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Abstract

This paper considers uncertain constrained systems, and devel-

ops two algorighms for computing a probabilistic output admissible

(POA) set which is a set of initial states probabilistically assured to

satisfy the constraint. The first algorithm is inspired by an existing

randomized sequential technique. The second algorithm alleviates

the computational effort based on heuristics. The present algorithms

terminate in a finite number of iterations and provides a POA set. Ad-

ditionally, we can obtain information on the size of the resulting set a

posteriori. A numerical simulation demonstrates the applicability of

the POA set to control system designs.



1 Introduction

Most of practical control systems inherently have state and control constraints due

to nonlinear characteristics of actuators or for safety of hardware. This can lead

to performance deterioration or even instability if not properly accounted for in

design stage. Thus, when we design a control system, it is required not only to

achieve a good control performance but also to avoid constraint violations.

A so-called maximal output admissible (MOA) set is an useful concept in anal-

ysis and control of constrained systems. This is the set of all initial states such that

the trajectories starting from them never violate the infinite-time constraint. The

MOA set provides a necessary and sufficient condition for constraint fulfillment

(Gilbert and Tan, 1991), and gives an insight into analysis of constrained systems.

Additionally, the MOA set has been extensively used in control system design

schemes such as controller switching strategies (Hirata and Fujita, 1998; Hirata

and Fujita, 2000), reference governors (Bemporad et al., 1997; Bemporad and

Mosca, 1998; Gilbert et al., 1995; Gilbert and Kolmanovsky, 1999), model predic-

tive controls (Goodwin et al., 2004), and it also relates to the minimal l∞-induced

norm (Shamma, 1996; Blanchini et al., 1997).

The MOA set was first defined for linear time-invariant autonomous systems

(Gilbert and Tan, 1991). Then Kolmanovsky and Gilbert (1995) has extended

the concept of the MOA set to systems subject to unknown but bounded distur-

bances, where the MOA set assures constraint fulfillment even in the worst-case

disturbance scenario. Since the worst-case paradigm often makes the MOA set

small, Gilbert and Kolmanovsky (1998) has reformulated the MOA set on the ba-

sis of the information on rate limit or stochastic properties of disturbances. Mean-

while, the MOA set of uncertain constrained systems has also been investigated

in (Blanchini, 1994; Blanchini and Miani, 1996; Casavola et al., 2000; Hirata and
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Ohta, 2004). Blanchini (1994), Blanchini and Miani (1996) and Casavola et al.

(2000) have considered systems with polytopic uncertainties, and Hirata and Ohta

(2004) time-varying memoryless operators bounded with respect to l∞-induced

norm as uncertainties. It should be noted that the main aim of Blanchini (1994)

is to construct a set-induced Lyapunov function which contains the theory of the

MOA set. Additionally, the extension of the MOA set to nonlinear systems has

been attempted in recent years (Hirata and Ohta, 2005). Note that topics on in-

variant sets with close relationships to the MOA set are well summarized in the

survey paper (Blanchini, 1999).

This paper considers uncertain constrained systems and addresses the compu-

tation of the set of initial states which ’robustly’ guarantee infinite-time constraint

fulfillment on the basis of a probabilistic approach. Previous relevant works in-

clude Blanchini (1994), Blanchini and Miani (1996), Casavola et al. (2000) and

Hirata and Ohta (2004). All of them are based on the worst-case paradigm, that is,

they aim at computing a set which assures constraint fulfillment even in the worst

uncertainty scenario.

In this paper, we introduce an alternative notion of robustness about constraint

fulfillment, where the guarantee of constraint fulfillment is intended not in the

deterministic sense (satisfaction against all possible uncertainty outcomes), but

instead in the probabilistic sense (satisfaction in probability). This approach can

be seen as a relaxation of the worst-case paradigm where one allows a risk level

ε ∈ (0, 1), and the approach enables us to construct a subset of the state space

such that if the system is initialized in any element of the set, the constraints are

violated by at most a fraction ε of the uncertainty family. This paper refers to

the set as an ε-level probabilistic output admissible (POA) set. The computations

of our algorithm does not suffer from the complexity of structure of uncertain-

ties, which enables us to deal with a wide class of uncertain systems that the
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deterministic methods (Blanchini, 1994; Blanchini and Miani, 1996; Casavola et

al., 2000; Hirata and Ohta, 2004) cannot deal with without introducing conser-

vatism: for example, the structured uncertainty, the time-invariant uncertainty and

so on. Additionally, our approach allows us to incorporate information on proba-

bilistic properties of uncertainties into the computations of the output admissible

set.

In recent years, introducing probability in robustness gained increasing in-

terest in robust control theory (Tempo et al., 2004). Three different method-

ologies are currently available for robust control synthesis: the approach based

on the Vapnik-Chervonenkis theory of learning (Tempo et al., 2004), the sce-

nario approach (G. Calafiore and M.C. Campi, 2004), and the sequential method

(Oishi, 2003). Our algorithm is based on the sequential method. The main differ-

ence from (Oishi, 2003) is that our objective is to compute not a point (a design

parameter) but a set (an ε-level POA set).

In this paper, we consider time-invariant uncertain systems with mild assump-

tions, and present an algorithm for computing an ε-level POA set. The paper is

organized as follows. Section 2 formulates the system to be considered in this

paper. In Section 3, several important sets are defined. In Section 4, we present a

sequential algorithm (Algorithm 1) for computing an ε-level POA set. Addition-

ally, it is shown that the sample size due to (Oishi, 2003) provides an ε-level POA

set (Corollary 1) and that the algorithm finitely terminates (Theorem 1). Since,

however, Algorithm 1 requires a great amount of computational effort, Section 5

presents an improved algorithm (Algorithm 2) with small computational effort.

Section 6 presents a numerical example and shows the applicability of the ε-level

POA set to a reference governor algorithm. Conclusions are finally drawn in Sec-

tion 7.
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Notations

The following notations and terminology will be used throughout this paper. Z+ is

the set of nonnegative integers, namely, Z+ = {0, 1, 2, · · · }. 0 and 1 are the vec-

tors or matrices with appropriate dimensions whose elements are 0 and 1, respec-

tively. Let γ > 0, g, h ∈ Rn, M ∈ Rm×n, Z ⊂ Rn, and Zf := {z(1), · · · , z(r)} ⊂
Rn. Then, g ≥ h, g > h describes the element-wise inequalities, M(i, :) the i-th

row of M , ‖M‖ the maximal singular value of M , len(M) the number of rows,

m. γZ := {γx ∈ Rn| x ∈ Z} and |Zf | := r. The boundary and interior of Z
are denoted, respectively, by bd(Z) and int(Z). H(M) ⊂ Rn denotes the convex

polyhedron {x ∈ Rn|Mx ≤ 1}. Let Hi(M) = {x ∈ Rn|M(j, :)x ≤ 1 ∀j �=
i}, i ∈ {1, · · · ,m}. If H(M) = Hi(M) holds, then the inequality M(i, :)x ≤ 1

is called a redundant inequality for describing H(M). Otherwise, M(i, :)x ≤ 1

is called an active inequality. Additionally, a description of a polyhedron is ir-

redundant if and only if none of the inequalities describing the polyhedron are

redundant. Let the functions Φ(g; M) and φ(g; M) be

Φ(g; M) := max
x∈H(M)

g�x,

φ(g; M) := arg max
x∈H(M)

g�x/Φ(g; M),

respectively (Φ(g; M) is called a support function of H(M)). Especially, we de-

note

Φi(M) := max
x∈Hi(M)

M(i, :)�x,

φi(M) := arg max
x∈Hi(M)

M(i, :)�x/Φi(M).

The set LZf
(M) describes
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LZf
(M) := {l ∈ {1, · · · , len(M)}| ∃i ∈ {1, · · · , r}

s.t. M(l, :)z(i) = 1}.

For a matrix Q = Q� > 0 and a scalar ρ > 0, Ω(Q, ρ) denotes the ellip-

soid Ω(Q, ρ) = {x ∈ Rn|x�Qx ≤ ρ2} and B(ρ) the open ball B(ρ) = {x ∈
Rn|x�x < ρ2}.

2 Probrem Statement

Consider the uncertain discrete-time system

Σ




x(t + 1) = A(∆)x(t), (2.1)

c(t) = C(∆)x(t), (2.2)

where t ∈ Z+, x(t) ∈ Rn is the state of Σ, and c(t) ∈ Rnc is the auxiliary output

that describes state and control constraints. The vector c(t) must be constrained

within a prescribed set C as

c(t) ∈ C ∀t ∈ Z+, (2.3)

C := {c ∈ Rnc| Mcc ≤ 1}, Mc ∈ Rmc×nc .

The matrix ∆ ∈ Rs1×s2 is the time-invariant uncertainty confined in a bounded

set D. We assume that the support D is endowed with a σ-algebra D, and that the

probability measure Prob∆ is defined over D. Moreover, we assume the existence

of a probability density of ∆, and denote it by f∆(∆). Generally speaking, f∆(∆)

is estimated from available data or prior information. If such prior information is

not available, then the probability distribution of ∆ should be chosen very care-

fully and the choice of uniform distribution, which is the worst-case distribution

in a certain class of probability measures, is an option (Tempo et al., 2004). This
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paper denotes the system for a fixed ∆ by Σ(∆). Without loss of generality, we

assume that 0 ∈ int D, and refer to Σ(0) as the nominal system.

We assume that the system Σ, the set D and the probability density f∆(∆)

satisfy the following assumptions.

Assumption 1

(a) C(∆) and A(∆) are Lebesgue measurable functions of ∆.

(b) sup∆∈D
‖McC(∆)‖ is bounded.

(c) Samples can be efficiently generated in D according to f∆(∆).

(d) A(∆) is asymptotically stable for any ∆ ∈ cl D.

(e) (A(0), C(0)) is an observable pair.

(f) The set C is bounded.

Remark 1

In the real world, almost all uncertain systems satisfy Assumptions 1 (a) and

(b). Additionally, the items (d) and (e) are not really limitations for the following

reasons. The MOA set is generally defined for closed-loop systems designed a pri-

ori, when it is used in control system design schemes such as controller switching

strategies (Hirata and Fujita, 1998; Hirata and Fujita, 2000), reference governors

(Bemporad et al., 1997; Bemporad and Mosca, 1998; Gilbert et al., 1995; Gilbert

and Kolmanovsky, 1999) and model predictive controls (Goodwin et al., 2004).

Thus, Assumption 1 (d) just requires to design a robust controller. The item (e) is

assumed without loss of generality (Gilbert and Tan, 1991).
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Remark 2

Assumption 1 (c) is satisfied in the following cases.

Case 1: ∆ is a vector (a parametric uncertainty) We can easily generate ran-

dom samples, if D is an lp norm ball and the probability density f∆(∆) has

radial symmetry with respect to lp norms. In addition, D is allowed to be an

ellipsoid or an unit simplex.

Case 2: ∆ is a matrix (a memoryless full block operator) We can easily obtain

random matrices if ∆ is bounded with respect to the Frobenius norm, l1, or

l∞ induced norm. Though the sample generation in the l2 induced norm ball

is more difficult than the above cases, a sophisticated algorithm for comput-

ing them is reported in Calafiore et al. (2000).

Interested readers are recommended to refer to Calafiore et al. (2000) or Tempo

et al. (2004) for more detail.

3 Definition of Sets

This section defines several important sets.

Definition 1 MOA Set of Σ(∆)

Let c(t; x, ∆) denote the response of Σ(∆) for an initial state x, namely

c(t; x, ∆) := C(∆)At(∆)x. Then, the MOA set S(∆) and the i-steps output

admissible sets Ki(∆), i ∈ Z+ are defined by

S(∆) := {x ∈ Rn| c(t; x, ∆) ∈ C ∀t ∈ Z+},

Ki(∆) := {x ∈ Rn| c(t; x, ∆) ∈ C ∀t ∈ {0, 1, · · · , i}}.

About the sets S(∆) and Ki(∆), we have the following well-known results.
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Proposition 1

(i) The sequence of sets Ki(∆) is monotonically decreasing in the sense that

Ki(∆) ⊇ Ki+1(∆) ∀i ∈ Z+.

(ii) If Ki(∆) = Ki+1(∆) holds for some i ∈ Z+, then we obtain S(∆) = Ki(∆).

Such an i is finite if A(∆) is asymptotically stable.

(iii) The set S(∆) is a convex polyhedron, and is bounded if (C(∆), A(∆)) is an

observable pair.

(iv) The set S(∆) is positively invariant for Σ(∆), that is, x(0) ∈ S(∆) implies

that At(∆)x(0) ∈ S(∆) ∀t ∈ Z+.

Proof

See Gilbert and Tan (1991). �

Definition 2 Output Admissibility Index

The output admissibility index io(∆) is defined by

io(∆) := min
i∈Z+

i subject to Ki(∆) = Ki+1(∆).

Moreover, we define im := sup∆∈D
io(∆), which is finite under Assumption 1(d)

but is difficult to compute exactly.

Definition 3 MOA Set of Σ

The MOA set S and the i-steps output admissible sets Ki, i ∈ Z+ of Σ are

defined by

S := {x ∈ Rn| c(t; x, ∆) ∈ C ∀t ∈ Z+, ∀∆ ∈ D},

Ki := {x ∈ Rn| c(t; x, ∆) ∈ C ∀t ∈ {0, · · · , i}, ∀∆ ∈ D}.

10



By the definition, x(0) ∈ S is necessary and sufficient for constraint fulfillment in

the face of all possible time-invariant uncertainties ∆ ∈ D.

We have the following Lemma about the MOA set S.

Lemma 1

(i) S =
⋂

∆∈D
S(∆) holds. (ii) Under Assumptions 1(b), (d) and (e), the

MOA set S is a bounded convex and nonempty set satisfying 0 ∈ int S.

Proof

The item (i) is clear from the definitions of S and S(∆).

We prove 0 ∈ int S. Assumption 1(b) implies that there exists an open ball

B(r) centered at the origin contained in the set K0 := {x ∈ Rn| McC(∆)x ≤
1 ∀∆ ∈ D}. Note that if x(t) ∈ K0 ∀t ∈ Z+ holds, then the constraint (2.3) is

satisfied. Now, from Assumption 1(d), rs := supt∈Z+,∆∈D
‖At(∆)‖2 is a finite

number. The state trajectory for any initial state in B(r/rs) never gets out of B(r),

that is, never violates the constraint. This implies that B(r/rs) is a subset of the

MOA set S and that 0 ∈ int S.

The convexity of S is clear from the item (i) and Proposition 1(iii). Finally,

the MOA set S is bounded because of S ⊆ S(0) and Proposition 1(iii). �

The MOA set S does not satisfy each property in Proposition 1. More specif-

ically, we have the following statements: (i) The set S is not positively invariant

for each Σ(∆). (ii) The geometric characteristics of S and Ki are unknown while

S(∆) and Ki(∆) are convex polyhedra. This is because S and Ki are the inter-

sections of an infinite number of convex polyhedra S(∆) and Ki(∆) respectively.

(iii) Because of the definition of im, we have S = Kim and hence there is a finite

i such that S = Ki. However, Ki = Ki+1 does not imply S = Ki unlike the case

of S(∆) (Proposition 1 (ii)). This is because x(1) is not always contained in Ki

even if x(0) ∈ Ki+1. To the best of our knowledge, the previous research works
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(Bemporad and Mosca, 1998; Casavola et al., 2000; Gilbert and Tan, 1991; Gilbert

and Kolmanovsky, 1998; Kolmanovsky and Gilbert, 1995; Hirata, 2004; Hirata

and Ohta, 2004) consider systems with such a property as Proposition 1 (ii). In

contrast, the system Σ no longer has the property. It is thus difficult to construct

S based on the ideas of previous works, that is, Ki = Ki+1 ⇒ S = Ki. Moreover,

even if we obtain an i satisfying S = Ki somehow, it is still difficult to describe

Ki with a finite number of conditions because of the item (ii). We thus relax the

objective of the computation of the MOA set, and aim at computing the following

set.

Definition 4 ε-level POA set

For a real number ε ∈ (0, 1), a set of initial states Ŝ is said to be an ε-level

POA set if it satisfies the following two conditions.

c(t; x,0) ∈ C ∀t ∈ Z+, x ∈ Ŝ (3.1)

Prob∆{∆ ∈ D| ∃t ∈ Z+, x ∈ Ŝ

s.t. c(t; x, ∆) /∈ C} ≤ ε (3.2)

The condition (3.1) guarantees Ŝ ⊆ S(0) and hence boundedness of Ŝ. The in-

equality (3.2) means that at most a fraction ε of the uncertainty family can violate

the constraint when the system is initialized in some element of Ŝ. It is clear that

the POA set Ŝ is not unique, and especially all the subsets of S satisfy (3.1) and

(3.2) for any ε ∈ (0, 1).

Our objective is to compute as large an ε-level POA set as possible for a pre-

scribed ε ∈ (0, 1). For this purpose, we define the following set.

Definition 5

Let D
f be a subset of D with a finite number of elements. Then the set S(Df)
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is defined by

S(Df) := {x ∈ Rn| c(t; x, ∆) ∈ C ∀t ∈ Z+, ∆ ∈ D
f}.

The set S(Df) is a convex polyhedron, since S(Df) is an intersection of a finite

number of convex polyhedra S(∆), ∆ ∈ D
f .

Remark 3

The ε-level POA set gives an insight into analysis of constrained systems.

In addition, it is applicable to several control schemes such as switching control

and reference governor. It should be noted that the relevant on-line optimization

problems are not always feasible because Ŝ (and even S) is not positively invari-

ant. Nevertheless, constraint fulfillment and control objectives are achieved by

only adding the operation that the same control signal as the previous time in-

stant is applied if the relevant on-line optimization is infeasible at a certain time

instant. See (Gilbert and Kolmanovsky (1999); Gilbert and Kolmanovsky (2002))

for more detail, where output admissible sets without invariance are employed for

the design of reference governors.

4 Computation of POA Set

This section presents a sequential algorithm for computing an ε-level POA set

for a prescribed ε ∈ (0, 1). The algorithm iteratively updates a polyhedral set

Pk ⊂ Rn, which is a candidate of the POA set.

Define a violation function by

v(∆,P) :=


 gv(∆,P) − 1 if gv(∆,P) > 1

0 otherwise
,

gv(∆,P) := max
j ∈ {1, · · · , mc},

i ∈ {0, · · · , im}

max
x∈P

Mc(j, :)C(∆)Ai(∆)x.
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Let P ⊂ Rn be a fixed convex polyhedron with vertices {x(1)
v , · · · , x

(nv)
v }. Then,

the violation function v(∆,P) is a measurable function (that is, a random vari-

able) of ∆ ∈ D, because gv(∆,P) is the maximum of a finite number of measur-

able functions Mc(j, :)C(∆)Ai(∆)x
(h)
v , j ∈ {1, · · · ,mc}, i ∈ {0, · · · , im}, h ∈

{1, · · · , nv}.

We prepare a real number δ ∈ (0, 1) (confidence parameter) in addition to

ε ∈ (0, 1) before executing the algorithm. Let the initial polyhedron P0 be the

nominal MOA set S(0), which is computed by the method due to Gilbert and Tan

(1991).

Suppose that, after the k-th iteration, we have a polyhedral set Pk ⊂ Rn.

Then, the set Pk is updated according to the rule

Pk+1 := Pk ∩ S(Df
k), (4.1)

where D
f
k := {∆(1)

k , · · · , ∆
(Nk)
k } is the set of Nk random samples drawn according

to the probability density f∆(∆). The set Pk+1 can be immediately constructed

by using Algorithm 3 in Appendix Appendix A, though its description contains

redundant conditions. This update rule provides Pk such that

Pk = S(D̄f
k), D̄

f
k :=

(
k−1⋃
i=0

D
f
i

)
∪ {0}. (4.2)

Additionally, after the counter k reaches a prescribed integer k̄, we perform the

additional operation

Pk := γPk (4.3)

before executing (4.1) in order to assure the finite termination of the algorithm,

where γ ∈ (0, 1) and k̄ ∈ Z+ are prescribed numbers.

Let the termination condition of the algorithm be

v(∆
(j)
k ,Pk) = 0 ∀j ∈ {1, · · · , Nk}, (4.4)
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which is the same as a standard sequential randomized algorithm (Oishi, 2003).

The equation (4.4) is equivalent to

Pk ⊆ S(Df
k). (4.5)

In summary, we execute the following algorithm.

Algorithm 1

Parameters : γ ∈ (0, 1) and k̄ ∈ Z+

Step 0 Compute M∗
0 such that H(M∗

0 ) is an irredundant description of S(0). Set

k := 0.

Step 1 Draw Nk samples D
f
k := {∆(1)

k , · · · , ∆
(Nk)
k } according to the probability

density f∆(∆).

Step 2 (Update) If k ≥ k̄, then Mk := Mk/γ.

Compute Mk+1 such that H(Mk+1) := H(M∗
k ) ∩ S(Df

k) by Algorithm 3.

Step 3 (Elimination) Compute an irredundant description H(M∗
k+1) of the poly-

hedron H(Mk+1) by eliminating redundant conditions.

Step 4 (Termination condition) If M∗
k+1 = M∗

k , let Ŝ := H(M∗
k ) and terminate

the algorithm. Otherwise, k := k + 1 and go to Step 1.

In Algorithm 1, H(Mk) (= H(M∗
k )) describes the set Pk. In Step 4, M∗

k+1 = M∗
k

implies Pk+1 = Pk ∩ S(Df
k) = Pk and hence (4.5).

Lemma 2

Let the sample size Nk be the minimal integer greater than
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Ñk =
log π2(k+1)2

6δ

log 1
1−ε

(4.6)

for prescribed numbers δ, ε ∈ (0, 1). Suppose that Assumption 1 is satisfied and

Algorithm 1 has terminated at the kT -th iteration. Then, we have

Prob∆{∆ ∈ D| v(∆,PkT
) �= 0} ≤ ε

with probability greater than 1 − δ.

Proof

This Lemma can be proven in a similar manner to (Oishi (2003); Tempo et al.

(2004)). �

Corollary 1

Suppose that all the assumptions in Lemma 2 hold. Then PkT
is an ε-level

POA set with probability greater than 1 − δ.

Proof

The conditions (3.1) and (3.2) are clearly satisfied from (4.2) and Lemma 2,

respectively. �

Theorem 1

Suppose that Assumption 1 is satisfied. Then, for any γ ∈ (0, 1), Algorithm

1 terminates in a finite number of iterations.

Proof

After k reaches k̄, it follows from Pk+1 ⊆ Pk that

Pk ⊆ γ(k−k̄)Pk̄.

Lemma 1 states that 0 ∈ intS holds under Assumption 1. Thus, there is a finite

k ≥ k̄ satisfying γ(k−k̄)Pk̄ ⊆ S. For such a k, Pk ⊆ S holds. Then, we have
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Pk ⊆ S ⊆ S(Df
k), which implies the termination of Algorithm 1. This completes

the proof. �

Proposition 2

Suppose that Algorithm 1 has terminated at the kT -th iteration. (i) If kT

is smaller than k̄, then the resulting polyhedral set PkT
satisfies PkT

⊇ S. (ii)

Otherwise, we have PkT
⊇ γkT−k̄+1S.

Proof

This proposition can be proven in a similar manner to Proposition 3. �

Algorithm 1 gives an ε-level POA set for a prescribed ε with high probability

(greater than or equal to 1− δ), and the algorithm terminates in a finite number of

iterations. However, the algorithm may not terminate in practical computational

time for the following reason, unless Σ is a simple system (n and im are quite

small). In the elimination of redundant conditions (Step 3), we have to check

Φl(Mk+1) ≤ 1 (4.7)

for l = 1, · · · , len(Mk+1) (See Kerrigan (2000) for example). If (4.7) is satisfied,

Mk+1(l, :) is redundant. This requires to solve LP problems. Since the size of

Mk+1 is in general quite large, enormous amount of computational effort is re-

quired in Step 3. In the next section, we present another algorithm with small

computational effort based on heuristics.

Remark 4

The size of M∗
k affects on-line computational effort, when the ε-level POA

set is utilized for control design schemes (A similar argument with respect to the

MOA set is made in the reference (Gilbert and Kolmanovsky, 1999).). Thus, it is

often required to obtain a POA set with a simple expression. This can be achieved
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by performing (4.3) not only when the counter k reaches k̄ but also when len(M∗
k )

exceeds a prescribed upper bound.

5 Reduction of Computational Effort

This section presents an algorithm getting over the difficulty of Algorithm 1. No-

tice that Lemma 2 and hence Corollary 1 depend only on the termination condition

(4.4), and has no relation to the update rule (4.1) and (4.3). Thus, we modify only

the update rule. In this section, we denote the polyhedral set to be updated at each

iteration by P̃k in order to distinguish it from Pk in Section 4.

The algorithm in this section also applies the rule (4.3) to the set P̃k+1 after

the counter k exceeds k̄. Then, the finite termination is satisfied if P̃k decreases

monotonically, namely, P̃k+1 ⊆ P̃k ∀k ∈ Z+.

As well as Algorithm 1, we prepare S(0) = H(M∗
0 ) as the initial polyhedron

P̃0 before executing the algorithm. Moreover, a set X0 := {x(1)
0 , · · · , x

(|X0|)
0 } ⊂

bd(P̃0) is computed by Algorithm 4 in Appendix Appendix B, where |X0| ∈ Z+

is prescribed by a designer.

Suppose that, after the k-th iteration, an irredundant description H(M∗
k ) of a

polyhedral set P̃k and a set Xk := {x(1)
k , · · · , x

(|Xk|)
k } ⊂ bd

(
P̃k

)
are obtained.

Note that these are already obtained at k = 0 as shown in the above paragraph.

Similarly to Algorithm 1, we generate samples D
f
k := {∆(1)

k , · · · , ∆
(Nk)
k } ac-

cording to the probability density f∆(∆), and compute

P̂k+1 := P̃k ∩ S(Df
k) (5.1)

by Algorithm 3 in Appendix Appendix A. The polyhedral set P̂k+1 is given in the

form of
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P̂k+1 = H(Mk+1), Mk+1 :=


 M∗

k

Mk+1/k


 . (5.2)

As stated at the end of Section 4, eliminating redundant conditions from H(Mk+1)

takes a great amount of computational time, since len(Mk+1) (especially, len(Mk+1/k))

is quite large. Note that if P̃k = P̂k is ideally obtained at each iteration k, then P̃k

and P̂k are equal to Pk in Section 4.

In this section, we introduce new update procedures called Approximate Con-

struction (AC) and Exact Construction (EC). Before referring to them, we should

notice that

Φ(Mk+1/k(l, :); M
∗
k ) > 1 (5.3)

is a necessary condition for activity of an inequality Mk+1/k(l, :)x ≤ 1 for de-

scribing P̂k+1, and that

∃x ∈ Xk s.t. Mk+1/k(l, :)x > 1 (5.4)

is a sufficient condition for (5.3). The AC procedure is based on (5.4), and the EC

procedure is both of (5.3) and (5.4).

5.1 Approximate construction of P̂k+1

For l = 1, 2, · · · , len(Mk+1/k), we first make the decision on redundancy of the

l-th inequality Mk+1/k(l, :)x ≤ 1 based on (5.4) as follows.

If (5.4) is not satisfied for a given l, then we decide that Mk+1/k(l, :)x ≤ 1 is

redundant, though this decision may not be true.

Otherwise, we decide temporarily that the l-th inequality is active, and update all

the x(p) ∈ Xk, p ∈ {1, · · · , |Xk|} satisfying Mk+1/k(l, :)x
(p) > 1 by
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x(p) :=
x(p)

Mk+1/k(l, :)x(p)
. (5.5)

Then, we obtain P̃k+1 = H(M̃k+1) by eliminating the possibly redundant inequal-

ities from H(Mk+1), and the set Xk ∈ bd(P̃k+1).

We next eliminate exactly redundant conditions from the description of H(M̃k+1)

by evaluating

Φl(M̃k+1) > 1. (5.6)

However, it is not necessary to evaluate (5.6) for all l ∈ {1, · · · , len(M̃k+1)},

since we already know that the l-th inequality is active if

l ∈ LXk
(M̃k+1). (5.7)

Thus, we carry out the following procedure for l = 1, 2, · · · , len(M̃k+1).

If (5.7) holds, then the l-th inequality is active.

Else if (5.6) is satisfied, then the l-th inequality is active, and we add φl(M̃k+1)

to the set Xk.

Else the l-th inequality is redundant.

Consequently, we obtain an irredundant description H(M∗
k+1) of P̃k+1. The num-

ber of computations of Φ and hence the total computational effort are drastically

reduced due to (5.4) and (5.7), in comparison with Algorithm 1.

The decisions by (5.4) may be false, that is, active inequalities may be re-

moved, and redundant ones may not be removed. The latter fault does not affect

the result, since such inequalities are eventually removed by (5.6). In contrast,

due to the former fault, the polyhedral set P̃k+1 is not always equal to P̂k+1, and

P̂k+1 ⊆ P̃k+1 ⊆ P̃k. (5.8)

20



This causes two problems; Firstly, the resulting POA set may be small. We will

discuss this issue at the end of this section. The second problem is that P̃k = P̃k+1

does not ensure the termination condition (4.4), which is equivalent to

P̃k = P̂k+1. (5.9)

Thus, only when P̃k = P̃k+1, we perform the update procedure called EC which

modifies P̃k+1 so that P̃k+1 = P̂k+1.

Conversely, P̃k+1 �= P̃k (M∗
k �= M∗

k+1) implies that the termination condition

(5.9) is not satisfied, since P̂k+1 ⊆ P̃k+1. Thus, if P̃k+1 �= P̃k, let Xk+1 := Xk and

k := k + 1, and go to the next iteration.

5.2 Exact construction of P̂k+1

The EC procedure decides redundancy of Mk+1/k(l, :)x ≤ 1, l ∈ {1, len(Mk+1/k)}
for describing P̂k+1 again, based on both (5.3) and (5.4). Namely, we perform the

following procedure for l = 1, 2, · · · , len(Mk+1/k).

If (5.4) is satisfied, then we decide temporarily that the l-th inequality is active,

and update all the elements x(p) ∈ Xk satisfying Mk+1/k(l, :)x
(p) > 1 by

(5.5).

Else if (5.3) is satisfied, then we decide temporarily that the l-th inequality is

active, and we add φ(Mk+1/k(l, :); M
∗
k ) to Xk.

Else the l-th inequality is (certainly) redundant.

Then, we obtain P̃k+1 by eliminating all the inequalities decided to be redundant,

and Xk ∈ bd(P̃k+1). Finally, we compute an irredundant description H(M∗
k+1) of

P̃k+1 by the same strategy as the AC procedure.
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As a result, we obtain P̃k+1 satisfying

P̃k+1 = P̂k+1. (5.10)

From (5.9) and (5.10), if P̃k+1 = P̃k (equivalently M̃∗
k+1 = M∗

k ) holds, the termi-

nation condition (4.4) is satisfied. Otherwise, let Xk+1 := Xk and k := k + 1, and

go to the next iteration.

Remark 5

In the practical execution, we do not need to check (5.4) for the elements of

Xk existing from the beginning of this update procedure, since the EC procedure

is performed only when (5.4) is not satisfied for these elements. Hence, we have

only to check (5.4) for the elements newly included at the “Else if” operation, and

it is not necessary to check it until we find an l ∈ {1, · · · , len(Mk+1/k)} satisfying

(5.3).

Remark 6

After performing one iteration (whichever procedure is performed), we get

P̃k+1 = H(M∗
k+1) and Xk+1 ⊂ bd

(
P̃k+1

)
. Then, all the l ∈ {1, · · · , len(M∗

k+1)}
are contained in LXk+1

(M∗
k+1), that is, all the inequalities of H(M∗

k+1) have at least

one element of Xk+1 on its boundary. This alleviates the next iteration, because a

lot of inequalities can be known to be active by (5.7).

5.3 Total Algorithm

Consequently, the algorithm is described as below.

Algorithm 2

Parameters : γ ∈ (0, 1), k̄ ∈ Z+, and |X0| ∈ Z+.
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Step 0 Compute M∗
0 such that H(M∗

0 ) is an irredundant description of S(0).

Compute X0 by Algorithm 4. Set k := 0.

Step 1 Draw Nk samples D
f
k := {∆(1)

k , · · · , ∆
(Nk)
k } according to the probability

density f∆(∆).

Step 2 If k ≥ k̄, then Mk := Mk/γ and x
(p)
k := γx

(p)
k , p ∈ {1, · · · , |Xk|}.

Compute Mk+1 such that H(Mk+1) = H(M∗
k ) ∩ S(Df

k) by Algorithm 3.

Step 3 (AC) Compute M∗
k+1 and Xk+1 according to the AC procedure in Subsec-

tion 5.1.

Step 4 If M∗
k+1 �= M∗

k , then k := k + 1 and go to Step 1.

Step 5 (EC) Compute M∗
k+1 and Xk+1 according to the EC procedure in Subsec-

tion 5.2.

Step 6 (Termination condition) If M∗
k+1 = M∗

k , then terminate the algorithm.

Otherwise, let k := k + 1 and go to Step 1.

From (5.8) and (5.10), the inclusion P̃k+1 ⊆ P̃k holds. Therefore, Algorithm 2

terminates in a finite number of iterations.

As pointed out previously, the resulting POA set can be small due to the faults

of the decisions by (5.4). The size of the set depends on the parameters |X0|, k̄ and

γ. Though it is not easy to know their appropriate values a priori, the following

Proposition 3 (similar to 2) enables us to evaluate the size a posteriori. If γkT−k̄+1

is small, we execute Algorithm 2 again with making |X0| large, γ close to 1, and/or

k̄ large. By this procedure, we obtain a large ε-level POA set.

Proposition 3

Suppose that Algorithm 2 has terminated at the kT -th iteration. (i) If kT
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is smaller than k̄, then the resulting polyhedral set P̃kT
satisfies P̃kT

⊇ S. (ii)

Otherwise, we have P̃kT
⊇ γkT−k̄+1S.

Proof

The item (i) is clear because of P̃kT
⊇ S(D̄f

kT
) ⊇ S.

After k̄-th iteration, P̃k+1 ⊇
(
γP̃k ∩ S(Df

k)
)

holds. Thus, we have

P̃kT
⊇ γkT−k̄+1P̃k̄ ∩


kT−k̄⋂

i=0

γkT−k̄−iS(D̄f
k̄+i)




⊇
kT−k̄+1⋂

i=0

γiS = γkT−k̄+1S.

This completes the proof of (ii). �

Remark 7

Though the computational effort of the EC procedure is still large, it is not

carried out very often for the following reason. The EC procedure adds some el-

ements to Xk according to the complexity of the description of P̃k (Remark 6),

and hence it becomes rare that active inequalities are eliminated by (5.4) after

performing the EC procedure once or several times. As a result, the total com-

putational effort is drastically reduced compared with Algorithm 1. It should be

noted that the effort of the EC procedure is smaller than that of Algorithm 1.

6 Numerical Simulation

Consider the positioning servo system shown in Casavola et al. (2000). As well

as Casavola et al. (2000), we assume that the input voltage u is subject to sat-

uration |u| ≤ Umax = 220[V], and an upper bound on the absolute value of the

torsional torque of the load τ has to be enforced as |τ | ≤ τmax = 78.54[Nm] be-

cause of the finite shear strength of the shaft. The motor inertia JM , the load inertia
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JL, the motor viscous friction coefficient βM and the load viscous friction coeffi-

cient βM , is assumed constant but only known within the intervals JM ∈ [0.5, 1],

JL ∈ [9, 11], βM ∈ [0.07, 0.13] and βL ∈ [24, 26]. Let the other parameters be

the same values as Casavola et al. (2000). Assume that the nominal system is

given by JM = 0.75, JL = 10, βM = 0.1 and βL = 25. The continuous-time

model has been discretized with sampling time 0.1[s] by using the zero-th order

hold. Since the open-loop plant is unstable, we design a closed-loop system by

the same controller as Casavola et al. (2000) u(t) = Kxx(t) + Kgr(t), Kx =[
−994 104 29.6 −4.2

]
, Kg = 401. Then the closed-loop system is ro-

bustly stable. We attempt to fulfill the constraints by using an auxiliary mecha-

nism called a reference governor, which modifies a reference signal and inputs the

resulting signal to a closed-loop system. For this purpose, we first configured an

augmented system with state ξ = [x� g]�, where g denotes any step reference.

Though, the matrix A(∆) has an eigenvalue on the unit disk, this problem can

be dealt with by putting an additional constraint on g such that the corresponding

equilibria are contained in C for all ∆ ∈ D. In this example, we set |g| ≤ 50[deg].

We computed an ε-level POA set Ŝ by Algorithm 2 with δ = ε = 0.01 and

γ = 0.995 under the assumption that ∆ is uniformly distributed. The rule (4.3)

is performed when k reaches k̄ = 100 or when len(M∗
k ) exceeds 1000. In this

example, len(M∗
k ) exceeded 1000 at k = 19, and Algorithm 2 terminated at this

iteration. Namely, from Proposition 3, the resulting POA set is greater than γS.

We next performed computer simulations by applying a reference governor

to the closed-loop system, where we used the ε-level POA set instead of the de-

terministic MOA set. The reference governor algorithm is similar to Gilbert and

Kolmanovsky (1999). We ran all the simulations setting r(t) ≡ 40[deg] ∀t ∈ Z+

and x(0) = 0.

In this example, we compare the responses by using Ŝ with those by using
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Fig. 1 Responses for nominal system

S(0), namely in the case where uncertainties are not accounted for. We first show

the responses of the nominal system in Fig. 1. Since the constraints are never

violated for ∆ = 0 because of (3.1), we show only the outputs and the modified

references. The blue curves illustrate the responses for S(0) and the red curves

those for Ŝ. The responses for Ŝ are slower than those for S(0), because the for-

mer takes uncertainties into account. However, the deterioration is not so large,

and Ŝ still achieves a good tracking performance. We next checked the responses

for random 10000 uncertainties. When we used S(0), the constraints were vio-

lated 8938 times out of 10000. In contrast, Ŝ did not violate them once.

The result suggests that the POA set achieves low conservatism and safe sys-

tem behavior.
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7 Conclusion

We have presented algorithms for computing an ε-level POA set for time-invariant

uncertain constrained systems. Algorithm 1 was inspired by an existing random-

ized sequential technique (Oishi, 2003). Since the algorithm requires enormous

amount of computational effort, we have presented Algorithm 2 in order to reduce

the computational effort. Numerical simulations have shown the applicability of

the POA set, instead of the MOA set, to a control system design.
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Appendix A Computation of P ∩ S(Df)

This section presents a method for computing P∩S(Df) under the situation where

a polyhedral set P ⊆ S(0) and D
f := {∆(1), · · · , ∆(N)} are given (P = Pk in

Algorithm 1, and P = P̃k in Algorithm 2).

Gilbert and Tan (1991) presented methods for computing the output admissi-

bility index io(∆) or an upper bound of io(∆). However, both of them require

to solve several convex programming problems. Thus, to utilize the methods in

Algorithm 1 or 2, we have to solve these problems for each fixed uncertainty, and

total computational effort becomes quite large.

We improve the method for computing an upper bound of io(∆) so that it

adapts to the present algorithms. The algorithm below is performed only by

algebraic calculations. Before executing the algorithm, we prepare an ellipsoid

Ω(Q∗, ρ∗) containing S(0). It is obtained by the following two step optimization

procedure (Hirata and Fujita, 1998).

Q∗ := arg max log detQ−1 subject to Ω(Q∗, 1) ⊂ S(0)

ρ∗ := min ρ subject to S(0) ⊂ Ω(Q∗, ρ)

We focus on the fact that, if the system Σ(∆) is initialized from x(0) ∈
Ω(Q∗, ρ∗), then the state x(t) of Σ(∆) is confined in Ω(Q∗, ρ∗‖Ãt(∆)‖) at each

time instant t ∈ Z+, where Ã(∆) := {Q∗}1/2A(∆){Q∗}−1/2. Now, define

r∗ := max
r>0

r subject to

Ω(Q∗, r) ⊂ K0(∆
(j)) ∀j ∈ {1, · · · , N}. (A.1)

Then, ρ∗‖Ãt(∆(j))‖ ≤ r∗ implies that the constraint (2.3) is satisfied at time t for

∆(j) ∈ D
f , if x(0) ∈ Ω(Q∗, ρ∗).

Let t(j) and i(j) ∈ Z+, j ∈ {1, · · · , N} be the minimal integers satisfying
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‖Ãt(j)(∆(j))‖ ≤ 1, (A.2)

ρ∗‖Ãt(∆(j))‖ ≤ r∗ ∀t ∈ {i(j), · · · , i(j) + t(j) − 1}, (A.3)

respectively. Both t(j) and i(j) are finite numbers for any j ∈ {1, · · · , N}, since

Ã(∆(j)), j ∈ {1, · · · , N} are stable.

Lemma 3

If the system Σ(∆(j)) is initialized in any element of Ω(Q∗, ρ∗), then the

constraint is not violated after the time i(j).

Proof

Define the interval T (j)
κ , κ ∈ Z+ by T (j)

κ := {i(j) + κt(j), · · · , i(j) + (κ +

1)t(j) − 1}. To prove the lemma, it is sufficient to show

ρ∗‖Ãt(∆(j))‖ ≤ r∗ ∀t ∈ T (j)
κ (A.4)

for all κ ∈ Z+. When κ = 0, (A.4) holds from (A.3). Assume that (A.4) is

satisfied for a κ′ ∈ Z+. Then, we have

ρ∗ ‖Ãi(j)+(κ′+1)t(j)+k(∆(j))‖

≤ ρ∗‖Ãi(j)+κ′t(j)+k(∆(j))‖‖Ãt(j)(∆(j))‖

≤ ρ∗‖Ãi(j)+κ′t(j)+k(∆(j))‖ ≤ r∗

for all k ∈ {0, · · · , t(j) − 1}. Namely, (A.4) also holds for κ′ + 1. This completes

the proof. �

Lemma 3 and P ⊆ S(0) ⊂ Ω(Q∗, ρ∗) imply P ∩ S(∆(j)) = P ∩ Ki(j)(∆
(j)).

Namely, if i(j), j ∈ {1, · · · , N} are computed by (A.2) and (A.3), then we have

P ∩ S(Df) = P ∩
(

N⋂
j=1

Ki(j)(∆
(j))

)
.

Thus, P ∩ S(Df) is computed by the following algorithm.
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Algorithm 3

Step 0 Compute r∗ by (A.1). Let M be the matrix such that P = H(M) and

j := 1.

Step 1 Compute i(j) by (A.2) and (A.3).

Step 2 Let M be

M :=


M

M̄


 , M̄ =




C(∆(j))

C(∆(j))A(∆(j))
...

C(∆(j))Ai(j)(∆(j))




Step 3 If j = N , then terminate the algorithm. Otherwise, j := j + 1 and go to

Step 1.

Appendix B Generation of Samples over bd(H(M∗
0 ))

The set X0 is computed by the following algorithm.

Algorithm 4

Step 0 Set p := 1.

Step 1 Draw an uniform sample y(p) on the boundary surface of the unit ball B(1).

(This can be implemented in polynomial time (Tempo et al., 2004))

Step 2 Compute
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αp := min
l

1

M∗
0 (l, :)y(p)

subject to M∗
0 (l, :)y(p) > 0,

and let x
(p)
0 := αpy

(p).

Step 3 If p is equal to the prescribed sample number, the algorithm terminates.

Otherwise, let p := p + 1 and go to Step 1.
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