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Abstract. We focus on studying stochastic nonlinear complementarity problems (SNCP)
and stochastic mathematical programs with equilibrium constraints (SMPEC). Instead of
the NCP functions employed in the literature, we use the restricted NCP functions to define
expected residual minimization formulations for SNCP and SMPEC. We then discuss level
set conditions and error bounds of the new formulation. Numerical examples show that the
new formulations have some desirable properties which the existing ones do not have.
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1 Introduction

The nonlinear complementarity problem (NCP) and mathematical program with equilibrium

constraints (MPEC) are two important problems in optimization. Their applications can be

found in many fields, see the monographs [6] and [12] for details. Since in many practical

problems, some elements may involve uncertain data, stochastic versions of NCP and MPEC

(called SNCP and SMPEC below) have been receiving more and more attention in the recent

literature [1, 4, 5, 8–11, 15, 16, 19]. In this paper, we focus on dealing with the following

stochastic nonlinear complementarity system:

x ≥ 0, F (x, ω) ≥ 0, xT F (x, ω) = 0, ω ∈ Ω a.s., (1.1)
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where Ω is the underlying sample space, F : <n × Ω → <n is a continuous mapping, and

“a.s.” is the abbreviation for “almost surely” under the given probability measure.

Note that problem (1.1) may not have a solution in general. There have been proposed

three ways to deal with (1.1): One way given in [8] is to find a vector x such that

x ≥ 0, E[F (x, ω)] ≥ 0, xTE[F (x, ω)] = 0,

where E means expectation with respect to the random variable ω. Another way is presented

by Chen and Fukushima [4], who make use of the so-called NCP functions to present the

expected residual minimization (ERM) formulation for (1.1). The last is suggested by Lin

and Fukushima [10], who formulate (1.1) as an SMPEC with recourse. The main contributions

of the paper can be summarized as follows:

• We consider the case where F is nonlinear with respect to x. This is different from the

works about the ERM formulation [4,5] in which F is assumed to be linear. We use the

restricted NCP functions, which were introduced in [20] and contain the NCP functions

as a subclass, to present a new ERM formulation for (1.1). We give some new restricted

NCP functions and investigate their properties, including level set conditions and error

bounds. We further give some examples to show that the new functions indeed have

some better properties than the min function and the Fischer-Burmeister function in

dealing with SNCP.

• We apply the restricted NCP functions to SMPEC and present an ERM formulation.

This is different from the models given in the literature [9], because the new model is no

longer an MPEC. In particular, when the upper-level decision variables does not exist,

the new formulation reduces to the ERM formulation for SNCP [4].

2 New Restricted NCP Functions

The restricted NCP functions, which can be used to reformulate nonlinear complementarity

problems as constrained optimization problems, were first introduced by Yamashita [20]. The

definition is as follows.

Definition 2.1 Let φ : <2 → <. We call φ a restricted NCP function if the relation

φ(a, b) = 0 ⇐⇒ b ≥ 0, ab = 0

holds for any a ≥ 0.

2



In this paper, we mainly consider the following functions:

• φ1(a, b) := max(ab, 0) + max(−b, 0), which can be written as φ1(a, b) = max(ab,−b)

when a ≥ 0.

• φ2(a, b) := max2(ab, 0) + max2(−b, 0), which is a smoothed modification of φ1.

• φ3(a, b) := a2b2 +max2(−b, 0), which may also be regarded as a smoothed modification

of the function φ1.

It is not difficult to verify that they are restricted NCP functions. We will study their

properties and compare these new functions with the following ones employed in [4]:

φmin(a, b) := |min(a, b)|2,
φFB(a, b) := (

√
a2 + b2 − a− b)2.

3 ERM Formulation for SNCP

Let φ be a given nonnegative valued restricted NCP function. The ERM formulation, defined

by φ, for the original stochastic complementarity problem (1.1) can be written as follows:

min
x≥0

θ(x) :=
n∑

i=1

E
[
φ(xi, Fi(x, ω))

]
, (3.1)

which is a standard stochastic programming problem. To solve this problem, sampling meth-

ods such as Monte Carlo methods [14] and quasi-Monte Carlo methods [13] have been pro-

posed. Here, we mainly focus on studying properties such as level set conditions and error

bounds of problem (3.1). Throughout this section, we denote

f(x) := E[F (x, ω)]

and, for a given scalar c ≥ 0, we denote the level set of the objective function of (3.1) on

<n
+ := {x ∈ <n | xi ≥ 0, i = 1, · · · , n} by

L+
θ (c) :=

{
x ∈ <n

+ | θ(x) ≤ c
}

.

Moreover, the following definitions will be used later on.

Definition 3.1 [3] Let X be a nonempty subset of <n.
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(1) We say f is monotone on X if

(x− y)T (f(x)− f(y)) ≥ 0, ∀x, y ∈ X.

(2) We say f is strongly monotone with modulus µ > 0 on X if

(x− y)T (f(x)− f(y)) ≥ µ‖x− y‖2, ∀x, y ∈ X.

(3) We say f is an R0-function on X if for any sequence {xk} ⊆ X satisfying

lim
k→∞

‖xk‖ = +∞,

lim inf
k→∞

min{xk
1, · · · , xk

n}
‖xk‖ ≥ 0, (3.2)

lim inf
k→∞

min{f1(xk), · · · , fn(xk)}
‖xk‖ ≥ 0,

there exists an index j such that xk
j → +∞ and fj(xk) → +∞ as k → +∞.

Recall that the expected value (EV) formulation for the SNCP (1.1) is defined as

f(x) ≥ 0, x ≥ 0, xT f(x) = 0.

This problem is denoted by NCP(f) in the following.

3.1 Level Boundedness

In this subsection, we study conditions for the boundedness of the level sets of the objective

function of problem (3.1) defined by the new restricted NCP functions.

3.1.1 Boundedness of level sets

We first consider the function φ1. Let

θ1(x) :=
n∑

i=1

E
[
φ1(xi, Fi(x, ω))

]
.

Then, we have the following results.

Theorem 3.1 Assume that the mapping f is monotone on <n
+ and the problem NCP(f) has

a nonempty and bounded solution set. Then the level set L+
θ1

(c) is bounded for any nonnegative

scalar c.

4



Proof. Suppose that there is a nonnegative number c̄ such that the set L+
θ1

(c̄) is unbounded.

This implies that there exists a sequence {xk} ⊆ L+
θ1

(c̄) such that limk→∞ ‖xk‖ = +∞. We

first have

(xk)T f(xk) ≤ max((xk)T f(xk), 0)

≤ E[max((xk)T F (xk, ω), 0)]

≤
n∑

i=1

E
[
max(xk

i Fi(xk, ω), 0) + max(−Fi(xk, ω), 0)
]

= θ1(xk)

≤ c̄, ∀k, (3.3)

where the second inequality follows from Jensen’s inequality. In a similar manner, we obtain

that, for any i and any k,

max(−fi(xk), 0) ≤ E[max(−Fi(xk, ω), 0)] ≤ θ1(xk) ≤ c̄,

which implies that

fi(xk) ≥ −c̄, ∀i, ∀k. (3.4)

Since f is monotone and NCP(f) has a nonempty and bounded solution set, it has an interior

feasible point, that is, there exists a vector x̄ ∈ <n
+ such that f(x̄) > 0 [2]. In addition, it

follows from the monotonicity of the function f that

(xk − x̄)T (f(xk)− f(x̄)) ≥ 0, ∀k. (3.5)

Noting that

x̄ ≥ 0, f(x̄) > 0, xk ≥ 0, lim
k→∞

‖xk‖ = +∞,

we have from (3.3)-(3.5) that

c̄ ≥ (xk)T f(xk)

≥ x̄T f(xk) + (xk)T f(x̄)− x̄T f(x̄)
k→∞−−−→ +∞.

This is a contradiction and hence L+
θ1

(c) is bounded for any number c ≥ 0.

Theorem 3.2 Assume that the mapping f is an R0-function on <n
+. Then, for any nonneg-

ative scalar c, the level set L+
θ1

(c) is bounded.
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Proof. Similarly to the proof of Theorem 3.1, we suppose by contradiction that there exist a

nonnegative constant c̄ and a sequence {xk} ⊆ L+
θ1

(c̄) such that limk→∞ ‖xk‖ = +∞. Notice

that (3.4) remains valid and hence condition (3.2) is true. Then, since f is an R0-function

over <n
+, there exists an index j such that

lim
k→∞

xk
j = +∞, lim

k→∞
fj(xk) = +∞. (3.6)

On the other hand, we have

xk
j fj(xk) ≤ max(xk

j fj(xk), 0) ≤ E[max(xk
j Fj(xk, ω), 0)] ≤ θ1(xk) ≤ c̄

for each k. This obviously contradicts (3.6) and hence the proof is complete.

We next consider the functions φ2 and φ3. Let

θ2(x) :=
n∑

i=1

E
[
φ2(xi, Fi(x, ω))

]
,

θ3(x) :=
n∑

i=1

E
[
φ3(xi, Fi(x, ω))

]
.

Then, we have the following results.

Theorem 3.3 The level set L+
θ1

(c) is bounded for any nonnegative scalar c if and only if the

level set L+
θ2

(c) is bounded for any nonnegative scalar c.

Proof. Note that, for any x ∈ <n
+,

θ1(x) =
n∑

i=1

E
[
max(xiFi(x, ω), 0) + max(−Fi(x, ω), 0)

]

≤
√

2
n∑

i=1

E
[√

max 2(xiFi(x, ω), 0) + max 2(−Fi(x, ω), 0)
]

≤
√

2n

√√√√
n∑

i=1

(
E

[√
max 2(xiFi(x, ω), 0) + max 2(−Fi(x, ω), 0)

])2

≤
√√√√2n

n∑

i=1

E
[
max 2(xiFi(x, ω), 0) + max 2(−Fi(x, ω), 0)

]

=
√

2n θ2(x),

where the first and second inequalities follow from the Cauchy-Schwarz inequality and the

third inequality follows from Jensen’s inequality. It then follows that

L+
θ2

(c) ⊆ L+
θ1

(
√

2nc), ∀c ≥ 0. (3.7)
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On the other hand, we have

θ2(x) =
n∑

i=1

E
[
max 2(xiFi(x, ω), 0) + max 2(−Fi(x, ω), 0)

]

≤
n∑

i=1

E
[(

max(xiFi(x, ω), 0) + max(−Fi(x, ω), 0)
)2]

≤
( n∑

i=1

E
[
max(xiFi(x, ω), 0) + max(−Fi(x, ω), 0)

])2

= θ2
1(x),

which means

L+
θ1

(c) ⊆ L+
θ2

(c2), ∀c ≥ 0. (3.8)

The conclusion follows from (3.7) and (3.8) immediately.

Theorem 3.4 Suppose that the level set L+
θ1

(c) is bounded for any nonnegative scalar c.

Then, the level set L+
θ3

(c) is also bounded for any nonnegative scalar c.

Proof. Since θ2(x) ≤ θ3(x) for any x ∈ <n
+, there holds L+

θ3
(c) ⊆ L+

θ2
(c) for any c ≥ 0. The

conclusion follows from Theorem 3.3 immediately.

3.1.2 Comparison with the functions φmin and φFB

Now we consider the functions φmin and φFB. Let

θmin(x) :=
n∑

i=1

E
[
φmin(xi, Fi(x, ω))

]
,

θFB(x) :=
n∑

i=1

E
[
φFB(xi, Fi(x, ω))

]
.

In what follows, we give two examples to show that the properties stated in Theorems 3.1

and 3.2 do not hold for φmin and φFB. Since
(

2√
2 + 2

)2

φmin(a, b) ≤ φFB(a, b) ≤ (
√

2 + 2)2φmin(a, b)

for any scalars a and b [18], it is sufficient to consider the function φmin only.
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Example 3.1 Suppose that the random variable ω is uniformly distributed on the sample

space Ω := [−1, 1]. Consider the function given by F (x, ω) = 1 for any x ∈ < and ω ∈ Ω.

Then, the expectation function f(x) = E[F (x, ω)] ≡ 1, which is a monotone function on <+.

Moreover, NCP(f) has a unique solution x∗ = 0. However, since θmin(x) = min2(x, 1), the

level set is L+
θmin

(c) ≡ <+ for any c ≥ 1. This indicates that the property stated in Theorem

3.1 does not hold for this example.

Example 3.2 Suppose that the random variable ω is uniformly distributed on the sample

space Ω := [−2, 2]. Consider the function F : <+ × Ω → < defined by

F (x, ω) :=

{
2 + ω, ω ∈ [−2, 0]
2− ω, ω ∈ (0, 2]

for x ∈ [0, 1] and

F (x, ω) :=





2x + x3ω, ω ∈ [− 2
x2 ,− 1

x2 ]
x + x3 + x5ω, ω ∈ (− 1

x2 , 0]
x + x3 − x5ω, ω ∈ (0, 1

x2 ]
2x− x3ω, ω ∈ ( 1

x2 , 2
x2 ]

0, ω ∈ [−2,− 2
x2 ) ∪ ( 2

x2 , 2]

for x ∈ (1,+∞). The function F is obviously continuous on <+ × Ω. By straightforward

calculation, we have

f(x) = E[F (x, ω)] =
1
4

max(x, 1) +
3

4max(x, 1)
,

which is an R0-function on <+. We next calculate the function θmin.

(1) Suppose x ∈ [0, 1]. Then

θmin(x) =
1
4

∫

Ω
min 2(x, F (x, ω)) dω

=
1
4

∫ −2+x

−2
(2 + ω)2 dω +

1
4

∫ 2−x

−2+x
x2 dω +

1
4

∫ 2

2−x
(2− ω)2 dω

= x2 − 1
3
x3.

(2) Suppose x ∈ (1,+∞). Then

θmin(x) =
1
4

∫

Ω
min 2(x, F (x, ω)) dω

=
1
4

∫ −1/x2

−2/x2

(2x + x3ω)2 dω +
1
4

∫ 1/x2

−1/x2

x2 dω +
1
4

∫ 2/x2

1/x2

(2x− x3ω)2 dω

=
2
3
.
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Therefore, for any c ≥ 2
3 , the level set is L+

θmin
(c) ≡ <+. This indicates that the property

stated in Theorem 3.2 does not hold for this example.

3.2 Error Bounds

In this subsection, we study the conditions for error bounds.

Theorem 3.5 Suppose that the mapping f is strongly monotone with modulus µ > 0 on <n
+.

Let x∗ be the unique solution of NCP(f). Then, for any x ∈ <n
+, we have

‖x− x∗‖ ≤
√

λ θ1(x), (3.9)

where λ := 1
µ max{x∗1, · · · , x∗n, 1}.

Proof. First note that, since f is strongly monotone on <n
+, the problem NCP(f) has a

unique solution. Let x ∈ <n
+. It follows that xT f(x∗) ≥ 0 and (x∗)T f(x∗) = 0. Therefore,

we have

µ‖x− x∗‖2 ≤ (x− x∗)T (f(x)− f(x∗))

= xT f(x)− (x∗)T f(x)− xT f(x∗) + (x∗)T f(x∗)

≤ xT f(x)− (x∗)T f(x)

≤ max(xT f(x), 0) + (x∗)T max(−f(x), 0)

≤ E
[
max(xT F (x, ω), 0) + (x∗)T max(−F (x, ω), 0)

]

≤ max{x∗1, · · · , x∗n, 1}
n∑

i=1

E
[
max(xiFi(x, ω), 0) + max(−Fi(x, ω), 0)

]

= max{x∗1, · · · , x∗n, 1} θ1(x), (3.10)

where the fourth inequality follows from Jensen’s inequality. Thus, (3.9) follows from (3.10)

immediately.

We further have the following result from Theorems 3.3 and 3.4.

Corollary 3.1 Suppose that the mapping f is strongly monotone with modulus µ > 0 on <n
+

and x∗ is the unique solution of NCP(f). Then, for any x ∈ <n
+, we have

‖x− x∗‖ ≤ 4
√

2nλ2θ2(x) ≤ 4
√

2nλ2θ3(x),

where λ is the same as in Theorem 3.5.
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We next consider the functions φmin and φFB. We will show that, under the assumptions

in Theorem 3.5, there do not exist constants α > 0 and β > 0 such that

‖x− x∗‖ ≤ α[θmin(x)]β , ∀x ∈ <n
+ (3.11)

or

‖x− x∗‖ ≤ α[θFB(x)]β, ∀x ∈ <n
+.

As mentioned in Section 4.2, it is sufficient to consider the function φmin only.

Example 3.3 Let β > 0 be an arbitrary constant. We show that there exists an NCP(f)

such that (3.11) fails to hold for any α > 0. Suppose that the random variable ω is uniformly

distributed on the sample space Ω := [0, 1]. Let the function F : <2 ×Ω → <2 be defined by

F (x, ω) :=




x1 − 1
2β+1x2β+1

2

x2 + x4β+1
2 ω4β


 .

Then we have

f(x) = E[F (x, ω)] =




x1 − 1
2β+1x2β+1

2

x2 + 1
4β+1x4β+1

2


 .

(1) We first show that f is strongly monotone on <2. This is equivalent to showing that

the Jacobian of f , denote by

Jf (x) :=




1 −x2β
2

0 1 + x4β
2


 ,

is uniformly positive definite on <2 in the sense that there exists a constant ν > 0 satisfying

(y − z)T Jf (x)(y − z) ≥ ν‖y − z‖2
2

for any y and z in <2. In fact, it is not difficult to see that the eigenvalues of the symmetric

matrix

Mf (x) :=
1
2

(
Jf (x) + [Jf (x)]T

)
=




1 −1
2x2β

2

−1
2x2β

2 1 + x4β
2




are always larger than 3
4 for any x ∈ <2. Therefore, for any y and z in <2,

(y − z)T Jf (x)(y − z) = (y − z)T Mf (x)(y − z) ≥ 3
4
‖y − z‖2

2.
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In consequence, the function f is strongly monotone on <2. It is easy to see that the solution

of NCP(f) is x∗ = (0, 0).

(2) We next show that (3.11) does not hold for any α > 0. To this end, we choose

xk :=
( 1

2β + 1
k2β+1, k

)
, k = 1, 2, · · · .

By straightforward calculation, we have

lim
k→∞

‖xk − x∗‖2

[θmin(xk)]β
= lim

k→∞

√
(2β + 1)−2 k4β+2 + k2

k2β
= +∞,

which means that (3.11) does not hold for any constant α > 0.

4 ERM Formulation for SMPEC

Consider the following SMPEC:

min E[u(x, y, ω)]

s.t. x ∈ X, (4.1)

0 ≤ y ⊥ G(x, y, ω) ≥ 0, ω ∈ Ω a.s.,

where X is a nonempty subset of <n, x ∈ <n is an upper-level decision variable, y ∈ <m is a

lower-level decision variable, u : <n×<m×Ω → < and G : <n×<m×Ω → <m are continuous

mappings. Moreover, both decisions x and y have to be made before ω is observed. This

problem is called a “here-and-now” model in the literature [9].

In general, for any fixed x, there does not exist a decision y meeting all random situations.

To obtain a proper deterministic formulation of (4.1), a recourse variable is introduced in [9].

Here, we deal with (4.1) in a different manner. Let φ be a given nonnegative-valued restricted

NCP function. Then problem (4.1) becomes

min E[u(x, y, ω)]

s.t. x ∈ X, y ≥ 0,

φ(yi, Gi(x, y, ω)) = 0, ω ∈ Ω a.s., i = 1, · · · ,m.

Making use of a penalty technique, we can reformulate this problem as follows:

min E
[
u(x, y, ω) + ρ

m∑

i=1

φ(yi, Gi(x, y, ω))
]

(4.2)

s.t. x ∈ X, y ≥ 0.
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where ρ > 0 is a penalty parameter.

Unlike the models given in [9], problem (4.2) is no longer an MPEC and hence it may be

relatively easy to deal with. Algorithms based on sample average approximations can be used

to solve (4.2). Moreover, when X is a singleton and u(x, y, ω) ≡ 0, problem (4.2) reduces to

the ERM formulation (3.1) for SNCP. In a similar way to Section 3, we may obtain some

results about level set conditions and error bounds. As an example, we state one result as

follows.

Theorem 4.1 Let ζ1(x, y) := E
[
u(x, y, ω) + ρ

∑m
i=1 φ1(yi, Gi(x, y, ω))

]
. Suppose that

(1) X is bounded and closed;

(2) E[u(·, ·, ω)] is bounded below on X×<m
+ , i.e., there is a constant τ such that E[u(x, y, ω)] ≥

τ for all x ∈ X and y ≥ 0;

(3) for each x ∈ X, g(x, ·) := E[G(x, ·, ω)] is monotone on <m
+ and NCP(g(x, ·)) has a

nonempty and bounded solution set.

Then, for any scalar c, the level set Lζ1(c) :=
{

x ∈ X, y ≥ 0
∣∣∣ ζ1(x, y) ≤ c

}
is bounded.

Proof. Suppose that there exists a number c̄ such that Lζ1(c̄) is unbounded. This indicates

that there is an unbounded sequence {xk, yk} in Lζ1(c̄). Since X is bounded, it follows that

{yk} is unbounded. Taking a subsequence if necessary, we assume that limk→∞ ‖yk‖ = +∞
and there exists a vector x̄ ∈ X such that xk → x̄ as k → +∞. As in the proof of Theorem

3.1, we can show that

(yk)T g(xk, yk) ≤ E[max((yk)T G(xk, yk, ω), 0)]

≤
n∑

i=1

E
[
max(yk

i Gi(xk, yk, ω), 0) + max(−Gi(xk, yk, ω), 0)
]

=
ζ1(xk, yk)− E[u(xk, yk, ω)]

ρ

≤ c̄− τ

ρ
, ∀k (4.3)

and

gi(xk, yk) ≥ −max(−gi(xk, yk), 0)

≥ −E[max(−Gi(xk, yk, ω), 0)]

≥ −ζ1(xk, yk)− E[u(xk, yk, ω)]
ρ

≥ − c̄− τ

ρ
, ∀i,∀k. (4.4)

12



On the other hand, since g(x̄, ·) is monotone and NCP(g(x̄, ·)) has a nonempty and

bounded solution set, there exists a vector ȳ ∈ <m
+ such that g(x̄, ȳ) > 0 [2]. Note that

g(·, ȳ) is continuous on X and limk→∞ xk = x̄. Therefore, there is an integer k0 such that

g(xk, ȳ) ≥ 1
2
g(x̄, ȳ) > 0, ∀k ≥ k0. (4.5)

For each k, it follows from the monotonicity of g(xk, ·) that

(yk − ȳ)T (g(xk, yk)− g(xk, ȳ)) ≥ 0. (4.6)

Noting that yk ≥ 0 for each k and limk→∞ ‖yk‖ = +∞, we have from (4.3)-(4.6) that

c̄− τ

ρ
≥ (yk)T g(xk, yk)

≥ ȳT g(xk, yk) + (yk)T g(xk, ȳ)− ȳT g(xk, ȳ)
k→∞−−−→ +∞.

This is a contradiction. In consequence, the level set Lζ1(c) is bounded for any number c.

5 Conclusions

By means of the restricted NCP functions, we have proposed some ERM formulations for

SNCP and SMPEC. As shown in the paper, different functions may have different properties.

In particular, we have shown that the new restricted NCP functions given in this paper have

some desirable properties the min function and the Fischer-Burmeister function do not have,

when employed in the expected residual minimization method for SNCP and SMPEC.
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