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Abstract. We present a class of gap functions for the quasi-variational inequality problem

(QVIP). We show the equivalence between the optimization reformulation with the gap func-

tion and the original QVIP. We also give conditions under which the gap function is continuous

and directionally differentiable.
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1 Introduction

Given a vector-valued functionF : ℜn → ℜn and a set-valued functionS : ℜn ⇒ ℜn, the finite-

dimensionalquasi-variational inequality problem(QVIP) is to find a vectorx∈ℜn such thatx∈S(x)

and

〈F(x),y−x〉 ≥ 0 ∀y∈ S(x), (1)

where〈·, ·〉 denotes the inner product inℜn. Throughout the paper, we make the following assump-

tions:

(A1) F is continuously differentiable onℜn.

(A2) S(x) is nonempty, closed and convex for eachx∈ℜn.

These assumptions are standard, except the nonemptyness ofS(x) for all x ∈ ℜn. In fact, in many

practical applications, it may happen thatS(x) = /0 for somex. Nevertheless we assume this somewhat

strong assumption to simplify our arguments.
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Let X ⊆ℜn be defined by

X = {x∈ℜn |x∈ S(x)}. (2)

This is called a feasible set of QVIP (1) and plays a crucial role in the optimization reformulation of

the QVIP developed in this paper.

If the set-valued functionS is constant, i.e.,S(x) = Ŝ⊆ℜn for all x∈ℜn, then QVIP (1) reduces

to the variational inequality problem (VIP), which is to find a vectorx∈ Ŝsuch that

〈F(x),y−x〉 ≥ 0 ∀y∈ Ŝ. (3)

The VIP is one of the most fundamental equilibrium problems and has a number of important appli-

cations in economics, engineering, operations research, and so on. There has been an extensive study

on the theory and algorithms for the VIP [6]. In particular, merit functions such as the gap function

[1] and the regularized gap function [7] have been invented as a powerful tool in dealing with the VIP

by way of its equivalent optimization reformulation.

Compared with the VIP, the literatures on the QVIP are not so many [4, 18, 11]. However,

since the QVIP can be used to formulate the generalized Nash game in which not only each player’s

payoff function but also his/her strategy set depend on the other players strategies, the QVIP has

recently attracted growing attention in relation to game theory [2, 9, 14]. The gap function and its

modifications have been studied by Giannessi [8] for the QVIP. In this paper, we present a class of

gap functions for the QVIP and show the equivalence between the resulting optimization problem

and the original QVIP. The underlying idea is an extension of that given in [16], which is to modify

the constraints as well as the objective function of the optimization problem that defines the gap

function. By those modifications, the gap function possesses some favorable properties regarding

differentiability and becomes more amenable to computation particularly when the constraints are

defined by nonlinear inequalities.

2 Gap Functions

As a direct extension of the gap function for the VIP [1], thegap functionf0 : ℜn → ℜ∪{+∞} for

QVIP (1) is defined as

f0(x) =− inf{〈F(x),y−x〉 |y∈ S(x)}. (4)

SinceS(x) 6= /0 for eachx ∈ ℜn, we have f0(x) > −∞ everywhere. However, it can happen that

f0(x) = +∞ for somex. We can easily show the following fact.
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Theorem 1 For eachx∈ X, we havef0(x)≥ 0. Moreover,x solves QVIP(1) if and only if f0(x) = 0

andx∈ X.

Proof. If x∈ X, then we havex∈ S(x). In view of the definition (4) off0, we deduce thatf0(x)≥ 0.

The second part of the proposition is immediate from the first part.¤

Theorem 1 indicates that QVIP(1) can be reformulated as the problem of minimizing the function

f0 overX. If an optimal solution of the minimization problem has the zero objective value, then it is

a solution of QVIP(1). As mentioned above, however, the gap functionf0 may take the value+∞
somewhere. Moreover, it may not be so easy to evaluate the function valuef0(x) even if it is finite,

unless the setS(x) has a simple structure such as polyhedral convexity.

To construct a more tractable reformulation of the QVIP, we introduce the function

f (x) =− inf{ϕ(x,y) |y∈ Γ(x)}, (5)

where the functionϕ : ℜn×ℜn →ℜ and the set-valued functionΓ : ℜn ⇒ ℜn satisfy the following

conditions (B1)–(B3) and (C1)–(C4), respectively:

(B1) For each fixedx∈ℜn, ϕ(x, ·) is strictly convex and everywhere differentiable.

(B2) ϕ(x,x) = 0 for eachx∈ℜn.

(B3) ∇yϕ(x,x) = F(x) for eachx∈ ℜn, where∇y denotes the partial derivative with respect to the

second argument.

(C1) For eachx∈ℜn, Γ(x) is closed and convex.

(C2) S(x)⊆ Γ(x) for eachx∈ℜn.

(C3) X = {x∈ℜn |x∈ Γ(x)}.

(C4) TS(x) = TΓ(x) for eachx ∈ X, whereTS(x) andTΓ(x) denote the tangent cones ofS(x) and

Γ(x), respectively, at pointx.

With regard to these conditions, some remarks are in order.

Conditions (B1)–(B3) suggest that the functionϕ(x, ·) is in some sense a regularization of the

linear functiony 7→ 〈F(x),y−x〉 involved in the definition (4) of the gap functionf0. In particular, if

we define the functionϕ by

ϕ(x,y) = 〈F(x),y−x〉+ 1
2〈y−x,G(y−x)〉 (6)
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with a positive definite symmetric matrixG, then conditions (B1)–(B3) are all satisfied.

Conditions (C1)–(C4) presume that the setΓ(x) is a kind of approximation toS(x), which is

constructed with some information on the pointx under consideration. To get a more specific idea,

let us suppose that the setS(x) is defined by

S(x) = {y∈ℜn |gi(x,y)≤ 0, i = 1, . . . ,m}, (7)

wheregi : ℜn×ℜn→ℜ, i = 1, . . . ,m, are functions such thatgi(x, ·) are convex and differentiable for

each fixedx. Then by definition, we have

X = {x∈ℜn |gi(x,x)≤ 0, i = 1, . . . ,m}. (8)

Define a polyhedral approximation ofS(x) by

Γ(x) = {y∈ℜn |gi(x,x)+ 〈∇ygi(x,x),y−x〉 ≤ 0, i = 1, . . . ,m}. (9)

Clearly, (C1) holds. By the convexity ofgi(x, ·), it is easy to see that (C2) holds. To show (C3), let

us defineX′ = {x ∈ ℜn |x ∈ Γ(x)}. By (C2), x ∈ S(x) implies x ∈ Γ(x), i.e., X ⊆ X′. On the other

hand, ifx∈ Γ(x), thengi(x,x) ≤ 0, i = 1, . . . ,m, i.e., x∈ S(x). This impliesX′ ⊆ X. Consequently,

we haveX = X′, that is, (C3) holds. To examine condition (C4), choosex∈ X arbitrarily. First note

thatx∈ S(x)⊆ Γ(x). Moreover,x∈ S(x) impliesgi(x,x)≤ 0, i = 1, . . . ,m. Without loss of generality,

supposegi(x,x) = 0, i = 1, . . . ,m′, andgi(x,x) < 0, i = m′ + 1, . . . ,m for somem′ ∈ {0,1, . . . ,m}.
Then, under a suitable constraint qualification, the tangent cone of the setS(x) at pointx is given by

TS(x) = {d ∈ℜn | 〈∇ygi(x,x),d〉 ≤ 0, i = 1, . . . ,m′}. (10)

On the other hand, sincex ∈ Γ(x) and the active index set inΓ(x) coincides with that inS(x), the

tangent cone of the polyhedral convex setΓ(x) at x is also represented as the right-hand side of (10).

Thus (C4) holds.

It is worth mentioning that if the functionϕ is given by (6) and the set-valued functionSand its

approximationΓ are given by (7) and (9), respectively, then the minimization problem on the right-

hand side of (5) becomes a strictly convex quadratic programming problem. The latter problem is

known to have a unique solution, which can be computed by using an efficient solution method.

In the rest of this section, we investigate the properties of the gap functionf under conditions

(B1)–(B3) and (C1)–(C4). We also assume that the infimum on the right-hand side of (5) is attained

at some point, which is unique by (B1) and (C1), and is denotedy(x).

The following theorem is a counterpart of Theorem 1.
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Theorem 2 For eachx∈ X, we havef (x) ≥ 0. Moreover,x solves QVIP(1) if and only if f (x) = 0

andx∈ X.

Proof. If x∈ X, then we havex∈ Γ(x) by (C3). From (B2) and the definition (5) off , we deduce

that f (x)≥ 0.

To prove the second half of the theorem, we first suppose thatx solves QVIP (1). Then we have

x ∈ X, which impliesx ∈ Γ(x) as noted above. Sincey(x) minimizes the functionϕ(x, ·) over the

closed convex setΓ(x), it satisfies the first-order optimality condition

〈∇yϕ(x,y(x)),y−y(x)〉 ≥ 0 ∀y∈ Γ(x).

In particular, sincex∈ Γ(x), we have

〈∇yϕ(x,y(x)),x−y(x)〉 ≥ 0. (11)

On the other hand, sinceS(x) is convex,x∈S(x)⊆ Γ(x), and, by (C4),TS(x) = TΓ(x) holds, we have

〈F(x),y−x〉 ≥ 0 ∀y∈ S(x) ⇐⇒ 〈F(x),y−x〉 ≥ 0 ∀y∈ x+TS(x)

⇐⇒ 〈F(x),y−x〉 ≥ 0 ∀y∈ x+TΓ(x)

⇐⇒ 〈F(x),y−x〉 ≥ 0 ∀y∈ Γ(x).

Hence,y(x) ∈ Γ(x) yields

〈F(x),y(x)−x〉 ≥ 0. (12)

It then follows from (11), (12) and (B3) that

〈∇yϕ(x,y(x))−∇yϕ(x,x),y(x)−x〉 ≤ 0. (13)

However, sinceϕ(x, ·) is strictly convex,∇yϕ(x, ·) is a strictly monotone mapping. Therefore, (13)

holds only ifx = y(x). Hence we have

f (x) =−ϕ(x,y(x)) =−ϕ(x,x) = 0,

where the last equality follows from (B2).

To prove the converse, let us suppose thatx ∈ X and f (x) = 0. By the definition (5) of the gap

function, f (x) = 0 implies

ϕ(x,y)≥ 0 ∀y∈ Γ(x). (14)

Sinceϕ(x,x) = 0 by (B2) andx ∈ Γ(x) by (C3), (14) implies thatx = y(x), which is the unique

minimizer of ϕ(x, ·) over Γ(x). Then, by the first-order optimality condition for this minimization

problem, we have

〈∇yϕ(x,x),y−x〉 ≥ 0 ∀y∈ x+TΓ(x). (15)
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In a similar manner to the above, (C4) can be used to show that (15) is equivalent to

〈∇yϕ(x,x),y−x〉 ≥ 0 ∀y∈ S(x).

In view of (B3), this means thatx is a solution of QVIP (1). ¤

Theorem 2 indicates that QVIP (1) can be reformulated as the following minimization problem:

minimize f (x)

subject to x∈ X.
(16)

If we can find an optimal solution with zero objective value, it must solve QVIP (1).

Recall that a set-valued functionΦ : ℜn ⇒ ℜn is said to be closed if the graph{(x,y) |y∈Φ(x)}
is a closed subset ofℜn×ℜn. The following proposition follows from some well-known results in

sensitivity analysis of parametric optimization.

Proposition 1 If S: ℜn ⇒ ℜn is closed, then the setX defined by(2) is closed.

Proof. Obvious. ¤

Proposition 2 Letx∈ℜn be fixed and suppose that(i) ϕ : ℜn×ℜn→ℜ is continuous,(ii) Γ : ℜn ⇒
ℜn is closed,(iii) there exists a compact setC⊂ℜn and a real numberβ ∈ℜ such that for everyx′

in a neighborhood ofx, the set{y∈ Γ(x′) |ϕ(x′,y)≤ β} is nonempty and contained inC, and(iv) for

any neighborhoodU of the setΓ(x), there exists a neighborhoodV of x such thatU ∩Γ(x) 6= /0 for

all x∈ V . Then the functionf defined by(5) is continuous atx. Moreover, if the above conditions

hold at everyx∈ℜn, then f is continuous onℜn.

Proof. See [3, Proposition 4.4]. ¤

Under the conditions given in the above propositions, (16) is a problem of minimizing a contin-

uous function over a closed set inℜn. Let us examine those conditions in the case whereϕ, SandΓ
are given by (6), (7) and (9), respectively. Clearly,ϕ is continuous ifF is continuous. The set-valued

functionsSandΓ are closed whenever the functionsgi , i = 1, . . . ,m are continuously differentiable.

Moreover, condition (iii) in Proposition 2 holds since the matrixG in (6) is assumed to be positive

definite. Recall that we have assumedS(x) 6= /0 for all x, which together with (C2) impliesΓ(x) 6= /0

for all x. Hence (iii) actually holds for anyx. Finally, it can be shown that (iv) holds under Slater’s

condition, i.e., there exists somex0 such thatgi(x,x0) < 0, i = 1, . . . ,m.

Unfortunately, the functionf is in general nondifferentiable. Nevertheless we can show that it is

directionally differentiable under suitable assumptions. In the remainder of this section, we restrict
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ourselves to the case whereϕ, SandΓ are given by (6), (7) and (9), respectively. We assume thatF is

continuously differentiable andgi , i = 1, . . . ,m are twice continuously differentiable. Moreover, we

suppose that the above-mentioned Slater’s condition holds for anyx. Then we can show the following

theorem on the directional differentiability of the gap function.

Theorem 3 Let the assumptions stated prior to the theorem be satisfied. Then the gap functionf is

directionally differentiable everywhere, and the directional derivative off at x along directiond is

given by

f ′(x;d) = min
λ∈Λ(x)

{〈F(x)− (∇F(x)−G)(y(x)−x),d〉

−
m

∑
i=1

λi〈∇xgi(x,x)+(∇xygi(x,x)+∇yygi(x,x))(y(x)−x),d〉},
(17)

whereΛ(x) is a subset ofℜm defined by

Λ(x) =
{

λ ∈ℜm| F(x)+G(y(x)−x)+∑m
i=1 λi∇ygi(x,x) = 0, λ ≥ 0,

λi(gi(x,x)+ 〈∇ygi(x,x),y(x)−x〉) = 0, i = 1, . . . ,m
}
.

(18)

Moreover, ifΛ(x) is a singleton (which is particularly true when∇ygi(x,x), i ∈I (x) := {i |gi(x,x)+

〈∇ygi(x,x),y(x)−x〉= 0} are linearly independent), thenf is differentiable atx and the gradient of

f at x is given by

∇ f (x) = F(x)− (∇F(x)−G)(y(x)−x)

−
m

∑
i=1

λi
(
∇xgi(x,x)+(∇xygi(x,x)+∇yygi(x,x))(y(x)−x)

)
.

Proof. To simplify the notation, denotehi(x,y) = gi(x,x)+ 〈∇ygi(x,x),y− x〉, i = 1, . . . ,m andŷ =

y(x). Then, by [10, Theorem 2], the directional derivative off atx alongd exists and is given by

f ′(x;d) = min
λ∈Λ̄(x)

{−〈∇xϕ(x, ŷ),d〉−
m

∑
i=1

λi〈∇xhi(x, ŷ),d〉
}
, (19)

whereΛ̄(x) is the set of optimal solutions of the dual problem of the convex programming problem

miny{ϕ(x,y) |hi(x,y) ≤ 0, i = 1, . . . ,m}. By the duality theory in convex programming, the setΛ̄(x)

is nothing but the setΛ(x) defined by (18). Moreover, by direct calculation, the minimand in (19) can

be rewritten as that in (17). The proof is complete.¤

3 Concluding Remarks

Since the setX is given by (8),X is convex if the functionŝgi , i = 1, . . . ,mdefined byĝi(x) = gi(x,x)

are convex. By the directional differentiability off shown in Theorem 3, the first-order necessary
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condition of optimality for problem (16) can be stated as

f ′(x;y−x)≥ 0 ∀y∈ X. (20)

If one want to solve QVIP (1) by way of the optimization reformulation (16), it is required to obtain its

global optimal solution. However, since the functionf is in general non-convex, it is not easy to find

a global minimizer off on the feasible setX. Therefore it would be desirable if any point satisfying

the stationarity condition (20) becomes a global optimal solution. For VIP (3), it is possible to give

conditions, typically the strict monotonicity ofF , under which any stationary point solves the VIP

[7, 16]. However, we have been unable to give such a simple condition for the QVIP. It would be

an interesting subject of future research to develop an optimization reformulation of the QVIP that

possesses more desirable properties.

From the viewpoint of application, it is certainly important and interesting to study how gener-

alized Nash games can effectively be dealt with by means of a reformulation approach that uses gap

functions, or more generally, merit functions. Relations to other approaches such as Nikaido-Isoda

type function methods would also be worth investigation [15, 12, 5, 17, 13].
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linéaires aN personnes,SIAM Journal on Control, 12 (1974), 460–499.

[3] J.F. Bonnans and A. Shapiro,Perturbation Analysis of Optimization Problems, Springer, New

York, 2000.

[4] D. Chan and J.S. Pang, The generalized quasi-variational inequality problem,Mathematics of

Operations Research, 7 (1982), 211–222.

[5] F. Facchinei, A. Fischer and V. Piccialli, Generalized Nash equilibrium problems and Newton
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