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Abstract

This paper considers the problem of finding as many as possible, hopefully all, solutions
of the general (i.e., not necessarily monotone) variational inequality problem (VIP). Based
on global optimization reformulation of VIP, we propose a hybrid evolutionary algorithm
that incorporates local search in promising regions. In order to prevent searching process
from returning to the already detected global or local solutions, we employ the tunneling
and hump-tunneling function techniques. The proposed algorithm is tested on a set of
test problems in the MCPLIB library and numerical results indicate that it works well in
practice.
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1 Introduction

Let X be a nonempty closed convex set in R"” and F' : R” — R" be a continuously differentiable
mapping. The variational inequality problem (VIP) is to find a vector z* € X such that

F)T(z —2%) >0, VzeX. (1.1)

This problem is denoted VIP(X, F) and has a large number of important applications. We
refer the interested reader to the two volume book by Facchinei and Pang [3].

Theoretical aspects of the VIP have been studied well and many algorithms, such as pro-
jection methods, interior and smoothing methods and equation reduction methods, have been
proposed to solve it [3, 4]. A popular idea adopted by recent algorithms is to reformulate the
VIP as a system of equations or an optimization problem. However, the validity and efficiency
of those algorithms often depend on the monotonicity-like assumption on the mapping F'.

Although some algorithms have been proposed for solving general (not necessarily mono-
tone) VIPs [1, 8,9, 10, 14, 15, 17], they are primarily designed to solve the particular VIP(X, F')
in which the constraint set X is the non-negative orthant R’}. This special problem, VIP(R"}, F),
is called the nonlinear complementarity problem, and is denoted NCP(F). Moreover, most of
the existing algorithms aim at finding a solution of this problem. In practice, however, it is
desirable to find all, or as many as possible, solutions of the problem.

In this paper, we propose a global optimization-based method for finding as many as pos-
sible, hopefully all, solutions of the general VIP. To achieve this, we first use an optimization
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reformulation of VIP (1.1) based either on a merit function or on its KKT system. In either
case, the VIP (1.1) is reformulated as the following box constrained optimization problem with
zero global minimum value [3, 4]:

min f(x) s.t.z € D, (1.2)

where f is a real-valued function and the set D is defined as D = {z € R"| | < 2 < u}. Here
[,u € R" U {=£o0} are, possibly infinite, lower and upper bounds on the variable.

In order to find all global solutions of problem (1.2), we propose a population-based hy-
brid evolutionary algorithm (HEA) that incorporates local search in promising regions. The
proposed method tries to keep and improve diversity of good trial points in the population
set while searching for global minimizers of the objective function. Moreover, every time a
global or local solution, or an unpromising trial point is detected by the HEA, the objective
function of the problem is locally modified around this point to prevent the searching process
from returning back to the vicinity of this solution again. Actually, the proposed HEA invokes
some known strategies of hybrid metaheuristics [11, 16, 18] with some modifications to fit the
general VIP.

Tunneling function method for finding a global minimum of a non-convex function was first
introduced in [13]. Main idea of this method is that every time a local solution is detected in
computation, it tries to construct a new objective function which has the same global minima
as the original function but the detected local minimum is no longer a local minimum for the
new function. The new function is treated as the objective function in the next search stage,
and this process is repeated until a global solution is found. Another idea to escape from
a detected local minimum, called the filled function method, is proposed in [5, 19]. Instead
of constructing a tunnel at a detected local minimum, it considers a new objective function
which has a local maximum at the detected local solution and has no stationary point at local
solutions worse (having greater original objective function value) than the detected one. Both
tunneling and filled function techniques are applied to the general nonlinear complementarity
problem in [8], where a semi-smooth Newton method is presented.

In our method, the tunneling function technique is used not only for escaping from the
detected local minimum, but also and more importantly for escaping from a detected global
minimum and its basin to search for other global minimizers. However, the direct use of the
tunneling function technique at a detected global minimum can be effective only if it is an
exact solution of the problem. In practice, we can only expect to find approximations of global
minima. To cope with this difficulty, before using the tunneling modification at a detected
approximate global minimum, we suggest first to use another modification of the objective
function, which is called a hump function and helps capture the exact global minimum near
the detected approximate solution, and then construct a hump-tunneling function to which the
HEA is applied.

The global optimal value of problem (1.2) is known to be zero. The proposed method HEA
exploits this fact in two ways. First, it helps the HEA to determine whether a solution is global
or not. Second and more importantly, if a modified objective function (either by a tunneling
or by a hump-tunneling function) has at least one common global minimum with the original
objective function, it must also have the zero global minimum value, i.e., the global minimum
value of the objective functions will remain the same during the computation except when
there are no other common global minimizers.

The organization of this paper is as follows: In Section 2, we first give a review of merit
functions and global optimization reformulations of VIP. In Section 3, we describe the HEA
and its elements in detail. The basic ideas behind the tunneling and hump function techniques



are also contained in this section. We then present numerical results in Section 4 and conclude
the paper in Section 5.

2 Global Optimization Formulations of VIP

Consider the VIP, which is to find a vector z* € D such that
F(z)T(z —2*) >0, Vz e D.

Definition. A merit function for the VIP is a nonnegative function 6 : D — R, such that z*
is a solution of the VIP if and only if 2* € D and 6€(z*) = 0. That is, the solutions of the
VIP coincide with the global optimal solutions of the problem

min 6(z) s.t. x € D, (2.1)

whose optimal objective value is zero.

There are some well known merit functions for VIP [3, 4].
1. Gap function:
Ogap(w) = max F()7 (

ma T —y).

2. Natural residual function:
Onr(r) = [l —p(x — F(2))],
where IIp(z) := argmin ||z — y|| denotes the projection of point z on D.

yeD
3. Regularized gap function:

Oregla) = mias(F(a) (&~ 9) — 5o = ylP)
— P~ lp(e - F@) - gl - Mol - F@IP. (22)

The first two merit functions are generally non-differentiable, while the third one is a continu-
ously differentiable function.

Another way to define VIP as a global optimization problem with zero global minimum
value is to use its KKT system. Consider the following VIP: Find z* € D such that

F(a") ' (x —2*) >0, Vo€ D:={xeR" h(z)=0, g(x) <0} (2.3)

where h : R — R™ and g : R" — R™?2 are an affine function and a continuously differentiable
convex function, respectively. Although we can directly use one of merit function formulations
of problem (2.3) as described earlier, computing them with the set D would be rather expensive
in general. The KKT system of problem (2.3) is given by

F(z)+ Vh(z)p+ Vg(z)A =0
=0 (2.4)
0

which is a mixed complementarity system. It has been shown [3] that, under some constraint
qualification for D, the solutions of problem (2.3) coincide with the solutions of the KK T system
(2.4). Tt is not difficult to see that the system (2.4) is equivalent to some box constrained VIP,
so we can use a merit function formulation for that VIP and have a global optimization problem
with zero global minimum value.



3 Hybrid Evolutionary Algorithm

A genetic or evolutionary algorithm applies the principles of evolutionary process observed in
nature for finding a solution of a problem [2, 6]. An evolutionary algorithm for optimization is
different from classical optimization methods in several aspects:

- It relies on random sampling. This makes it a nondeterministic method, for which there is
no theoretical guarantee to find an optimal solution.

- While classical optimization methods maintain a single best solution found so far, an evolu-
tionary algorithm maintains a population of candidate solutions. Only a few of these are best,
but the other members of the population set are trial points in other regions of the search space,
where a better solution may later be found. The use of population sets helps the evolutionary
algorithm avoid being trapped at a local optimum.

- Inspired by the role of reproduction and mutation processes in the evolution of living things,
an evolutionary algorithm tries to combine and change elements of existing solutions in order to
create a new solution, with some of the features of parents. The elements of existing solutions
are combined in a crossover operation. Moreover, random changes or mutations are made
periodically for some members of the current population, thereby yielding a new candidate
solution. There are many possible ways to perform crossover and mutation operations [7].

- An evolutionary algorithm performs a selection process in which the most fit members of
the population survive, and the least fit members are eliminated. This process guides the
population in an evolutionary algorithm towards ever-better solutions.

A drawback of any evolutionary algorithm is that a solution is judged better only in com-
parison to currently known other solutions; such an algorithm actually has no reasonable way
to test whether a solution is, even local, optimal. This drawback will disappear when the min-
imum objective value is known, and the global optimization problem considered in this paper
precisely meets this requirement.

Now we describe our hybrid evolutionary algorithm HEA for the following optimization
problem with zero global minimum value:

min f(x) s.t. z € D, (3.1)

where the constraint set is defined as D := {z € R"|l < z < u} withl,u € R"U{Zo0}. Assume
that f is continuously differentiable. Our purpose is to design an evolutionary algorithm which
is able to find as many solutions as possible of problem (3.1).
If z* is a solution (global or local) of problem (3.1), then it must satisfy the following
optimality condition:
Vi)' (x —2*) >0, Vz € D. (3.2)

We can rewrite the condition (3.2) as
>0 ifx; =1;

=0 ifli<x;-‘<ui; 1=1,...,n.
<0 ifx; = wuy,

0f (x)
6w,~

gi(x) :==

Let us define the index sets
Af(x) ={i| i <z <li+e}, As(x) ={i| i +e <x; <wu;+¢e}, A3(x) = {i| u; — e < x; <wu;}
and the function

err®(z) = Z |min{g;(x),0}| + Z lgi(z)| + Z max{g;(x),0},

i€ As(x) i€ A5 (x) i€A5(x)
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which is defined on the set D. It is not difficult to see that if x* is a solution (global or local)
of problem (3.1), then for sufficiently small £ > 0 the value of the function err®(z) at the point
x* is zero, i.e., err®(z*) = 0.

In order to search for many global solutions simultaneously, the proposed evolutionary
algorithm first tries to keep diversity in the population set. Due to the rules of accepting a
newly produced trial solution to survive in the population set, most evolutionary algorithms
have the tendency that population sets eventually cluster around only a few solutions. This
is because, in ordinary evolutionary algorithms, a new trial solution is usually accepted to
survive and replace some solution in the population set, if it is better than that. Although
some algorithms such as scatter search method [11, 12] try to keep diversity, the number of
different good points in the population set is still small (even if the objective function has many
global solutions) and the remaining points are usually just diversity points. The HEA uses the
Population Update Rules (see Section 3.1), which are novel types of criteria for accepting new
trial solutions to survive in the population set, and tries to keep diversity while searching for
promising points.

The HEA collects the detected global or local solutions, or unpromising trial points in the
set S of modification points. Once one of those points is detected, the HEA adds it to S
and modifies the objective function around this point in order to avoid returning to it again in
further search. We employ tunneling or hump-tunneling function modification (see Section 3.2)
with detected solutions to construct new objective functions, which have the same minimum
points as the original objective function except those solutions already detected. Moreover, to
achieve faster convergence, we apply a local optimization method starting from the best points
in the population set. Although we use modified objective functions in the evolutionary search,
we always use the original objective function in the local search.

To terminate the HEA, we use the following three different criteria.

-The number of function evaluations exceeds the pre-defined limit.

-The number of detected global solutions exceeds the pre-defined number.

-Let N; be a pre-specified positive integer. If the most recently added /N, elements of the set
S of modification points were not new global solutions, then we terminate the main algorithm.

The main loop of the proposed algorithm is stated as follows. Explanation of its components
will be given later in detail.

HEA Algorithm

1. Initialization. Choose a population size M and fix parameters m,ls, Ns, Ny, 3,€1,€2,€3 >
0.
Initialize the set of modification points as S := () and set the current objective function

fe(x) := f(x).

Use the Diversification Generation Method to construct an initial population set P. Evaluate
the trial points in P and order them according to their current objective function values so
that ! is the best solution and ™ is the worst, i.e.,

fc(ml) S fc(xZ) S S fc(mM)

Set the generation counter ¢ := 1.
2. Parents Pool Generation. Generate a parents pool P’, which consists of all different



pairs of the population set P.

3. Crossover and Mutation. Select a pair (p',p?) from P’. Apply the Crossover and
Mutation Procedure to the pair (p!,p?) to obtain two new solutions c!, ¢2.

4. Population Update. Using the Population Update Rule with ¢! and ¢?, update the
population set P. Delete the pair (p',p?) from the parents pool P’. If P’ = (), then go to Step
5; otherwise go to Step 3.

5. Modification of Objective Function. If for some z € P,
f(x) < &1 (global solution), or

err®®(z) < g9 (stationary point),

then add Z to the set S of modification points. Applying the procedure Modification of the
Objective Function to the current objective function f.(z) with the point Z, reconstruct the
objective function f.(z). Use the Diversity Generation Method to produce M new trial points
and add them to the population set P. Reorder the elements in the set P according to their
new objective function values and redefine the population set P as the best M elements in it.
Continue with the new objective function f.(x) and population set P.

6. Stopping Condition. If one of the stopping conditions holds, then terminate the algorithm
and refine the global solutions in S by some local search method. Otherwise, set ¢ := ¢+ 1 and
go to Step 7.

7. Intensification. If the best solution in the population set P has not been improved enough,
i.e., the objective value has not been decreased by a pre-specified fraction 3 € (0, 1) in the last
Ny steps, then apply the local search method with [s steps to the original objective function
f(x) starting from the best m elements of the set P. Delete the points used as starting points in
local search from the set P and add m points produced by Diversification Generation Method
to the set P. After the local search steps are taken, compare the values of the current objective
function f.(x) at each pair of the starting point and the newly found point.

If the value at the newly found point is greater, then go to Step 7.1. Otherwise, go to Step 7.2.
7.1. We regard the starting point as an unpromising trial point and add it to the set S
of modification points. Applying the procedure Modification of the Objective Function to
the current objective function f.(z) with the starting point, reconstruct the objective function
fe(z) and reorder the elements in the population set P according to their new objective function
values. Go to Step 2.

7.2. Using the Population Update Rule, update the population set P with the newly found
points. Go to Step 2.

Now we elaborate the steps used in the HEA.

Diversification Generation Method. The purpose of the diversification generation [11] is to
generate a well distributed set of trial solutions. The basic Diversification Generation method
uses controlled randomization and frequency memory to generate a set of diverse solutions. This
can be accomplished by dividing the range [l;, u;] of each variable into 4 sub-ranges of equal
size. Then, a solution is constructed in two steps. First a subrange is randomly selected. The
probability of selecting a subrange is determined to be inversely proportional to its frequency
count. Then a value is randomly generated within the selected subrange.

Crossover and Mutation Procedure. The purpose of crossover is to produce children who
are expected to possess better properties than their parents. Good results can be obtained
with a random matching of the individuals [2, 6]. Some well known crossovers are the following
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Single-point crossover: One crossover position (coordinate) in the vector of variables (genes)
is randomly selected and the variables situated after this point are exchanged between individ-
uals, thus producing two offsprings.

Multi-point crossover: Some crossover positions are chosen, and then the variables between
successive crossover points are exchanged among the two parents to produce new offsprings.

Intermediate recombination: The values of the offspring variables are chosen from the values
of the parents variables according to some rule.

Although we could use various types of existing crossovers, we propose another crossover which
may hopefully be more appropriate to our problem. We use the well known fact [3] that

x solves the VIP(F, D) <= = =Ilp(x — F(x)),
where IIp(z) := argmin ||z — y|| is the projection of point z on D. If we denote the mapping

yeD
H(z):=Ip(z — F(z)), then we have

n

lz = p(z - F@)| = |z - H@)ll = | > (2 — Hi(x))2.
=1

Here H;(x) is i-th component of the vector H(z). According to this formula, we may tell to

some extent the quality of the gene x;, that is, the smaller the value |z; — H;(z)|, the better

the gene. In particular, the equalities z; — H;i(z) =0, i = 1,...,n, hold at any solution of the

VIP. Taking into account these properties, we propose the following crossover and mutation.
Let (p',p?) be a pair of solutions used to produce new trial solutions.

Crossover. Let p denote the vector whose coordinates are given by

b { p%a if |p; — Hj(p")| < |p7 — H;(p*),
J

. =1,...,n.
pj, otherwise, J AR

Choose random numbers r, 7 from the interval [0, 1]. Define two new trial solutions as follows:
If p # p' or p # p?, then . . .
c' = pl + 7’7,(]5 _pZ), @ = ]-7 2.

Otherwise,

o(p! = rafp? =), ifp=p;
1. .1 2 1 2. _ D\P 2{p p)), p=Dp
c:=p +r( —p), c: { HD(pQ—?“z(p _p2))’ if p = p.

Mutation. Choose random numbers 71,72 from the interval [0, 1]. Define two new trial solutions
as follows: _ _ _ _

¢ = pf +ri(HGY) ~p), i = 1,2,
In the HEA, we use the above Crossover and Mutation in addition to the multi-point crossover
to generate the children.

3.1 Population Update Rule

As we mentioned earlier, most evolutionary algorithms have the property that their population
sets tend to cluster around only a few global solutions. Here we propose two different techniques
to update the population set, which are aimed to keep diversity while searching for global
solutions. The first one is somewhat heuristic and depends on the structure of the population



set. The second one is based on some tolerance parameter for the distance between trial points.

Population Update 1. Consider a set of points X = {z',2%,...,2M} sorted according to
their objective function values. Let x be a trial solution used to update the population set.

L. If f(z) > f(z™), i.e., x is worse than the worst element in X, then discard z.

2. If f(z) < f(a), i.e., z is better than the best element in X, then add o to X and delete the
closest point to = in X.

3. If f(2') < f(z) < f(z'+1), then let

k := argmin ||z — 27|, [:= argmin ||z — 27|
1<5<i i+1<j<M

Namely, z¥ is the closest point to 2 among such points in X that their objective function values
are smaller than f(z), while 2! is the closest point to x among such points in X that their
objective function values are greater than f(x).

If ||z — 2¥|| < ||2* — ||, then discard x.

If |z — 2| > ||#* — 2!|| and ||z — 2!|| < ||2* — 2|, then delete 2! from X and add x to X in
the (i + 1)-th position.

Otherwise, delete " from X and add = to X in the (i + 1)-th position.

Population Update 2. Let X = {z',22,...,2M} be a set of points sorted according to their
function values, and ep > 0 be a fixed tolerance for the distance. Let = be a trial solution.
Define
B(z,¢) :={y € R"| ||z —y|| < ¢}, k(i) := argmin |z — 27|
1<5<i

1. If f(z) < f(2b), then add = to the set X and delete from X all the points 2/ satisfying
27 € B(x,ep). If there is no such element in X, then delete 2™ from X. If there are many,
add new trial solutions generated by using Diversification Generation Method to X to keep the
size of the population set P equal to M.
2. If f(2') < f(z) < f(z*+1), then do the following:
Ifz e B(wk(i), ep), then discard x. Otherwise, add the point - to X, and delete all the elements
2/, j=i+1,...,M of X satisfying 2/ € B(x,ep). If there is no such element in X, then
delete 2™ from X. If there are many, add new trial solutions generated by using Diversification
Generation Method to X to keep the size of the population set P equal to M.

If ep = 0, then the Population Update Rule 2 will coincide with the ordinary update rule
used in the genetic algorithm that accepts a child to survive if it is better than an element in
the population.

3.2 Modification of the Objective Function

Let f.(z) be the current objective function used in the HEA and z be a point around which
the function f.(x) is to be modified. Depending on the type of point z, we use two different
modifications. Recall that we can recognize whether T is a global solution or not, since we
know that the global minimum value is zero.

Suppose first that Z is not a global solution. According to the HEA, Z must then be either
a local solution or an unpromising trial point which lies in the basin of some detected solution.
To avoid inefficient search around it in the next search stage, we use a new objective function
which is constructed from the current objective function by augmenting the function value



around Z.
Tunneling function. Consider the following function:

1
x,x) = felz) - expl ———= ). 3.3
This function is called a tunneling function because of its behavior around the point z. For
the sake of computational convenience, instead of directly using the function f;(z,Z), we use
the following approximation of this function:

fi(x,Z) :== fo(x) -exp( L ), (3.4)

A — 5|2
5t+p%||$ z||

where €; and p; are positive parameters that control the degree and the range of modification.
Since z is not a global minimum and the objective function value is zero at any global minimum,
the modified function f;(z, %) has the same global minima as the function f.(x) has.

Now let Z be an isolated global minimum of f.(z). Our purpose is to construct a new
objective function which has the same global minimizers as the objective function f.(x) has,
except Z. Moreover, we require the new function to have no solution around Z. In principle,
we may use the tunneling function (3.3). If z is an exact global solution, i.e., f.(z) = 0,
then under mild condition the function f;(z,z) can satisfy our requirements. But, if z is just
an approximation of a global solution Z*, as one may expect in practice, then it may not be
appropriate to use the tunneling function modification f;(z, ), because the exact solution z*
still satisfies f;(Z*,Z) = 0 unexpectedly (see Figure 1).

fe() fi(z,71)

O a3 @ e Of wizi ) azay 7

Figure 1: Graphs of a function (a) and its tunneling modification at an approximate solution Z; (b).

Below we propose a possible remedy to overcome the above-mentioned drawback of the tun-
neling function method.
Hump-Tunneling function. Consider first the following modified function:

oz, z) = fo(x) + ahmax{(),l — %Hm — j“2}’ (3.5)
P

where ap,pp > 0 are some parameters. We call this function the hump function and this
function may enable us to escape from the region around Z even when Z is an approximation of

a global solution. However, it is not clear how we can determine the parameter p; appropriately.
If we set it smaller than necessary, the modified function may not be very useful because of a



narrow range of modification, and if we set it large, it may affect some other global solutions
near 7, if any, and may make them non-global solutions any more (see Figure 2.a). Although
it is not very appropriate to use either tunneling or hump function method individually, it may
be effective to use a combination of these two functions.

We first take a sufficiently small positive scalar p, and define a hump function fy,(z,z) as
in (3.5). Then we construct the following function:

P, 7) = fale,2) - exp( 13

s+ e — ol

= (#to) + enmax{0,1 = Sl = 1P} esp(

A1 — 72
5t+p%||$ |

). (3.6)

We call this function the hump-tunneling function and zero points of this function coincide
with those of the function f.(z) except for those zeros in B(Z, py). Choosing pj, small enough,
we can avoid affecting other global solutions near T (see Figure 2.b).

fn(z, 72) Jni(z, T2)

O] (a) To T3 x O] (b) To T3 x

Figure 2: Graphs of a hump function (a) and a hump-tunneling function (b) constructed through
modification at an approximate solution Z» of the function of Figure 1.a.

4 Numerical Experiments

The performance of the HEA was tested on a number of well known test problems in the MC-
PLIB library. To show the efficiency of the HEA we have used only those problems which have
multiple solutions, and for each problem we made 20 trials with different initial populations.
The programming code for the algorithm was written in MATLAB and run on a computer
Pentium 4, Microprocessor.

The merit function (2.2) is used to reformulate MCPLIB test problems as optimization
problems, and for local search in the HEA, we employ MATLAB’s command fmincon combined
with an active set detecting strategy. Moreover, the HEA is supposed to use a finite box for
generating diversity points in the Diversification Generation Method, whereas most of the
test problems are mixed complementarity problems which have no lower or upper bound.
To deal with such problems, we use a fixed finite box defined inside the original box in the
Diversification Generation Method, while using the original box constraint in the Crossover
Mutation Procedure and in the local search.

In general, it is difficult to universally determine suitable values of HEA parameters for
every problem, because they are highly problem dependent. Nevertheless, through testing
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Table 1: Parameter Settings.

Parameters Definition Value

M number of elements in population min{2n + 4,20}
m number of best points for which local search is used 2

ls maximum number of steps per local search min{2n, 30}
N, B parameters controlling local search in HEA 3, 0.999
€1,€2,€3 tolerance parameters for the objective function in HEA 107,106,103
Naz maximum number of ineffective local transformations 10

Nymaaz maximum number of global solutions to be found 20

NF 1 oe maximum number of function evaluations 5n10%

ED distance tolerance used in Population Update Rule 2 n/5

Et, Pt tunneling parameters used in (3.4) and (3.6) 0.1, 2

Qp, P humping parameters used in (3.6) 1,0.3

many times on various test problems, we suggest possible choices of the parameters as shown
in Table 1.

We have two versions of the HEA; HEA; and HEA5 that use Population Update Rule 1
and Rule 2, respectively. We ran the HEA versions for all the chosen test problems with the
general parameter settings mentioned in Table 1 and put the numerical results in Tables 2 and
3. The columns in these tables have the following meanings:

Problem: name of the test problem,

n: dimension of the test problem,

Kpin, Kavy Kimgz:  minimum, average, maximum numbers of solutions found by the
algorithm,

Ngen: average number of generations,

Nipe: average number of local steps taken,

NF": average number of function evaluations,

Ny: average number of function evaluations when the last global solution

is obtained.

The results reported in Tables 2 and 3 show that the HEA is promising. For most of test
problems, the average numbers of obtained global solutions (K,) are close to the maximum
numbers of obtained global solutions (K,q;), and this implies that the HEA versions are capa-
ble of finding multiple solutions. Moreover, the average numbers of generations are reasonable
compared with the problem dimensions and the numbers of obtained global solutions. The HEA
versions use three different stopping conditions. Specifically, if the number of global solutions or
that of ineffective transformations (i.e., the number of subsequently detected local solutions or
unpromising trial points) or that of function evaluations exceeds their respective pre-specified
limits Ngmazs Nmazs NFmaz, then the algorithm is terminated. We observe in both tables that
the HEA versions find global solutions in a relatively small number of function evaluations
(Ny), and after that, the algorithms were still running until one of the termination conditions
is met in order to check whether there are any other solution left or not.

Table 2 reveals that the HEA; finds no less than Ny, (=20) global solutions for five
test problems. In fact, we may conclude that these problems have infinitely many solutions,
and by setting Ng.q. bigger, it is possible to find as many solutions as one may want. For
the other five problems, the algorithm was terminated because the number of ineffective local
transformations exceeded N,q. (= 10).
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Table 2: Numerical Results for the HEA with Population Update Rule 1.

Problem || n | Koin Ko Koo | Nyen | Nioe | NF | Ny
badfree 5 20 20 20 31 14 3260 3260
games 16 20 20 20 74 | 432 | 32859 | 32839
kojshin 4 2 2 2 38 | 115 4023 1474
mathinum 3 1 144 20 255 | 858 | 30402 | 23066
mathisum 4 1 1.9 2 52 184 6751 2974
ne-hard 3 2 31 4 185 | 956 | 31223 | 16068
powell 16 4 114 20 96 | 1644 | 45740 | 36676
powell_mcp 8 2 51 9 110 | 1109 | 24585 | 10553
scarfasum 14 2 2.7 3 80 | 1157 | 45508 | 25139
sppe 27 20 20 20 325 | 471 | 138475 | 138475

Table 3 shows that, the performance of the HEA, is promising except for problem mathinum,
for which it occasionally failed to find a global solution despite the fact that this problem has
at least twenty solutions as shown in Tables 2 and 3. It happened because the number of
ineffective local transformations reached its limit Ny, (= 10) before finding a global solution.
By increasing Ny,qz, we could improve the performance of the HEA5 for this problem. Another
possible reason for the unexpected performance of the HEA5 for problem mathinum is the choice
of parameter €. As we mentioned earlier in Section 3.1, the Population Update Rule 2 is an
extension of the standard genetic algorithm selection mechanism and it tries to prevent the
population from prematurely converging to one or only a few points. However, we found that
the choice ¢ = n/5 was not appropriate for problem mathinum, since the HEAy could not
escape from the undesirable property that the population converges to only a few points. We
have observed that, by increasing ep, we could improve the performance of the HEA4 for this
problem.

Table 3: Numerical Results for the HEA with Population Update Rule 2.

Problem || n | Kiin Koo Kos | Nyen | Nioe | NF | Ny
badfree 5 20 20 20 15 0 2946 2946
games 16 20 20 20 31 132 25529 | 25529
kojshin 4 2 2 2 28 92 5786 1986
mathinum 3 0 4.3 20 794 | 1008 | 132280 | 41290
mathisum 4 1 1.95 2 48 95 9299 2728
ne-hard 3 2 3.3 4 82 261 17930 | 10746
powell 16 5 14 20 71 | 1160 | 49965 | 34619
powell_mcp 8 3 6.9 11 107 | 1123 | 32349 | 12887
scarfasum 14 1 1.6 3 49 | 714 | 55479 | 22456
sppe 27 20 20 20 225 | 1563 | 260650 | 260650

Finally, we make some remarks on the comparison between the results shown in Tables 2
and 3 in terms of the numbers of obtained global solutions and computational costs. Generally,
the HEA versions are neutral in terms of the numbers of obtained global solutions, since these
numbers are almost the same for six problems out of ten. For problems powell and powell_mcp,
the HEA, was able to find more global solutions than the HEA;. However, for problems
mathinum and scarfasum, the HEA; performed better than the HEA5 in terms of the numbers
of obtained global solutions and the numbers of function evaluations. On the other hand, the
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HEA5 did not use local search in all runs for problem badfree, while the HEA; required more
local search steps than the HEA, for seven out of ten problems.

5 Conclusions

In this paper, we have presented a new population-based algorithm HEA that is designed to find
as many solutions as possible of the general VIP. New types of population update schemes in the
evolutionary algorithm and a hump-tunneling technique for escaping from detected solutions
have also been proposed. The computational results for some well known test problems show
that the HEA method is capable of locating many solutions in an acceptable number of function
evaluations. Moreover, the numerical results indicate that, the more solutions a problem has,
the better the HEA method works. Finally, it is worth mentioning that one can use the HEA
for finding solutions of a system of equations or a global optimization problem with known
minimum objective value.
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