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Abstract. In this paper, we consider a class of stochastic mathematical programs with
equilibrium constraints introduced by Birbil et al. (2004). Firstly, by means of a Monte Carlo
method, we obtain a nonsmooth discrete approximation of the original problem. Then, we
propose a smoothing method together with a penalty technique to get a standard nonlinear
programming problem. Some convergence results are established. Moreover, since quasi-Monte
Carlo methods are generally faster than Monte Carlo methods, we discuss a quasi-Monte Carlo
sampling approach as well. Furthermore, we give an example in economics to illustrate the
model and show some numerical results with this example.
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1 Introduction

The purpose of this paper is to develop an efficient numerical method for solving the stochastic

mathematical program with equilibrium constraints (SMPEC) formulated as follows:

min E[f(x, y, ω)]

s.t. g(x, y) ≤ 0, h(x, y) = 0, (1.1)

0 ≤ y ⊥ E[F (x, y, ω)] ≥ 0,

where E means expectation with respect to the random variable ω ∈ Ω, the functions f : <n+m×
Ω → <, g : <n+m → <s1 , h : <n+m → <s2 , and F : <n+m × Ω → <m are all twice continuously
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differentiable, and the symbol ⊥ means the two vectors are perpendicular to each other. When

the underlying sample space Ω has a finite number of samples, problem (1.1) reduces to an

ordinary MPEC and there have been proposed a number of approaches [4]. Throughout the

paper, we suppose that Ω has infinitely many samples.

Recently there has been quite active research on various formulations of SMPECs such as

the lower-level wait-and-see model [8,18–20] and the here-and-now model [1,8–12]. Despite the

high potential of practical applicability, however, the formulation (1.1) has rarely been studied

except the recent work of Birbil, Gürkan and Listeş [1] who first treated the SMPEC of this form

and presented a sample-path method for solving it along with rigorous convergence analysis.

In this paper, we propose a Monte Carlo sampling method combined with a penalty tech-

nique for solving problem (1.1). The proposed method is similar in spirit to that of Gürkan et

al. [1]. However, there is a substantial difference between the two methods. Specifically, the ap-

proximation problems solved in our method are ordinary nonlinear programs, while those in the

method of [1] are still MPECs. This fact indicates that the proposed method may significantly

mitigate the computational difficulty in solving the SMPEC (1.1).

We establish convergence of global optimal solutions and stationary points of approximation

problems generated by the proposed method. Moreover, since quasi-Monte Carlo methods are

generally faster than Monte Carlo methods, we suggest a combined quasi-Monte Carlo sampling

and penalty method. Finally, we show some preliminary numerical results with a stochastic

version of Stackelberg-Nash-Cournot game.

The following notations will be used throughout the paper. For a given function c : <s → <s′

and a vector t ∈ <s,∇c(t) ∈ <s×s′ is the transposed Jacobian of c at t and Ic(t) := {i : ci(t) = 0}
stands for the active index set of c at t. For a matrix A, we let Ai denote a column vector whose

elements consist of the ith row of A. In addition, I and O denote the identity matrix and the

zero matrix of suitable dimension, respectively.

2 Preliminaries

In this section, we recall some basic concepts that are often employed in the literature on MPEC.

Let (x∗, y∗) be a feasible point of problem (1.1) and denote

G(x, y) := y, H(x, y) := E[F (x, y, ω)].

Definition 2.1 We say the MPEC-linear independence constraint qualification (MPEC-LICQ)

holds at (x∗, y∗) if the set of vectors
{
∇gi(x∗, y∗),∇hj(x∗, y∗),∇Gı(x∗, y∗),∇H(x∗, y∗) :

i ∈ Ig(x∗, y∗), j ∈ {1, · · · , s2}, ı ∈ IG(x∗, y∗),  ∈ IH(x∗, y∗)
}

(2.1)
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is linearly independent.

Definition 2.2 [16] Suppose that there exist Lagrangian multiplier vectors α∗ ∈ <s1 , β∗ ∈ <s2 ,

and γ∗, δ∗ ∈ <m such that

E[∇(x,y)f(x∗, y∗, ω)] +∇g(x∗, y∗)α∗ +∇h(x∗, y∗)β∗

− (
O
I

)
γ∗ − E[∇(x,y)F (x∗, y∗, ω)]δ∗ = 0, (2.2)

0 ≤ α∗ ⊥ − g(x∗, y∗) ≥ 0, (2.3)

γ∗i = 0, i /∈ IG(x∗, y∗), (2.4)

δ∗i = 0, i /∈ IH(x∗, y∗). (2.5)

• We call (x∗, y∗) a Clarke or C-stationary point of (1.1) if γ∗i δ∗i ≥ 0 holds for each i ∈
IG(x∗, y∗) ∩ IH(x∗, y∗).

• We call (x∗, y∗) a Bouligand or B-stationary point of (1.1) if there holds γ∗i ≥ 0 and δ∗i ≥ 0

for each i ∈ IG(x∗, y∗) ∩ IH(x∗, y∗).

Definition 2.3 We say that the lower-level strict complementarity (LLSC) condition holds at

(x∗, y∗) if IG(x∗, y∗) ∩ IH(x∗, y∗) = ∅.

Note that, when the LLSC holds, there is no difference between the stationarity concepts

given in Definition 2.2.

3 Monte Carlo Sampling and Penalty Method

For ε ≥ 0, we define φε : <2 → < by φε(a, b) := a + b − √a2 + b2 + ε2. Then φ0 is the well-

known Fischer-Burmeister function, which is differentiable except at the origin. When ε > 0,

the function φε is differentiable everywhere. Furthermore, we define Φε : <2m → <m by

Φε(y, w) :=




φε(y1, w1)
...

φε(ym, wm)


 .

It is obvious that problem (1.1) is equivalent to

min E[f(x, y, ω)]

s.t. g(x, y) ≤ 0, h(x, y) = 0, (3.1)

Φ0(y,E[F (x, y, ω)]) = 0.

Since both the objective function and the constraints involve expectations, problem (1.1) or (3.1)

is more difficult to deal with than an ordinary MPEC. Moreover, the constraints in problem (1.1)
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fail to satisfy a standard constraint qualification at any feasible point [3], while (3.1) is actually

a nonsmooth program. We next employ a penalty technique and the Monte Carlo sampling

method to get some appropriate approximations of the above problems.

For a function ψ : Ω → <, the Monte Carlo sampling estimate for E[ψ(ω)] is obtained

by taking independently and identically distributed random samples {ω1, · · · , ωk} from Ω and

letting E[ψ(ω)] ≈ 1
k

∑k
`=1 ψ(ω`). The strong law of large numbers guarantees that this procedure

converges with probability one (abbreviated by “w.p.1”), i.e.,

lim
k→∞

1
k

k∑
`=1

ψ(ω`) = E[ψ(ω)] :=
∫

Ω
ψ(ω)dζ(ω) w.p.1, (3.2)

where ζ(ω) is the distribution function of ω. See [14] for more details.

Thus, by taking independently and identically distributed random samples {ω1, · · · , ωk} from

Ω, we obtain the following approximation of problem (3.1):

min
1
k

k∑
`=1

f(x, y, ω`)

s.t. g(x, y) ≤ 0, h(x, y) = 0,

Φ0

(
y, 1

k

∑k
`=1F (x, y, ω`)

)
= 0.

Note that the above problem is essentially an MPEC. Then, we introduce a smoothing parameter

εk > 0 and, in order to simplify the constraints, we employ a penalty technique to get the

following smooth approximation:

min θk(x, y) :=
1
k

k∑
`=1

f(x, y, ω`) + ρk

∥∥∥Φεk

(
y,

1
k

k∑
`=1

F (x, y, ω`)
)∥∥∥

2
(3.3)

s.t. g(x, y) ≤ 0, h(x, y) = 0,

where ρk > 0 is a penalty parameter. Problem (3.3) is no longer an MPEC and its constraints

are independent of k.

In what follows, we let F and X denote the feasible regions of problems (1.1) and (3.3),

respectively, and we suppose F is nonempty. It is obvious that F ⊆ X .

4 Convergence Analysis

We investigate convergence properties of the Monte Carlo sampling and penalty method in this

section. In the rest of this section, we suppose that F is affine with respect to (x, y) and is given

by

F (x, y, ω) := N(ω)x + M(ω)y + q(ω),

where N : Ω → <m×n, M : Ω → <m×m, and q : Ω → <m are all continuous. In what follows, we

denote

N̄ := E[N(ω)], M̄ := E[M(ω)], q̄ := E[q(ω)].
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In order to obtain some convergence results for the proposed method, we suppose that the

parameters ρk and εk satisfy the following conditions with probability one:

lim
k→∞

ρk = +∞, lim sup
k→∞

ρkεk < +∞, (4.1)

lim
k→∞

√
ρk

(1
k

k∑
`=1

Ni(ω`)− N̄i

)
= 0

lim
k→∞

√
ρk

(1
k

k∑
`=1

Mi(ω`)− M̄i

)
= 0

lim
k→∞

√
ρk

(1
k

k∑
`=1

qi(ω`)− q̄i

)
= 0





i = 1, · · · ,m. (4.2)

Note that (4.1) implies lim
k→∞

εk = 0.

4.1 Limiting behavior of optimal solutions

We first study the convergence of optimal solutions of problems (3.3). The following lemma can

be verified easily.

Lemma 4.1 Let ε ≥ 0. Then, for any real numbers ai and bi, i = 1, 2, we have

|φε(a1, b1)− φε(a2, b2)| ≤ 2(|a1 − a2|+ |b1 − b2|),
|φε(a1, b1)− φ0(a2, b2)| ≤ 2(|a1 − a2|+ |b1 − b2|) + ε.

Definition 4.1 [15] Let σ > 0 and κ ≥ 0 be constants. We say G : <s → <t to be Hölder

continuous on K ⊆ <s with order σ and Hölder constant κ if

‖G(u)−G(v)‖ ≤ κ‖u− v‖σ

holds for all u and v in K.

This concept is a generalization of the Lipschitz continuity, which is, by definition, Hölder

continuity with order σ = 1. Note that, for two different positive numbers σ and σ′, Hölder

continuous functions with order σ and those with order σ′ constitute different subclasses. For

example, the function G(u) :=
√
‖u‖ is Hölder continuous with order σ = 1

2 but not Lipschitz

continuous.

Theorem 4.1 Let f be Hölder continuous in (x, y) on X with order σ > 0 and Hölder constant

κ(ω) > 0 satisfying
∫
Ω κ(ω)dζ(ω) < +∞. Let the parameters ρk and εk be chosen to satisfy (4.1)

and (4.2). Suppose that (xk, yk) solves problem (3.3) for each k and (x∗, y∗) is an accumulation

point of the sequence {(xk, yk)}. Then (x∗, y∗) is an optimal solution of problem (1.1) with

probability one.
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Proof. Without loss of generality, we suppose lim
k→∞

(xk, yk) = (x∗, y∗). Since (xk, yk) is an

optimal solution of problem (3.3), it follows that

1
k

k∑
`=1

f(xk, yk, ω`) + ρk

∥∥∥Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)∥∥∥

2

≤ 1
k

k∑
`=1

f(x, y, ω`) + ρk

∥∥∥Φεk

(
y,

1
k

k∑
`=1

F (x, y, ω`)
)∥∥∥

2
(4.3)

holds for any (x, y) ∈ X and each k.

(a) We first prove that (x∗, y∗) is almost surely a feasible point of problem (1.1). In fact, for

an arbitrary (x̄, ȳ) ∈ F , we have from (4.3), the Hölder continuity of f on X , and (3.2) that

ρk

(∥∥∥Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)∥∥∥

2
−

∥∥∥Φεk

(
ȳ,

1
k

k∑
`=1

F (x̄, ȳ, ω`)
)∥∥∥

2
)

≤ 1
k

k∑
`=1

f(x̄, ȳ, ω`)− 1
k

k∑
`=1

f(xk, yk, ω`)

=
1
k

k∑
`=1

f(x̄, ȳ, ω`)− 1
k

k∑
`=1

f(x∗, y∗, ω`) +
1
k

k∑
`=1

(
f(x∗, y∗, ω`)− f(xk, yk, ω`)

)

≤ 1
k

k∑
`=1

f(x̄, ȳ, ω`)− 1
k

k∑
`=1

f(x∗, y∗, ω`) + ‖(xk, yk)− (x∗, y∗)‖σ · 1
k

k∑
`=1

κ(ω`)

k→∞−−−→ E[f(x̄, ȳ, ω)]− E[f(x∗, y∗, ω)] w.p.1.

This indicates that the sequence

ρk

{∥∥∥Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)∥∥∥

2
−

∥∥∥Φεk

(
ȳ,

1
k

k∑
`=1

F (x̄, ȳ, ω`)
)∥∥∥

2
}

(4.4)

is almost surely bounded above. Since

∥∥∥Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)
− Φεk

(
y∗,

1
k

k∑
`=1

F (x∗, y∗, ω`)
)∥∥∥

2

=
m∑

i=1

[
φεk

(
yk

i ,
1
k

k∑
`=1

Fi(xk, yk, ω`)
)
− φεk

(
y∗i ,

1
k

k∑
`=1

Fi(x∗, y∗, ω`)
)]2

≤ 4
m∑

i=1

[
|yk

i − y∗i |+
∣∣∣1
k

k∑
`=1

(
Ni(ω`)(xk − x∗) + Mi(ω`)(yk − y∗)

)∣∣∣
]2

k→∞−−−→ 0 w.p.1

by Lemma 4.1, we have

lim
k→∞

Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)

= Φ0(y∗,E[F (x∗, y∗, ω)]) w.p.1. (4.5)

On the other hand, it follows from (x̄, ȳ) ∈ F that

lim
k→∞

Φεk

(
ȳ,

1
k

k∑
`=1

F (x̄, ȳ, ω`)
)

= Φ0(ȳ,E[F (x̄, ȳ, ω)]) = 0 w.p.1.
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Since the sequence (4.4) is almost surely bounded and lim
k→∞

ρk = +∞, we have

Φ0(y∗,E[F (x∗, y∗, ω)]) = 0 w.p.1.

Namely, (x∗, y∗) is feasible to (1.1) with probability one.

(b) We next show that (x∗, y∗) is almost surely an optimal solution of problem (1.1). Choose

(x̄, ȳ) ∈ F arbitrarily. It follows that φ0(ȳi,E[Fi(x̄, ȳ, ω)]) = 0 for each i. From Lemma 4.1 and

(4.1)–(4.2), we have

ρk

∥∥∥Φεk

(
ȳ,

1
k

k∑
`=1

F (x̄, ȳ, ω`)
)∥∥∥

2

= ρk

m∑

i=1

[
φεk

(
ȳi,

1
k

k∑
`=1

Fi(x̄, ȳ, ω`)
)
− φ0(ȳi,E[Fi(x̄, ȳ, ω)])

]2

≤ ρk

m∑

i=1

(
2

∣∣∣1
k

k∑
`=1

Fi(x̄, ȳ, ω`)− E[Fi(x̄, ȳ, ω)]
∣∣∣ + εk

)2

=
m∑

i=1

[
2
√

ρk

∣∣∣
(1

k

k∑
`=1

Ni(ω`)− N̄i

)T
x̄

+
(1

k

k∑
`=1

Mi(ω`)− M̄i

)T
ȳ +

(1
k

k∑
`=1

qi(ω`)− q̄i

)∣∣∣ + εk
√

ρk

]2

k→∞−−−→ 0 w.p.1. (4.6)

Moreover, we have from (4.3) that, for every k,

1
k

k∑
`=1

f(xk, yk, ω`) ≤ 1
k

k∑
`=1

f(x̄, ȳ, ω`) + ρk

∥∥∥Φεk

(
ȳ,

1
k

k∑
`=1

F (x̄, ȳ, ω`)
)∥∥∥

2
. (4.7)

On the other hand, it follows from the Hölder continuity of f that

∣∣∣1
k

k∑
`=1

(
f(x∗, y∗, ω`)− f(xk, yk, ω`)

)∣∣∣ ≤ (‖xk − x∗‖+ ‖yk − y∗‖) · 1
k

k∑
`=1

κ(ω`)

k→∞−−−→ 0 w.p.1,

which along with (3.2) yields

lim
k→∞

1
k

k∑
`=1

f(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

f(x∗, y∗, ω`) = E[f(x∗, y∗, ω)] w.p.1. (4.8)

Thus, letting k → +∞ in (4.7) and taking (4.6) and (4.8) into account, we obtain

E[f(x∗, y∗, ω)] ≤ E[f(x̄, ȳ, ω)] w.p.1,

which indicates that (x∗, y∗) is an optimal solution of problem (1.1) with probability one. This

completes the proof of the theorem.

7



4.2 Limiting behavior of stationary points

In general, it is difficult to obtain a global optimal solution of problem (3.3), whereas computation

of stationary points is relatively easy. Therefore, it is important to study the limiting behavior

of stationary points of problem (3.3). We will use the standard definition of stationarity in

nonlinear programming.

Definition 4.2 We say (xk, yk) ∈ X is stationary to (3.3) if there exist Lagrangian multiplier

vectors αk ∈ <s1 and βk ∈ <s2 such that

1
k

k∑
`=1

∇(x,y)f(xk, yk, ω`) + 2ρk∇(x,y)Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)

Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)

+∇g(xk, yk)αk +∇h(xk, yk)βk = 0, (4.9)

0 ≤ αk ⊥ − g(xk, yk) ≥ 0. (4.10)

Note that

∇xΦεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)

=
1
k

k∑
`=1

∇xF (xk, yk, ω`) Bk, (4.11)

∇yΦεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)

= Ak +
1
k

k∑
`=1

∇yF (xk, yk, ω`) Bk, (4.12)

where Ak := diag(ak
1, · · · , ak

m) ∈ <m×m and Bk := diag(bk
1, · · · , bk

m) ∈ <m×m with

ak
i := ∂aφεk

(
yk

i ,
1
k

k∑
`=1

Fi(xk, yk, ω`)
)

bk
i := ∂bφεk

(
yk

i ,
1
k

k∑
`=1

Fi(xk, yk, ω`)
)





i = 1, · · · ,m.

Here,

∂aφε(a, b) = 1− a√
a2 + b2 + ε2

, ∂bφε(a, b) = 1− b√
a2 + b2 + ε2

.

Theorem 4.2 Suppose both f and ∇(x,y)f are Hölder continuous in (x, y) on X with order

σ > 0 and Hölder constant κ(ω) > 0 satisfying
∫
Ω κ(ω)dζ(ω) < +∞. Let the parameters ρk and

εk be chosen to satisfy (4.1) and (4.2). Let (xk, yk) be a stationary point of (3.3) for each k and

(x∗, y∗) be an accumulation point of {(xk, yk)}. Suppose that there exists a constant π such that

θk(xk, yk) ≤ π for each k and the MPEC-LICQ holds at (x∗, y∗). Then (x∗, y∗) is almost surely

a C-stationary point of (1.1). Furthermore, if the LLSC holds at (x∗, y∗), it is B-stationary with

probability one.

Proof. Assume without loss of generality that lim
k→∞

(xk, yk) = (x∗, y∗). By the assumptions,

we have

1
k

k∑
`=1

f(xk, yk, ω`) + ρk

∥∥∥Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)∥∥∥

2
= θk(xk, yk) ≤ π, ∀k (4.13)
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and hence
∥∥∥Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)∥∥∥

2
≤ ρ−1

k

(
π − 1

k

k∑
`=1

f(xk, yk, ω`)
)
, ∀k. (4.14)

Note that (4.5) and (4.8) remain valid under the assumptions. Letting k → +∞ in (4.14), we

have Φ0(y∗,E[F (x∗, y∗, ω)]) = 0 with probability one, which implies that (x∗, y∗) is almost surely

a feasible point of (1.1). We next show that (x∗, y∗) is a C-stationary point of problem (1.1)

with probability one.

Since (xk, yk) is stationary to (3.3), there exist Lagrangian multiplier vectors αk ∈ <s1 and

βk ∈ <s2 satisfying conditions (4.9) and (4.10). Note that, by (4.11)–(4.12), condition (4.9) can

be rewritten as

1
k

k∑
`=1

∇(x,y)f(xk, yk, ω`)−
(

O
I

)
γk − 1

k

k∑
`=1

∇(x,y)F (xk, yk, ω`)δk

+∇g(xk, yk)αk +∇h(xk, yk)βk = 0, (4.15)

where

γk := −2ρkA
k Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)
, (4.16)

δk := −2ρkB
k Φεk

(
yk,

1
k

k∑
`=1

F (xk, yk, ω`)
)
. (4.17)

It follows from (4.13) and (4.8) that the sequence
{√

ρk φεk
(yk

i , 1
k

∑k
`=1 Fi(xk, yk, ω`))

}
, i.e.,

{
2
√

ρk yk
i ( 1

k

∑k
`=1 Fi(xk, yk, ω`))− ε2k

√
ρk

yk
i + 1

k

∑k
`=1 Fi(xk, yk, ω`) +

√
(yk

i )2 + ( 1
k

∑k
`=1 Fi(xk, yk, ω`))2 + ε2k

}
, (4.18)

is almost surely bounded for each i. Let G and H be defined as in Section 2.

(a) If i /∈ IG(x∗, y∗), we have lim
k→∞

yk
i = y∗i > 0 and

lim
k→∞

1
k

k∑
`=1

Fi(xk, yk, ω`) = lim
k→∞

1
k

k∑
`=1

Fi(x∗, y∗, ω`) = E[Fi(x∗, y∗, ω)] = 0 w.p.1.

It then follows from (4.1) and the boundedness of (4.18) that
{√

ρk ( 1
k

∑k
`=1 Fi(xk, yk, ω`))

}
is

almost surely bounded. As a result,

ρka
k
i =

ρk ( 1
k

∑k
`=1 Fi(xk, yk, ω`))2 + ρkε

2
k

(yk
i )2 + ( 1

k

∑k
`=1 Fi(xk, yk, ω`))2 + ε2k + yk

i

√
(yk

i )2 + ( 1
k

∑k
`=1 Fi(xk, yk, ω`))2 + ε2k

is almost surely bounded. On the other hand, in a similar way to (4.5), we can show that

lim
k→∞

φεk

(
yk

i ,
1
k

k∑
`=1

Fi(xk, yk, ω`)
)

= φ0(y∗i ,E[Fi(x∗, y∗, ω)]) = 0 w.p.1.
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In consequence,

lim
k→∞

γk
i = − lim

k→∞
2 ρka

k
i φεk

(
yk

i ,
1
k

k∑
`=1

Fi(xk, yk, ω`)
)

= 0 w.p.1.

Similarly, we can prove that limk→∞ δk
i = 0 with probability one if i /∈ IH(x∗, y∗).

(b) By the continuity of the functions involved, when k is sufficiently large, there hold

Ig(xk, yk) ⊆ Ig(x∗, y∗), IG(xk, yk) ⊆ IG(x∗, y∗), IH(xk, yk) ⊆ IH(x∗, y∗).

Note that, by (4.10), (4.15) can be further rewritten as

1
k

k∑
`=1

∇(x,y)f(xk, yk, ω`)−
∑

i/∈IG(x∗,y∗)
γk

i

(
0
ei

)
− ∑

i/∈IH(x∗,y∗)
δk
i

(1
k

k∑
`=1

∇(x,y)Fi(xk, yk, ω`)
)

=
∑

i∈IG(x∗,y∗)
γk

i

(
0
ei

)
+

∑
i∈IH(x∗,y∗)

δk
i

(1
k

k∑
`=1

∇(x,y)Fi(xk, yk, ω`)
)

− ∑
i∈Ig(x∗,y∗)

αk
i∇gi(xk, yk)−∇h(xk, yk)βk, (4.19)

where ei is the ith unit vector in <m. Note that, from (a), the multiplier sequences that appear

on the left-hand side of (4.19) are convergent to zero with probability one. By (a) and the

Hölder continuity of ∇(x,y)f on X , the left-hand side is convergent to E[∇(x,y)f(x∗, y∗, ω)] with

probability one. Since the MPEC-LICQ holds at (x∗, y∗), it is not difficult to see that all the

multiplier sequences that appear on the right-hand side of (4.19) are convergent with probability

one. Letting

α∗ := lim
k→∞

αk, β∗ := lim
k→∞

βk, γ∗ := lim
k→∞

γk, δ∗ := lim
k→∞

δk

and taking a limit in (4.19), we obtain (2.2). Moreover, (2.3)–(2.5) follow from (4.10) and (a)

immediately. In addition, since both ak
i and bk

i are nonnegative, from (4.16) and (4.17), we

have γ∗i δ∗i = lim
k→∞

γk
i δk

i ≥ 0 for each i ∈ IG(x∗, y∗) ∩ IH(x∗, y∗). Therefore, (x∗, y∗) is a C-

stationary point of (1.1) with probability one. If the LLSC holds at (x∗, y∗), then C-stationarity

is equivalent to B-stationarity. This completes the proof of the theorem.

Furthermore, we have the following result.

Theorem 4.3 Let (f,∇(x,y)f) be Hölder continuous in (x, y) on X with order σ > 0 and Hölder

constant κ(ω) > 0 satisfying
∫
Ω κ(ω)dζ(ω) < +∞ and the parameters ρk and εk be chosen to

satisfy (4.1) and (4.2). Let (xk, yk) be a stationary point of (3.3) for each k and (x∗, y∗) be an

accumulation point of {(xk, yk)}. Suppose that there exists a constant π such that θk(xk, yk) ≤ π

for each k and the MPEC-LICQ holds at (x∗, y∗). Suppose also that the weak second-order

necessary conditions hold at (xk, yk) for each k sufficiently large and {(xk, yk)} is asymptotically

weakly nondegenerate. Then (x∗, y∗) is almost surely a B-stationary point of (1.1).
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Let G and H be defined as in Section 2. Roughly speaking, the asymptotically weak nonde-

generacy of {(xk, yk)} means that, for each i ∈ IG(x∗, y∗)∩IH(x∗, y∗), Gi(xk, yk) and Hi(xk, yk)

approach zero in the same order of magnitude. This property is obviously weaker than the LLSC

condition. See [5] for more details. Although the results established in this theorem are more

interesting and important, its proof is somewhat lengthy and technical. To avoid disturbing the

readability, we omit its proof here. One can understand this theorem from Theorem 3.1 in [5]

and Theorem 4.2.

5 Choice of Parameters

Suppose that F is given as in Section 4. We now discuss how to choose the parameters ρk and

εk so that both (4.1) and (4.2) hold with probability one.

In the case where (N̄ , M̄ , q̄) is known, we can set the parameters as follows: Let σ ∈ (0, 2)

and λ > 0 be given numbers and choose a sequence {ρ̄k} from (0,+∞) such that lim
k→∞

ρ̄k = +∞.

Let ρk := min{ρ̄k, ρ
N
k , ρM

k , ρq
k} and εk ∈ (0, λ/ρk], where

ρN
k := min

1≤i≤m

∥∥∥1
k

k∑
`=1

Ni(ω`)− N̄i

∥∥∥
−σ

1
,

ρM
k := min

1≤i≤m

∥∥∥1
k

k∑
`=1

Mi(ω`)− M̄i

∥∥∥
−σ

1
,

ρq
k :=

∥∥∥ 1
k

k∑
`=1

q(ω`)− q̄
∥∥∥
−σ

1
.

It is easy to see from (3.2) that both (4.1) and (4.2) hold for the above settings.

If some data in (N̄ , M̄ , q̄) are unknown, we suggest to set the parameters as follows.

• Let σ ∈ (0, 2) and λ > 0 be given scalars. Choose a sequence {ρ̄k} from (0,+∞) such that

lim
k→∞

ρ̄k = +∞, lim
k→∞

ρ̄k

k
= 0. (5.1)

• Let ρk := min{ρ̄k, ρ
N
k , ρM

k , ρq
k}, where

ρN
k := min

{ ∣∣∣1
k

k∑
`=1

Nij(ω`)− N̄ij

∣∣∣
−σ

: N̄ij is known
}

,

ρM
k := min

{ ∣∣∣1
k

k∑
`=1

Mij(ω`)− M̄ij

∣∣∣
−σ

: M̄ij is known
}

,

ρq
k := min

{ ∣∣∣1
k

k∑
`=1

qi(ω`)− q̄i

∣∣∣
−σ

: q̄i is known
}

.

• Choose εk ∈ (0, λ/ρk].
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Then, we have (4.1)–(4.2) at least in probability. In fact, it is obvious that (4.1) holds with

probability one. Moreover, if N̄ij , M̄ij or q̄i is known, we have

lim
k→∞

√
ρN

k

∣∣∣1
k

k∑
`=1

Nij(ω`)− N̄ij

∣∣∣ ≤ lim
k→∞

∣∣∣1
k

k∑
`=1

Nij(ω`)− N̄ij

∣∣∣
1−σ/2

= 0,

lim
k→∞

√
ρM

k

∣∣∣1
k

k∑
`=1

Mij(ω`)− M̄ij

∣∣∣ ≤ lim
k→∞

∣∣∣1
k

k∑
`=1

Mij(ω`)− M̄ij

∣∣∣
1−σ/2

= 0,

lim
k→∞

√
ρq

k

∣∣∣1
k

k∑
`=1

qi(ω`)− q̄i

∣∣∣ ≤ lim
k→∞

∣∣∣1
k

k∑
`=1

qi(ω`)− q̄i

∣∣∣
1−σ/2

= 0

with probability one; otherwise, we have

lim
k→∞

√
ρ̄k

(1
k

k∑
`=1

Nij(ω`)− N̄ij

)
= lim

k→∞

√
ρ̄k

k

√
k
(1

k

k∑
`=1

Nij(ω`)− N̄ij

)
= 0,

lim
k→∞

√
ρ̄k

(1
k

k∑
`=1

Mij(ω`)− M̄ij

)
= lim

k→∞

√
ρ̄k

k

√
k
(1

k

k∑
`=1

Mij(ω`)− M̄ij

)
= 0,

lim
k→∞

√
ρ̄k

(1
k

k∑
`=1

qi(ω`)− q̄i

)
= lim

k→∞

√
ρ̄k

k

√
k
(1

k

k∑
`=1

qi(ω`)− q̄i

)
= 0

in probability, since the convergence in (3.2) is of order O(k−1/2) in probability [6], which implies

that
{√

k
(1

k

k∑
`=1

ψ(ω`) − E[ψ(ω)]
)}

is convergent in probability as k → +∞. Therefore, from

the manner in which ρk is determined, we have (4.2) in probability.

Remark 5.1 Another strategy for choosing ρk is simply to set ρk := ρ̄k for every k, where ρ̄k

is chosen to satisfy (5.1). However, in order to ensure that more conditions in (4.2) hold with

probability one (not just in probability), we make most of the data (N(ω`),M(ω`), q(ω`)) in the

definition of ρk.

6 Extensions to Quasi-Monte Carlo Approach

We have presented a Monte Carlo sampling and penalty approach for solving problem (1.1). Ac-

tually, Monte Carlo sampling methods have been proved useful in the evaluation of integration.

However, the convergence of Monte Carlo methods is not fast and various techniques have been

proposed to speed up the convergence. In this area, the most well-known innovation is the intro-

duction of quasi-Monte Carlo methods, in which the integral is evaluated by using deterministic

sequences rather than random sequences. These deterministic sequences have the property that

they are well dispersed throughout the domain of integration. Sequences with this property are

called low discrepancy sequences. See the monograph [14] for more details.

Next, we briefly introduce two advantages of quasi-Monte Carlo methods.
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(i) Since quasi-Monte Carlo methods employ deterministic sequences instead of random se-

quences, the convergence in (3.2) is valid in a deterministic way for any integrable function

ψ : Ω → <. This is different from Monte Carlo methods, for which convergence is always

probabilistic.

(ii) Quasi-Monte Carlo methods are generally faster than Monte Carlo methods in numerical

integration. Actually, the expected convergence in (3.2) is of order O(k−1/2) for Monte

Carlo methods, whereas the worst case convergence for quasi-Monte Carlo methods is of

order O( (log k)d

k ), where k is the number of samples and d is the dimension of the integration.

We may readily develop a quasi-Monte Carlo and penalty approach for solving problem (1.1).

In the case where F is affine, we can establish all the results in Section 4 in a similar way, and

particularly, those convergence results are deterministic by (i). Moreover, by (ii), the choice of

the parameter ρk given in Section 5 can also be improved. For example, we may choose the

sequence {ρ̄k} from (0,+∞) such that

lim
k→∞

ρ̄k = +∞, lim
k→∞

ρ̄k(log k)2d

k2
= 0

instead of (5.1). Then, we may expect that the quasi-Monte Carlo sampling and penalty method

is faster than the method suggested in Section 3.

7 Applications

Consider a supply side oligopoly market where (m + 1) firms compete to supply a homogeneous

product in a non-competitive manner. A dominant firm, called the leader hereafter, knows how

the other firms (called followers) react to its supply and chooses optimal supply to maximize

its profit by expecting the other firms to reach a Nash-Cournot equilibrium after its supply is

determined. It is well known that such a market competition can be modeled as a Stackelberg-

Nash-Cournot game.

Now suppose that the market demand is unknown at the time when the firms make decisions

on their supplies and the demand contains some uncertainties. Assume also that all firms know

the distribution of the random factors in the demand. Then each firm may consider the expected

profit rather than the profit in a particular demand scenario in its decision making.

In what follows, we demonstrate that this type of Stackelberg leader-follower games can be

modeled as (1.1). We start by describing the market demand with the inverse demand function

p(τ, ω), where τ stands for the total quantity of supply to the market, ω is a random shock with

known distribution, and p(τ, ω) is the market price.

Let x denote the decision variable of the leader, that is, the quantity supplied by the leader

to the market. Let yi denote the decision variable of the ith follower, that is, the quantity

supplied by the ith firm to the market.
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The Followers’ Decision Problems. Suppose that the leader’s supply is x and the aggregate

supplies of the followers except the ith firm is
∑m

j=1,j 6=i yj . If the ith firm’s supply is yi, then

the market price in this demand scenario is p(x +
∑m

j=1 yj , ω). The total revenue of the ith firm

is yi p(x+
∑m

j=1 yj , ω). Suppose that the total cost for the ith firm to produce yi is ci(yi). Then

the ith firm’s expected profit can be formulated as

E
[
yi p

(
x +

m∑
j=1

yj , ω
)]
− ci(yi).

Since the market price depends on yi (in other words, the ith firm has market power), the ith

firm would like to choose an optimal yi in order to maximize his expected profit. Therefore the

ith follower’s profit maximization problem can be written as

max
yi≥0

fi(yi) := E
[
yi p

(
x + yi +

m∑
j=1,j 6=i

yj , ω
)]
− ci(yi). (7.1)

In choosing an optimal decision, the ith firm holds the other firms’ supplies as constants. A

Nash-Cournot equilibrium among the followers is a situation where, given the leader’s supply,

no firm can improve its expected profit by unilaterally changing his supply. We denote such an

equilibrium by (y1(x), · · · , ym(x)), where each yi(x) is a global optimal solution of (7.1) with

yj = yj(x) for all j 6= i.

The Leader’s Decision Problem. We suppose that the leader expects the followers to choose

their outputs as described in (7.1) and maximizes his expected profit based on his knowledge

on the market demand distribution and the followers’ reaction to his supply. Therefore we can

formulate the leader’s decision problem as follows:

max
0≤x≤L

f0(x) := E
[
x p

(
x +

m∑
i=1

yi(x), ω
)]
− c0(x),

where L > 0 is a constant and c0(x) is the cost for the leader to produce x.

Stochastic Stackelberg-Nash-Cournot Equilibrium. We investigate a situation where the

leader maximizes the expected profit while the followers reach a Nash-Cournot equilibrium. A

Stackelberg-Nash-Cournot equilibrium is an (m + 1)-dimensional vector (x∗, y1(x∗), · · · , ym(x∗))
such that

f0(x∗) = max
0≤x≤L

E
[
x p

(
x +

m∑
i=1

yi(x), ω
)]
− c0(x)

with

yi(x) ∈ Arg max
yi≥0

(
E

[
yi p

(
x + yi +

m∑
j=1,j 6=i

yj(x), ω
)]
− ci(yi)

)
, i = 1, · · · ,m. (7.2)

If the function E[yi p(x + yi +
∑m

j=1,j 6=i yj(x), ω)] − ci(yi) is concave in yi, the Nash-Cournot

equilibrium problem (7.2) is equivalent to the following nonlinear complementarity problem:

0 ≤ y ⊥ E[F (x, y, ω)] ≥ 0,
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where

F (x, y, ω) := −p(x + yTe, ω) e− p′τ (x + yTe, ω) y + c′(y).

Here, e := (1, · · · , 1)T ∈ <m and c′(y) := (c′1(y1), · · · , c′m(ym))T . Thus, we can rewrite the

stochastic Stackelberg-Nash-Cournot equilibrium problem as an SMPEC:

max E
[
x p

(
x + eT y, ω

)]
− c0(x)

s.t. 0 ≤ x ≤ L,
0 ≤ y ⊥ E[F (x, y, ω)] ≥ 0.

(7.3)

Obviously (7.3) is subsumed by (1.1).

Remark 7.1 Suppose that p(τ, ω) := α(ω) − β(ω)τ with E[α(ω)] > 0 and E[β(ω)] ≥ 0 and

ci(yi) is affine. It is easy to show that the function E[yi p(x + yi +
∑m

j=1,j 6=i yj(x), ω)]− ci(yi) is

concave in yi.

As an application of the proposed methods, we consider a simple case in which there are

three followers and the involved functions are given by

p(τ, ω) := 20− (0.002ω + 0.003)τ,

c0(x) := 9.5x + 60,

c1(y1) := 8.6y1 + 48,

c2(y2) := 8.9y2 + 45,

c3(y3) := 9.2y3 + 75,

respectively. We suppose that the random shock ω is uniformly distributed on Ω := [−1, 1] and

the maximum amount L of the leader is equal to 1800. Then the model (7.3) becomes

max E[x(20− (0.002ω + 0.003)(x + y1 + y2 + y3) + ω)]− c0(x)

s.t. 0 ≤ x ≤ 1800,

0 ≤ y ⊥ E[F (x, y, ω)] ≥ 0

with F (x, y, ω) := N(ω)x + M(ω)y + q, where

N(ω) :=




0.002ω + 0.003
0.002ω + 0.003
0.002ω + 0.003


 , M(ω) :=




0.004ω + 0.006 0.002ω + 0.003 0.002ω + 0.003
0.002ω + 0.003 0.004ω + 0.006 0.002ω + 0.003
0.002ω + 0.003 0.002ω + 0.003 0.004ω + 0.006


 ,

and q := −(11.4, 11.1, 10.8)T . The solution of this problem is (x∗, y∗) = (1450, 662.5, 562.5, 462.5).

We applied the proposed methods to solve the above problem. In our experiments, in order to

demonstrate the methods, we treated the expectations N̄ and M̄ as unknown data although they

are easy to be calculated. For the Monte Carlo sampling method, we set ρ̄k = k3/4, εk = ρ−1
k ,

and we used the random number generator rand in Matlab 6.5 to generate random samples
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{ξ1, · · · , ξk} from [0, 1] and then let ωi = 2ξi− 1 ∈ Ω for each i = 1, · · · , k. For the quasi-Monte

Carlo sampling method, we set ρ̄k = k, εk = ρ−1
k , and used the classical constructions method

in [14] to generate samples. Then, we employed the solver fmincon in Matlab 6.5 to solve the

subproblems (3.3). The initial points were chosen to be (0, · · · , 0) and the computed solutions

were used as the starting points in the next iterations. The computational results are shown in

Table 1. The results shown in the table reveal that the proposed methods were able to solve

the problem successfully and the quasi-Monte Carlo method was faster than the Monte Carlo

method.

Table 1: Computational Results
PPPPPPPPP

(x∗, y∗)
MC QMC

k = 102 (1800.0, 60.5, 54.4, 48.7) (1800.0, 383.2, 288.4, 199.3)
k = 103 (1800.0, 469.3, 369.7, 271.5) (1546.6, 622.2, 522.3, 422.2)
k = 104 (1546.6, 622.2, 522.3, 422.3) (1459.2, 658.7, 558.7, 458.7)
k = 105 (1466.3, 655.7, 555.7, 455.7) (1450.9, 662.1, 562.1, 462.1)
k = 106 (1452.9, 661.3, 561.3, 461.3) (1451.0, 662.2, 562.2, 462.2)
k = 107 (1453.1, 661.6, 561.6, 461.6) (1450.9, 662.3, 562.3, 462.3)

8 Conclusion

We have presented Monte Carlo and quasi-Monte Carlo sampling methods with a penalty tech-

nique for solving problem (1.1) and, under appropriate assumptions, we have established a

comprehensive convergence theory for the proposed methods. Especially, different from the

approach proposed in [1], the approximation problems given in this paper are standard differ-

entiable optimization problems and hence they are easy to deal with.
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