., optimal values of problem (5)) we have

fmax(a) = sup
µ∈U

µ([0, a])

= 1 + sup
µ∈U

Ψ′
µ(a+). (10)

Here, U is the set of probability measures that satisfy the constraints of problem
(5). Similarly, we have

fmin(a) = 1 + inf
µ∈U

Ψ′
µ(a+). (11)

By Proposition 1, for a fixed a (≥ 0), there exists a probability measure µ ∈ U
satisfying q = Ψµ(a) if and only if Condition A holds for the set of points consisting
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Figure 2: Meanings of αi, βi, li.
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of (a, q) and (ki, qi) (i = 1, 2, . . . , n). Thus, we have

sup
µ∈U

Ψµ(a) =

⎧⎪⎨
⎪⎩

α1a + β1 (0 ≤ a < k1)

αi+1a + βi+1 (ki ≤ a < ki+1, i = 1, 2, . . . , n − 1)

qn (kn ≤ a)

(12)

and

inf
µ∈U

Ψµ(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2a + β2 (k < k1)

αia + βi (ki ≤ a < li, i = 1, 2, . . . , n)

αi+2a + βi+2 (li ≤ a < ki+1, i = 1, 2, . . . , n − 1)

0 (ln ≤ a),

(13)

from the fact that the piecewise linear function connecting (a, q) and (ki, qi) (i =
1, 2, . . . , n) is convex and decreasing. In Figure 2, the hatched regions between
the upper dotted line and the lower dotted lines illustrate the area of points (a, q)
between (12) and (13). Extending this results to all points a (≥ 0), we see that
the price function Ψµ(a) must be a convex and decreasing function contained in
the hatched regions. Conversely, we can show, by modifying Proposition 1 as in
[1], that there exists a µ ∈ U such that Ψµ(a) = g(a) (a ≥ 0) for any convex and
decreasing function g(a) (a ≥ 0) in the hatched regions. Thus, by considering the
right derivatives of all convex and decreasing functions in the hatched regions in
Figure 2, for ki ≤ a < li (i ≤ n − 1), we have

sup
µ∈U

Ψ′
µ(a+) =

qi+1 − (αia + βi)

ki+1 − a
(14)

= αi +
qi+1 − αiki+1 − βi

ki+1 − a

inf
µ∈U

Ψ′
µ(a+) = αi. (15)

Here, the right-hand side of (14) is the gradient of the line connecting two points
(ki+1, qi+1) and (a, infµ∈U Ψµ(a)), and the right-hand side of (15) is the gradient of
the lower dotted line for ki ≤ k ≤ li in Figure 2. For li ≤ a < ki+1 (i ≤ n − 1), we
have

sup
µ∈U

Ψ′
µ(a+) = αi+1 (16)

inf
µ∈U

Ψ′
µ(a+) =

αi+2a + βi+2 − qi

a − ki

(17)

= αi+2 +
βi+2 + αi+2ki − qi

a − ki
,
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where, the right-hand side of (16) is the gradient of the lower dotted line for li ≤ k ≤
ki+1 in Figure 2, and the right-hand side of (17) is the gradient of the line connecting
two points (ki, qi) and (a, infµ∈U Ψµ(a)). For the cases of a < k1 and kn ≤ a we can
derive the supremum and the infimum on the right derivatives in (10) and (11) by
a similar geometric consideration. The resulting functions are given as (7) and (8)
in this proposition. �

Remark 2 In the above proposition, we assumed qn > 0 for the practical reason
that, in the actual market, no call option can be traded at price 0. However similar
results can be obtained even if qn = 0 is allowed.

Remark 3 Figure 4 illustrates the functions fmax(a) and fmin(a) for some given
data (as will be discussed in Section 4).

4 Computational Results

We compute the bounds of Proposition 2 from the data of Nikkei-225 options, which
are most popular in the option market of Japan. Then, the underlying asset price
S(t) is the Nikkei-225 price at time t, and we took as qi the closing prices of the
options with strike ki on the day 4 weeks before the exercise date (i.e., t = 0 on
this day and t = T on the exercise date). We set the risk-free rate as r = 0, as the
maturity is only 4 weeks. For k1 = 0, q1 was taken as the closing price of Nikkei-225
on the day t = 0 (i.e., q1 = S(0)), because S(0) is identified as the price of the call
option with strike 0. We chose the data according to the following rules to improve
the data reliability:

1. Use prices of all Nikkei-225 call and put options which have more than 500
trade volume.

2. When both call and put options with the same strike and the same exercise
date have more than 500 trade volumes, choose the one which has a larger trade
volume. Then, if put option prices are chosen, determine the corresponding
call option prices by applying the put-call parity (i.e., the relation between
prices of a call option and a put option, see p.123 in [4]).

We confirmed that the call option prices obtained by the above rules mostly
satisfy Condition A. An example is shown in Figure 3, which was computed from
the data on March 11, 2004 (4 weeks before the exercise date April 8, 2004). In
Figure 3, there is a large blank area between k = 0 and 8500, because we used not
only prices of the call options with strikes 8500, 9000, . . . , 13500 but also the Nikkei-
225 price S(0) = 11297 as the price of the call option with strike 0. For detailed
data, refer to Tables 1 and 2 in Appendix. We note that Nikkei-225 options are
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Figure 3: Prices of Nikkei-225 call options on March 11, 2004, with the exercise date
of April 8, 2004.
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Figure 4: fmax(a) and fmin(a) on April 8, 2004.

usually traded with 14 strikes, which are set at every 500 Japanese Yen around the
present Nikkei-225 price.

Then, we compute fmax(a) and fmin(a) by Proposition 2 from the data in Figure
3, and illustrate them in Figure 4, where the scale of the x-axis is normalized by the
present Nikkei-225 price S(0). For comparison, we also show the risk-neutral measure
obtained from the Black-Scholes model [5] with volatility σ = 0.2 (see B.S. in Figure
4); i.e., Φ((1/(σ

√
T ))(log(a/S(0)) + σ2T/2)), where Φ(y) = (1/

√
2π)

∫ y

−∞ e−x2/2dx
denotes the standard normal cumulative distribution. Since the risk-neutral measure
in the B. S. model does not exactly satisfy the constraints in (5), the B.S. curve in
Figure 4 slightly violates the boundaries of fmax(a) and fmin(a).

The results show that the difference between the upper and lower bounds is large
in the region close to the present Nikkei-225 price S(0) (i.e., a/S(0) ≈ 1) but it is
small in the region far from S(0). We also computed the bounds for 32 different
exercise dates from January, 2002 to August, 2004, and confirmed that a similar
trend always held for all exercise dates (for example, see Figure 5 in Appendix
showing the results for 3 different exercise dates in 2004).

In closing this section we suggest a few potential applications of our results. A
first application of Proposition 2 is of course to use the upper and lower bounds on
µ for the purpose of estimating the price of European options via (1).
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Another use may be to utilize the above trend of the gap between the upper
and lower bounds. It tells that adding extra strikes in the region close to S(0)
will reduce the difference between the upper and lower bounds more efficiently than
adding them in far regions. Smaller the difference, the easier it becomes to hedge
other European options with the same exercise date. As an extreme case, let us
assume that call options with all nonnegative strikes are actually traded. In this
case, the gap between the upper and lower bounds obtained from the observed prices
becomes 0, and therefore all European options with the same exercise date can be
replicated by a buy-and-hold portfolio consisting of several call options, meaning
that the market is complete (for details see [14]). Since one of the important roles
of the option market is to change the market closer to being complete, it is more
meaningful to set the strikes, not equally spaced but less spaced in the region near the
present Nikkei-225 price S(0). In this way, we could use the bounds of Proposition
2 to set the strikes with which the call options are traded. This suggestion will also
be supported by the observation that trade volume of the options became smaller
for the strikes set farther from the present Nikkei-225 price S(0) (e.g., see Table 1).

In general, the risk-neutral cumulative distribution function µ tells us how in-
vestors view the uncertain risk of S(T ). If the µ implied by the computed bounds
is similar to the cumulative distribution function obtained from the historical data
of the underlying asset price, we can expect that investors in the market are risk-
neutral. This kind of observation will help us when we make investment in the
market.

In analyzing Nikkei-225 data, we observed that the fmax and fmin computed by
Proposition 2 showed different behaviors depending on whether S(T ) has actually
become smaller or larger than the S(0) of 4 weeks ago. This may suggest the
possibility of using fmax and fmin to forecast the future price of an asset, which
would be one of our future topics.

5 Conclusion

This paper investigated the problem of deriving the upper and lower bounds on
risk-neutral cumulative distribution functions of the underlying asset price from the
observed prices of call options, based only on the no-arbitrage assumption. The
main contribution of this paper is to provide the bounds in closed forms, without
solving the corresponding LPs. The bounds are easy to compute. Based on the
bounds computed from the real data of the Nikkei-225 options, we made several
observations and discussed possible applications, which could be used by investors.
Finding more applications of the computed bounds remains as an important and
interesting issue.
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Appendix

Table 1: Data of Nikkei-225 options on March 11, 2004, with the exercise date April
8, 2004.

Strike Call Option Price Trade Volume Put Option Price Trade Volume Choose
7500 N/A 0 N/A 0 N/A
8000 N/A 0 N/A 0 N/A
8500 2780 30 N/A 0 N/A
9000 N/A 0 1 2840 Put
9500 N/A 0 4 3409 Put
10000 N/A 0 15 4128 Put
10500 810 32 55 3940 Put
11000 455 1188 180 866 Call
11500 200 1249 415 163 Call
12000 70 3044 775 94 Call
12500 20 1908 N/A 0 Call
13000 7 2328 N/A 0 Call
13500 2 1127 N/A 0 Call

15



Table 2: Prices of call options on March 11, 2004, with the exercise date April 8,
2004.

Strike ki Price qi

0 11297
9000 2298
9500 1801
10000 1312
10500 852
11000 455
11500 200
12000 70
12500 20
13000 7
13500 2
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 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

y

a/S(0)

f_min(a) Apr. 8
f_max(a) Apr. 8

f_min(a) May 13
f_max(a) May 13
f_min(a) Jun. 10
f_max(a) Jun. 10

Figure 5: fmax(a) and fmin(a) on different dates in 2004.

16


