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Abstract

Attribute reduction of an information system is a key problem in rough set theory and its
applications. Using computational intelligence (CI) tools to solve such problems has recently
fascinated many researchers. CI tools are practical and robust for many real-world problems, and
they are rapidly developed nowadays. However, some classes of CI tools, like memory-based
heuristics, have not been involved in solving information systems and data mining applications
like other well-known CI tools of evolutionary computing and neural networks. In this paper, we
consider a memory-based heuristic of tabu search to solve the attribute reduction problem in rough
set theory. The proposed method, called tabu search attribute reduction (TSAR), shows promising
and competitive performance compared with some other CI tools in terms of solution qualities.
Moreover, TSAR shows a superior performance in saving the computational costs.
Keywords: Computational Intelligence, Granular Computing, Attribute Reduction, Rough Set,
Tabu Search.

1 Introduction
Computational Intelligence (CI) tools and applications have grown rapidly since its inception in the
early nineties of the last century [4, 13]. CI tools, which are alternatively called soft computing, were
firstly limited to fuzzy logic, neural networks and evolutionary computing as well as their hybrid
methods [22]. Nowadays, the definition of CI tools has been extended to cover many of other machine
learning tools [2, 4, 13]. One of the main CI classes is Granular Computing (GrC) [1, 14], which
has recently been developed to cover all tools that mainly invoke computing with fuzzy and rough
sets. The theory of rough set (RS) proposed by Pawlak [16] in 1982 emerges as a powerful tool for
managing uncertainty that arises from inexact, noisy, or incomplete information. It is shown to be
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methodologically significant in the domains of artificial intelligence and cognitive science, especially
in respect of the representation of and the reasoning with imprecise knowledge, machine learning,
and knowledge discovery [16, 17, 18].

Calculation of reducts of an information system is a key problem in RS theory [17, 12, 20]. We
need to get reducts of an information system in order to extract rule-like knowledge from an informa-
tion system. Reduct is a minimal attribute subset of the original data which has the same discernibility
power as all of the attributes in the rough set framework. Obviously, reduction is an attribute subset
selection process, where the selected attribute subset not only retains the representational power, but
also has minimal redundancy. Many researchers have endeavored to develop efficient algorithms to
compute useful reduction of information systems, see [14] for instance. Besides mutual information
and discernibility matrix based attribute reduction methods, they have developed some efficient reduc-
tion algorithms based on CI tools of genetic algorithm, ant colony optimization, simulated annealing,
and others [12]. These techniques have been successfully applied to data reduction, text classification
and texture analysis [14]. Actually, the problem of attribute reduction (AR) of an information system
has made great gain from rapid development of CI tools, see [12] and reference therein.

One class of the promising CI tools is memory-based heuristics, like Tabu Search (TS), which have
shown their successful performance in solving many combinatorial search problems [8, 19]. However,
the contributions of memory-based heuristics to information systems and data mining applications are
still limited compared with other CI tools like evolutionary computing and neural networks. In this
paper, we propose a TS-based method, called Tabu Search for Attribute Reduction (TSAR), to solve
the problem of attribute reduction of an information system. TSAR uses a 0-1 variable representation
of solutions in searching for reducts. A rough set dependency degree function is invoked to measure
the solution qualities. The search process in TSAR is a high-level TS with long-term memory. There-
fore, TSAR invokes diversification and intensification search schemes besides the TS neighborhood
search methodology.

In the literature, much effort has been made to deal with the AR problem, see [3, 10, 11, 12, 20,
21, 23] and references therein. Jensen and Shen [11, 12] have extensively studied CI tools for the
AR problem. In their works, three CI methods, GenRSAR, AntRSAR, and SimRSAR, have been
presented to solve the AR problem. GenRSAR is a genetic-algorithm-based method and its fitness
function takes into account both the size of subset and its evaluated suitability. AntRSAR is an ant-
colony-based method in which the number of ants is set to the number of attributes, with each ant
starting on a different attribute. Ants construct possible solutions until they reach a rough set reduct.
SimRSAR employs a simulated-annealing-based attribute selection mechanism. SimRSAR tries to
update solutions, which are attribute subsets, by considering three attributes to be added to the current
solution or to be removed from it. Optimizing the objective function attempts to maximize the rough
set dependency while minimizing the subset cardinality.

The TSAR method proposed in this paper uses the TS neighborhood search methodology for
searching reducts of an information system. TS neighborhood search is based on two main concepts;
avoiding return to a recently visited solution, and accepting downhill moves to escape from local
maximum information. Some search history information is reserved to help the search process to be-
have more intelligently. Specifically, the best reducts found so far and the frequency of choosing each
attribute are saved to provide the diversification and intensification schemes with more promising so-
lutions. TSAR invokes three diversification and intensification schemes; diverse solution generation,
best reduct shaking which attempts to reduce its cardinality, and elite reducts inspiration. The nu-
merical results shown in Section 4 later indicate that the proposed TSAR method is competitive with
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some other well-known CI tools for the AR problem in terms of reduct qualities. Moreover, TSAR
shows a superior performance in saving the computational costs of the dependency degree function.

The paper is organized as follows. In the next section, we briefly give the principles of rough set
and attribute reduction, and tabu search as preliminaries needed throughout the paper. In Section 3,
we highlight the main components of TSAR and present the algorithm formally. In Section 4, we
report numerical results with TSAR using some well-known datasets. Finally, the conclusion makes
up Section 5.

2 Preliminaries
This section highlights the main idea and concepts of rough set and attribute reduction as well as tabu
search.

2.1 rough set and Attribute Reduction
An information system is a formal representation of a dataset to be analyzed, and it is defined as a
pair S = (U,A), where U is a non-empty set of finite objects, called the universe of discourse, and
A is a non-empty set of attributes. With every attribute a ∈ A, a set of its values Va is associated
[17]. In practice, we are mostly interested in dealing with a special case of information system called
a decision system. It consists of a pair S = (U,C ∪ D), where C is called a conditional attributes set
and D a decision attributes set.

The RS theory is based on the observation that objects may be indiscernible (indistinguishable)
because of limited available information. For a subset of attributes P ⊆ A , the indiscernibility
relation is defined by IND(P ) [17]:

IND(P ) = {(ξ, η) ∈ U × U |∀a ∈ P, a(ξ) = a(η)}.
It is easily shown that IND(P ) is an equivalence relation on the set U . The relation IND(P ), P ⊆ A,
constitutes a partition of U , which is denoted U/IND(P ). If (ξ, η) ∈ IND(P ), then ξ and η are
indiscernible by attributes from P . The equivalence classes of the P-indiscernibility relation are
denoted [ξ]P . For a subset Ξ ⊆ U , the P-lower approximation of Ξ can be defined as

PΞ = {ξ|[ξ]P ⊆ Ξ}.
As an illustrative example, Table 1(i) shows a dataset which consists of three conditional attributes

C = {a, b, c}, one decision attribute D = {d}, and six objects U = {e1, e2, . . . , e6}. If P = {a, b},
then objects e1, e2, and e3 are indiscernible, and so are objects e4 and e6. Thus, IND(P ) yields the
following partition of U :

U/IND(P ) = {{e1, e2, e3}, {e4, e6}, {e5}}.
For example, if Ξ = {e1, e4, e5}, then PΞ = {e5}; if Ξ = {e2, e3, e6}, then PΞ = φ.

Let IND(P ) and IND(Q) be indiscernibility relations on U , which are defined by the subset of
attributes P ⊆ A and Q ⊆ A, respectively. An often applied measure is the dependency degree of Q
on P , which is defined as follows [17]:

γP (Q) =
|POSP (Q)|

|U | ,
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Table 1: An Example of Reducts
(i) (ii) (iii)

A Dataset A Reduced Dataset A Reduced Dataset
U a b c d
e1 0 0 0 1
e2 0 0 1 0
e3 0 0 2 0
e4 1 0 0 1
e5 1 1 1 1
e6 1 0 2 0

U a c d
e1 0 0 1
e2 0 1 0
e3 0 2 0
e4 1 0 1
e5 1 1 1
e6 1 2 0

U b c d
e1 0 0 1
e2 0 1 0
e3 0 2 0
e4 0 0 1
e5 1 1 1
e6 0 2 0

where |F | denotes the cardinality of set F and POSP (Q) =
⋃

Ξ∈U/IND(Q) PΞ, called a positive region
of the partition U/IND(Q) with respect to P , is the set of all elements of U that can be uniquely
classified to blocks of the partition U/IND(Q) by means of P . If γP (Q) = 1, we say that Q depends
totally on P , and if γP (Q) < 1, we say that Q depends partially on P . The dependency degree
expresses the ratio of all objects of U that can be properly classified to the blocks of the partition
U/IND(Q) using the knowledge in P . For example, consider the dataset shown in Table 1(i), and let
P = {a, b} and Q = {d}. Then

U/IND(Q) = {{e1, e4, e5}, {e2, e3, e6}},

POSP (Q) = POS{a,b}({d}) =
⋃
{{e5}, φ} = {e5},

γP (Q) = γ{a,b}({d}) =
|POS{a,b}({d})|

|U | =
1

6
.

One of the major applications of rough set theory is the attribute reduction, that is, the elimination
of attributes considered to be redundant, while avoiding information loss [17, 18]. The reduction of
attributes is achieved by comparing equivalence relations generated by sets of attributes. Using the
dependency degree as a measure, attributes are removed so that the reduced set provides the same
dependency degree as the original. In a decision system, a reduct is formally defined as a subset R
of the conditional attribute set C such that γR(D) = γC(D), where D is the decision attributes set. A
given dataset may have many reducts. Thus the set R of all reducts is defined as [17]:

R = {R : R ⊆ C; γR(D) = γC(D)}.
The intersection of all the sets in R is called the core,

Core(R) =
⋂

R∈R

R.

The elements of the core are those attributes that cannot be eliminated without introducing more
contradictions to the dataset. In the process of attribute reduction, a set Rmin ⊆ R of reducts with
minimum cardinality is searched for:

Rmin = {R ∈ R : |R| ≤ |S|, ∀S ∈ R}.
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which is called the minimal reduct set.
Using the example shown in Table 1(i), the dependency degree of D = {d} on all possible subsets

of C can be calculated as:

γC(D) = 1,
γ{a,b}(D) = 1

6
, γ{b,c}(D) = 1, γ{a,c}(D) = 1,

γ{a}(D) = 0, γ{b}(D) = 1
6
, γ{c}(D) = 2

3
.

So, the minimal reduct set for this example is given by:

Rmin = {{a, c}, {b, c}}.

If the minimal reduct {a, c} is chosen, then the example dataset shown in Tabel 1(i) can be reduced as
in Table 1(ii). On the other hand, Table 1(iii) shows a reduced dataset corresponding to the minimal
reduct {b, c}.

It is well known that finding a minimal reduct is NP-hard [17]. The most primitive solution
to locating such a reduct is to simply generate all possible reducts and choose some with minimal
cardinality. Obviously, this is an expensive procedure and it is only practical for simple datasets.
For most of the applications, only one minimal reduct is required, so all the calculations involved in
discovering the rest are pointless. Therefore, an alternative strategy is required for large datasets.

2.2 Tabu Search
Tabu Search (TS) is a heuristic method originally proposed by Glover [5] in 1986. TS has primarily
been proposed and developed for combinatorial optimization problems [6, 7, 8], and has shown its
capability of dealing with various difficult problems [8, 19]. Moreover, there have been some attempts
to develop TS for continuous optimization problems [9].

The main feature of TS is its use of an adaptive memory and responsive exploration. A simple
TS combines a local search procedure with anti-cycling memory-based rules to prevent the search
from getting trapped in local optimal solutions. Specifically, TS avoids returning to recently visited
solutions by constructing a list of them called Tabu List (TL). In each iteration of the simple TS
illustrated in Algorithm 2.1 below, TS generates many trial solutions in a neighborhood of the current
solution. The trial solutions generation process is composed to avoid generating any trial solution that
has already been visited recently. The best trial solution in the generated solutions will become the
next solution. Therefore, TS can accept downhill movements to avoid getting trapped in local maxima.
TS can be terminated if the number of iterations without any improvement exceeds a predetermined
maximum iteration number.

Algorithm 2.1 Simple Tabu Search

1. Choose an initial solution x0. Set the Tabu List (TL) to be empty, and set the counter
k := 0.

2. Generate neighborhood moves list M(xk) = {x′ : x′ ∈ N(xk)}, based on tabu
restrictions, where N(xk) is a neighborhood of xk.

3. Let xk+1 be the best trial solution in M(xk), and update TL.

4. If stopping conditions are satisfied, terminate. Otherwise, go to Step 2.

5



A simple TS structure given in Algorithm 2.1 is called short-term memory TS. Updating the
memory-based TL can be modified and controlled by the following concepts:

• Tabu tenure: the number of iterations in which a move is considered to remain tabu or forbid-
den;

• Aspiration criteria: accepting an improving solution even if generated by a tabu move.

The short-term memory is built to keep the recency only. In order to achieve better performance,
long-term memory is used to keep more important search features besides the recency, such as the
quality and the frequency. Specifically, long-term memory in high-level TS records solutions of
special characters like elite and frequently visited solutions. Then, the search process of TS can adapt
itself by using these special types of solutions in the following aspects:

• Diversification: generating new solutions by depressing attributes of frequently visited solu-
tions in order to diversify the search to other areas of the solution space.

• Intensification: giving priority to elite or promising solutions in order to obtain much better
solutions in their vicinity.

3 Tabu Search for Attribute Reduction (TSAR)
In this section, a TS-based method called Tabu Search for Attribute Reduction (TSAR) is proposed
to deal with the attribute reduction problem in rough set theory. First we describe the components of
TSAR, and then state the TSAR algorithm formally.

3.1 Solution Representation
TSAR uses a binary representation for solutions (attribute subsets). Therefore, a trial solution x is a
0-1 vector with dimension equal to the number of conditional attributes |C|. If a component xi of x,
i = 1, . . . , |C|, has the value 1, then the i-th attribute is contained in the attribute subset represented
by the trial solution x. Otherwise, the solution x does not contain the i-th attribute.

3.2 Solution Quality Measure
The dependency degree γx(D) of decision attribute D is used to measure the quality of a solution x,
where γx(D) is identified with γP (D) such that P contains those attributes corresponding to xi = 1.
Comparing two solution x and x′, we say x is better than x′ if one of the following conditions holds:

• γx(D) > γx′(D),

• ∑
i xi <

∑
i x

′
i if γx(D) = γx′(D).
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3.3 Tabu List
The role of TSAR Tabu List (TL) is to avoid being trapped in local solutions and avoid generating
useless solutions. Therefore, the first and second positions in TL are reserved for these useless solu-
tions which are solution of all ones (i.e., all attributes are considered) and solution of all zeros (i.e.,
all attributes are discarded). The remaining positions in TL , i.e., |TL| − 2 positions, are used to save
the most recently visited solutions.

3.4 Neighborhood Trials Generation
TSAR invokes a procedure to generate ` trial solutions in a neighborhood of a current solution x.
Specifically, trial solutions yj , j = 1, . . . , `, are generated by changing j positions in x randomly
based on tabu restrictions as in the following procedure.

Procedure 3.1 [y1, . . . , y`] = Trials(x, TL, `)

1. Repeat the following steps for j = 1, . . . , `.

2. Set yj := x, and choose j random positions p1, . . . , pj of yj .

3. Update the chosen positions by the rule yj
pi

:= 1− yj
pi
, i = 1, . . . , j.

4. If yj ∈ TL, then return to Step 2 to generate another yj .

3.5 Diversification-Intensification Scheme
An intelligent search method should invoke a wide exploration mechanism as well as a deep exploita-
tion mechanism. Even if these mechanisms are well-defined, the most challenge is to apply them
in appropriate time to avoid more unneeded complexity or premature convergence. TSAR invokes
three mechanisms for Diversification and Intensification. Actually, TSAR checks the search progress
to apply these mechanisms gradually in order to improve search progress. The first mechanism is
a diversification one which provides the search with a diverse solution if the search cannot find any
improvement. TSAR defines a vector vF of dimension |C| which counts the numbers of choosing
each conditional attribute among the generated trial solutions. Then, a diverse solution xdiv can be
generated to contain attributes chosen with probability inversely proportional to their appearance in
vF . Specifically, Procedure 3.2 states how xdiv is generated.

Procedure 3.2 [xdiv] = Diverse(vF )

1. Generate random numbers r1, . . . , r|vF | ∈ (0, 1).

2. Repeat the following step for i = 1, . . . , |C|.
3. If ri > vF

i , set xdiv
i := 1 . Otherwise, set xdiv

i := 0.

If the search still cannot find any improvement during some iterations after generating xdiv, TSAR
applies an intensification mechanism to refine the best reduct xbest found so far. At this stage, TSAR
should obtain at least one reduct. Otherwise, the search is restarted again from a new generated
xdiv. Actually, numerical experiments show that TSAR can obtained many reducts without need of
repeating the diverse solution procedure. The best reduct xbest refinement, called Shaking, tries to
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reduce the attributes contained in xbest one by one without reducing γxbest(D) as shown in Procedure
3.3. The search is continued from xbest no matter whether it can be improved through the Shaking
Mechanism or not. Then, the main TSAR search is terminated and a final refinement is applied.

Procedure 3.3 Shaking(xbest)

1. Construct the set W of all positions of ones in xbest, i.e., the elements of W =
{w1, . . . , w|W |} represent the attributes contained in xbest.

2. Repeat the following steps for j = 1, . . . , |W |.
3. Delete the attribute wj ∈ W by setting xbest

wj
:= 0, and compute a γ-value.

4. Update xbest if γ-value is increased or, if γ-value remains the same but the number of
the attributes contained in reducts is decreased.

The final diversification-intensification mechanism is called Elite Reducts Inspiration. In the
TSAR process of finding the minimal reduct, any reduct which has been visited is saved in a set
called Reduct Set (RedSet). It is well known that Core is the intersection of all the reducts and it is the
most important subset of attributes, since none of its elements can be removed without affecting of
the classification power of attributes. Here the idea of Core is introduced to construct a trial solution
xERI as the intersection of the nR best reducts in RedSet instead of all the reducts, where nR is a pre-
specified number. If the number of attributes involved in xERI is less than that in xbest by at least two,
then the zero position in xERI which gives the highest γ-value is updated to be one. This mechanism
is continued until the number of attributes involved in xERI becomes less than that in xbest by one.

Procedure 3.4 [xERI] = EliteReducts(RedSet, nR)

1. If RedSet is empty, then return. Otherwise, go to Step 2.

2. Set nF equal to the number of attributes involved in the best reduct in RedSet, and set
xERI equal to the intersection of the nR best reducts in RedSet.

3. If
∑|C|

i=1 xERI
i < nF − 1, then go to Step 4. Otherwise, return.

4. If γxERI(D) = 1, then return.

5. Update the zero position in xERI which gives the highest γ-value, and go to Step 3.

3.6 TSAR Algorithm
TSAR starts with an initial solution x0 and uses the tabu restriction rule in generating trial solutions in
a neighborhood of the current solution. TSAR continues generating trial solutions until no improve-
ment can be obtained through Idiv consecutive iterations. Then, TSAR proceeds to the search process
starting from a diverse solution xdiv generated by Procedure 3.2. If the number of these consecutive it-
erations without improvement exceeds Ishak, TSAR invokes Procedure 3.3 to improve the best reduct
xbest obtained so far. Then, the search is continued starting from xbest. The search may be terminated if
the number of iterations exceeds Imax, or the number of consecutive iterations without improvement
exceeds Iimp. Finally, Elite Reducts Inspiration is applied as a final diversification-intensification
mechanism. The main structure of TSAR is shown in Figure 1 and the formal algorithm is stated
below.
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Initial Solution

Neighborhood Search

Update Solution

Elite Reducts Inspiration

Termination ? Shaking ? Diversification ?
No No No

Shake the best solution Generate a diverse solution

Update Solution

Yes

Yes Yes

Figure 1: TSAR Flowchart

Algorithm 3.5 TSAR

1. Let the Tabu List (TL) contain the two extreme solutions (0, . . . , 0) and (1, . . . , 1),
set vF to be a zero vector, and set RedSet to be an empty set. Choose an initial
solution x0, and set the counter k := 0. Select Imax, Iimp, Ishak and Idiv such that
Imax > Iimp > Ishak > Idiv.

2. Generate neighborhood trials y1, . . . , y` around xk using Procedure 3.1.

3. Set xk+1 equal to the best trial solution from y1, . . . , y`, and update TL, vF , xbest and
RedSet. Set k := k + 1.

4. If the number of iterations exceeds Imax, or the number of iterations without improve-
ment exceeds Iimp, go to Step 7.

5. If the number of iterations without improvement exceeds Ishak, apply Procedure 3.3 to
improve xbest, set xk := xbest and go to Step 2.

6. If the number of iterations without improvement exceeds Idiv, apply Procedure 3.2 to
obtain a new diverse solution xdiv, set xk := xdiv, and go to Step 2.

7. Apply Procedure 3.4 to obtain xERI. Update xbest by xERI if the latter is better, and
terminate.

4 Numerical Experiments
Algorithm 3.5 was programmed in MATLAB and applied to 13 well-known datasets [11, 12], see
Table 2. For each dataset, the TSAR MATLAB code was run 20 times with different initial solutions.
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Table 2: Datasets used in the experiments
No. of No. of

Dataset Attributes Objects
M-of-N 13 1000
Exactly 13 1000
Exactly2 13 1000
Heart 13 294
Vote 16 300
Credit 20 1000
Mushroom 22 8124
LED 24 2000
Letters 25 26
Derm 34 366
Derm2 34 358
WQ 38 521
Lung 56 32

The results are reported in Tables 4 and 5. Before discussing these results, we explain the setting of the
TSAR parameters. In Table 3, we summarize all parameters used in TSAR with their assigned values.
These chosen values are based on the common setting in the literature or based on our numerical
experiments.

TSAR parameters are categorized into three groups:

• Neighborhood Search Parameters: ` is the size of neighborhood trial solutions, and |TL| is the
size of tabu list.

• Diversification and Intensification Parameters: Idiv and Ishak are the numbers of non-improvement
iterations to apply diversification and shaking, respectively, and nR is the number of the best
reducts used to compute xERI in Procedure 3.4.

• Termination Parameters: Imax is the maximum number of iterations, and Iimp is the maximum
number of non-improvement consecutive iterations.

The performance of TSAR was tested using different values of these parameters. First, the tabu
list size |TL| was set to 5 to save the three most recently visited solutions in addition to the all-
zeros and all-ones solutions. The preliminary numerical experiments showed that this setting was
enough to escape from local solutions. The number ` of neighborhood trial solutions was set equal to
round( |C|

2
). Since l depends on the problem size, it may help avoid a deterioration of the method when

the problem size increases. The maximum numbers Idiv and Ishak of consecutive non-improvement
iterations before applying diversification or shaking are set equal to 10 and 20, respectively. Actually,
the preliminary numerical experiments showed that these settings were reasonable to avoid spending
more non-improvement iterations, and sufficient to let the search process explore the current region
before supporting it with diversification or intensification. The number nR of best reducts is set equal
to 3, which helps TSAR to improve the best reduct found so far if it was not a global one. Finally,
the maximum numbers Imax and Iimp of iterations and of consecutive non-improvement iterations,
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Table 3: TSAR Parameter Setting
Parameter Definition Value
|TL| size of tabu list 5
` size of neighborhood round( |C|

2
)

nR number of the best reducts used to compute xERI 3
Imax max number of iterations 100
Iimp max number of consecutive non-improvement iterations 40
Idiv number of consecutive non-improvement iterations to apply diversification 10
Ishak number of consecutive non-improvement iterations to apply shaking 20

respectively, are set as in Table 3. The preliminary numerical experiments showed that these settings
were enough to avoid premature termination.

TSAR was compared with three other rough set attribute reduction methods;

• Ant colony optimization for rough set attribute reduction (AntRSAR) [11, 12],

• Simulated annealing for rough set attribute reduction (SimRSAR) [12], and

• Genetic algorithm for rough set attribute reduction (GenRSAR) [11, 12]

These comparisons are reported in Tables 4 and 5. The results of AntRSAR, SimRSAR, and
GenRSAR reported in Tables 4 are taken from their original papers [11, 12]. The results in Table
4 represent the numbers of attributes in the minimal reducts obtained by each method, and the su-
perscripts in parentheses represent the number of runs that achieved this number. The number of
attributes without superscripts mean that the method could obtain this number of attributes for all
runs. All methods have the same number of runs for each dataset, which is 20 except the results
of SimRSAR for Heart, Vote and Drem2 datasets for which the number of runs are 30, 30 and 10,
respectively, as in [12]. TSAR could obtain the best known minimal reducts for all tested datasets.
Moreover, for 6 datasets among them, TSAR could obtain the best known minimal reducts in all runs.

To make a more detailed comparison, the mean values of the numbers of attributes in the best
reducts obtained for each dataset are reported in Table 5. Moreover, t-tests [15] for these means
are also reported to show the differences among the compared methods at 0.05 level of significance.
TSAR outperforms GenRSAR for all tested datasets except for Heart dataset. Moreover, the average
results of TSAR for this dataset are still better than those of GenRSAR. SimRSAR could not outper-
form TSAR for any dataset, while TSAR outperforms it for Vote dataset. The performance of TSAR
and AntRSAR is comparable since there is no significant difference between them for 11 datasets out
of the 13 tested ones, and TSAR outperforms AntRSAR for LED dataset, while AntRSAR outper-
forms TSAR for Lung dataset.

It does not seem easy to make a complete comparison of those methods in terms of computational
costs and complexities. However, we try to comment on computational costs of calculating the depen-
dency degree function γ, since its computation is costly especially if the dataset has a large number of
attributes or objects. First, GenRSAR uses the population size equal to 100, the probabilities of ap-
plying the crossover and mutation processes are 0.6 and 0.4, respectively, and the termination is done
after 100 generations. Therefore, GenRSAR uses approximately 10,000 γ-function evaluations for
each dataset. According to the cooling schedule of SimRSAR, the number of γ-function evaluations
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Table 4: Results of TSAR and other methods
No. of

Dataset Attributes AntRSAR SimRSAR GenRSAR TSAR
M-of-N 13 6 6 6(6)7(12) 6
Exactly 13 6 6 6(10)7(10) 6

Exactly2 13 10 10 10(9)11(11) 10
Heart 13 6(18)7(2) 6(29)7(1) 6(18)7(2) 6
Vote 16 8 8(15)9(15) 8(2)9(18) 8

Credit 20 8(12)9(4)10(4) 8(18)9(1)11(1) 10(6)11(14) 8(13)9(5)10(2)

Mushroom 22 4 4 5(1)6(5)7(14) 4(17)5(3)

LED 24 5(12)6(4)7(3) 5 6(1)7(3)8(16) 5
Letters 25 8 8 8(8)9(12) 8(17)9(3)

Derm 34 6(17)7(3) 6(12)7(8) 10(6)11(14) 6(14)7(6)

Derm2 34 8(3)9(17) 8(3)9(7) 10(4)11(16) 8(2)9(14)10(4)

WQ 38 12(2)13(7)14(11) 13(16)14(4) 16 12(1)13(13)14(6)

Lung 56 4 4(7)5(12)6(1) 6(8)7(12) 4(6)5(13)6(1)

is about 40M log(2|C|/Tmin), where M is the epoch length of the cooling schedule, and Tmin is the
minimum temperature used to terminate the cooling schedule. AntRSAR spends 250 iterations before
termination. In each of the AntRSAR iterations, one ant starts from each attribute, hence, |C| ants are
used in total. Each ant tries to add attributes one by one until a reduct is found, and then the iteration
is terminated. For TSAR, the maximum number of γ-function evaluations is equal to 50|C| plus those
in Shaking and Elite Reducts Inspiration processes. Actually, TSAR applies Shaking at most once
and the maximum cost of γ-function evaluations for applying Shaking is |C| − 2. Moreover, TSAR
applies Elite Reducts Inspiration once and the numerical experiments showed that this step costs at
most 3|C| γ-function evaluations. According to these observations, we can conclude that

• the exact number of γ-function evaluations in GenRSAR is approximately 10,000,

• a lower bound for the number of γ-function evaluations in AntRSAR is 250|C|(|Rmin| − 2),
where Rmin is the minimal reduct,

• an upper bound for the number of γ-function evaluations in TSAR is 54|C|.
Figure 2 shows these estimates of γ-function evaluations in all tested datasets. For GenRSAR, the
number of γ-function evaluations in each dataset is around the number represented by “¤”. The
number of γ-function evaluations in AntRSAR is not less than those represented by “4”. Finally,
the number of γ-function evaluations in TSAR does not exceed those represented by “5”. It is clear
that TSAR is much cheaper than GenRSAR and AntRSAR. Moreover, from Figure 5 in [12], the
average runtime for SimRSAR is worse than GenRSAR for all datasets except LED. Therefore, we
may conclude that TSAR is generally cheaper than SimRSAR, too.
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Table 5: Comparison between TSAR and other methods
Solution Qualities (Averages) t-value (Significant Method at level 0.05)

Dataset
M-of-N
Exactly
Exactly2

Heart
Vote

Credit
Mushroom

LED
Letters
Derm
Derm2

WQ
Lung

AntRSAR SimRSAR GenRSAR TSAR

6 6 6.6667 6
6 6 6.5 6
10 10 10.55 10
6.1 6.0333 6.1 6
8 8.5 8.9 8
8.6 8.2 10.7 8.45
4 4 6.65 4.15
5.5263 5 7.75 5
8 8 8.6 8.15
6.15 6.4 10.7 6.3
8.85 8.7 10.8 9.1
13.45 13.2 16 13.25
4 4.7 6.6 4.75

AntRSAR – TSAR SimRSAR – TSAR GenRSAR – TSAR

– – 5.83 (TSAR)

– – 4.36 (TSAR)

– – 4.82 (TSAR)

1.45 1.00 1.45
– 5.38 (TSAR) 13.08 (TSAR)

0.63 –1.14 12.09 (TSAR)

–1.83 –1.83 16.15 (TSAR)

2.97 (TSAR) – 22.36 (TSAR)

–1.83 –1.83 3.24 (TSAR)

–1.12 0.65 29.59 (TSAR)

–1.68 –2.04 11.05 (TSAR)

1.02 –0.33 22.36 (TSAR)

–6.10 (AntRSAR) –0.28 11.10 (TSAR)

M−of−N Exactly Exactly2 Heart Vote Credit Mushroom LED Letters Derm Derm2 WQ Lung
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Figure 2: Costs of computing the dependency degree function γ
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5 Conclusion
The attribute reduction problem in rough set theory has been studied in this paper. A TS-based
method, called Tabu Search for Attribute Reduction (TSAR), has been proposed to solve the prob-
lem. New diversification and intensification elements have been inlaid in TSAR to achieve better
performance and to fit the problem. Numerical experiments on 13 well-known datasets have been
presented to show the efficiency of TSAR. Comparisons with other CI tools have revealed that TSAR
is promising and it is less expensive in computing the dependency degree function γ.
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