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Abstract

We study a problem of R&D competition using a real options approach. We extend the

analysis of Weeds [26] in which the project is of a fixed standard to the case where the

firms can choose the target of the research from two alternative technologies of different

standards. We show that the competition affects not only the firms’ investment time, but

also their choice of the standard of the technology. Two typical cases, namely the de facto

standard case and the innovative case, are examined in full detail. In particular, in the

de facto standard case, the firms could develop a lower-standard technology that would

never appear in a noncompetitive situation. This provides a good account of a real problem

resulting from too bitter R&D competition.
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1 Introduction

Real options approaches have become a useful tool for evaluating irreversible investment under

uncertainty such as R&D investment (see [6]). Although the early literature on real options (e.g.,

[4, 20]) treated the investment decision of a single firm, more recent studies have investigated the

problem of several firms competing in the same market from a game theoretic approach (see [1]

for an overview). Grenadier [9] derived the equilibrium investment strategies of the firms in the

Cournot–Nash framework and Weeds [26] provided the asymmetric outcome (called preemption

equilibrium) in R&D competition between the two firms using the equilibrium in a timing game

studied in [8]. In [13, 25], a possibility of mistaken simultaneous investment resulting from an

absence of rent equalization that was assumed in [26] was investigated.

On the other hand, there are several studies on the decision of a single firm with an option

to choose both the type and the timing of the investment projects. In this literature, [5] was the

first study to pay attention to the problem and Décamps et al. [3] investigated the problem in

more detail. In [7], a similar model is applied to the problem of constructing small wind power

units.

Despite such active studies on real options, to our knowledge few studies have tried to

elucidate how competition between two firms affects their investment decisions in the case where

the firms have the option to choose both the type and the timing of the projects. This paper

investigates the above problem by extending the R&D model in [26] to a model where the firms

can choose the target of the research from two alternative technologies of different standards

with the same uncertainty about the market demand1, where the technology standard is to be

defined in some appropriate sense. As in [26], technological uncertainty is taken into account, in

addition to the product market uncertainty. We assume that the time between project initiation

and project discovery (henceforth the research term) follows the Poisson distribution2 with its

hazard rate determined by the standard of the technology. This assumption is realistically

intuitive since a higher-standard technology is likely to require a longer research term and is

1We assume that the two technologies are applied to homogeneous products.
2Most studies, such as [2, 14, 19, 26], model technical innovation as a Poisson arrival; we also follow this

convention.
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expected to generate higher profits at its completion. In the model, we show that the competition

between the two firms affects not only the firms’ investment time, but also their choice of the

technology targeted in the project.

We highlight two typical cases that are often observed in a market and, at the same time,

reveal interesting implications. The first case is that a firm that completes a technology first can

monopolize the profit flow regardless of the standard of the technology. De facto standardization

struggles such as VHS vs Betamax for video recorders are true for this case (henceforth called the

de facto standard case). In such cases, a firm can impose its technology as a de facto standard

by introducing it before its competitors. Once one technology becomes the de facto standard

for the market, the winner may well enjoy a monopolistic cash flow from the patent of the de

facto standard technology for a long term. It is then quite difficult for other firms to replace

it with other technologies even if those technologies are superior to the de facto standard one.

Indeed, it has been often observed in de facto standardization races that the existing technology

drives out a newer (superior) technology, which can be regarded as a sort of Gresham’s law3.

In conclusion, what is important in the de facto standard case is introducing the completed

technology into the market before the opponents.

The other case is where a firm with higher-standard technology can deprive a firm with

lower-standard technology of the cash flow by completing the higher-standard technology. This

case applies to technologies of the innovative type (henceforth called the innovative case). As

observed in evolution from cassette-based Walkmans to CD- and MD-based Walkmans, and

further to flash memory- and hard drive-based digital audio players (e.g., iPod), the appearance

of a newer technology drives out the existing technology. In such cases, a firm often attempts

to develop a higher-standard technology because it fears the invention of superior technologies

by its competitors. As a result, in the innovative case, a higher-standard technology tends to

appear in a market.

The analysis in the two cases gives a good account of the characteristics mentioned above.

In the de facto standard case, the competition increases the incentive to develop the lower-

3Gresham’s law is the economic principle that in the circulation of money ”bad money drives out good,” i.e.,

when depreciated, mutilated, or debased coinage (or currency) is in concurrent circulation with money of high

value in terms of precious metals, the good money is withdrawn from circulation by hoarders.
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standard technology, which is easy to complete, while in the innovative case, the competition

increases the incentive to develop the higher-standard technology, which is difficult to complete.

In particular, we show that in the de facto standard case the competition is likely to lead the firms

to invest in the lower-standard technology, which is never chosen in the single firm situation.

This result explains a real problem caused by too bitter R&D competition. It is a possibility

that the competition spoils the higher-standard technology that consumers would prefer4, while

the development hastened by the competition increases consumers’ profits compared with that

of the monopoly. That is, the result accounts for both positive and negative sides of the R&D

competition for consumers. Of course, as described in [23], practical R&D management is often

much more flexible and complex (e.g., growth and sequential options studied in [18, 17]) than

the simple model in this paper. However, it is likely that the essence of the results remains

unchanged in more practical setups.

The paper is organized as follows. After Section 2 derives the optimal investment timing

for the single firm, Section 3 formulates the problem of the R&D competition between two

firms. Section 4 derives the equilibrium strategies in the two typical cases, namely, the de facto

standard case and the innovative case. Section 5 gives numerical examples, and finally Section

6 concludes the paper.

2 Single firm situation

Throughout the paper, we assume all stochastic processes and random variables are defined

on the filtered probability space (Ω,F , P ;Ft). This paper is based on the model in [26]. This

section considers the investment decision of the single firm without fear of preemption. The firm

can set up a research project for developing a new technology i (we denote technologies 1 and 2

for the lower-standard and higher-standard technologies, respectively) by paying an indivisible

investment cost ki. As in [26], for analytical advantage we assume that the firm has neither

option to suspend nor option to switch the projects, though practical R&D investment often

allows more managerial flexibility, such as to abandon, expand and switch (see [23]).

4It is reasonable to suppose that consumers benefit from the invention of higher-standard technologies, though,

strictly speaking, we need to incorporate consumers’ value functions into the model.
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In developing technology i, from the time of the investment the invention takes place ran-

domly according to a Poisson distribution with constant hazard rate hi. The firm must pay the

research expense li per unit of time during the research term and can receive the profit flow

DiY (t) from the discovery. Here, Y (t) represents a market demand of the technologies at time

t and influence cash flows which the technologies generate. It must be noted that the firm’s

R&D investment is affected by two different types of uncertainty (i.e., technological uncertainty

and product market uncertainty). For simplicity, Y (t) obeys the following geometric Brownian

motion, which is independent of the Poisson processes representing technological uncertainty.

dY (t) = µY (t)dt + σY (t)dB(t) (t > 0),

Y (0) = y,

where µ ≥ 0, σ > 0 and y > 0 are given constants and B(t) denotes the one-dimensional Ft

standard Brownian motion. Quantities ki, hi, Di and li are given constants satisfying

0 ≤ k1 ≤ k2, 0 < h2 < h1, 0 < D1 < D2, 0 < l1 ≤ l2, (1)

so that technology 2 is more difficult to develop and generates a higher profit flow from its

completion than technology 1.

Let us now comment upon the model. For analysis in later sections, we modified the original

setup by [26] at the two following points, but there are no essential difference. In [26], the

completed technology generates not a profit flow but a momentary profit as the value of the

patent at its completion, and there is no research expense during the research term (i.e, li = 0).

In [14] the Poisson process determining technological innovation is exogenous to the firms as

in [10], but we assume that a firm’s investment initiates the Poisson process determining the

completion of the technology. This is the main difference from the model studied in [14] that

also treats two technologies.

The firm that monitors the state of the market can set up development of either technologies

1 or 2 at the optimal timing maximizing the expected payoff under discount rate r(> µ). Then,

the firm’s problem is expressed as the following optimal stopping problem:

sup
τ∈T

E

[
max
i=1,2

E[
∫ ∞

τ+ti

e−rtDiY (t)dt− e−rτki −
∫ τ+ti

τ
e−rtlidt | Fτ ]

]
, (2)
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where T is a set of all Ft stopping times and ti denotes a random variable representing an the

Poisson arrival with hazard rate hi independent of B(t). In problem (2), maxi=1,2 E[· · · | Fτ ]

means that the firm can choose the optimal technology at the investment time τ.

By the calculation

E[
∫ ∞

τ+ti

e−rtDiY (t)dt− e−rτki −
∫ τ+ti

τ
e−rtlidt | Fτ ] (3)

= e−rτEY (τ)[
∫ ∞

ti

e−rtDiY (t)dt− ki −
∫ ti

0
e−rtlidt] (4)

= e−rτ

∫ ∞

0

(∫ ∞

s
e−rtDiE

Y (τ)[Y (t)]dt− ki −
∫ s

0
e−rtlidt

)
hie−hisds (5)

= e−rτ (ai0Y (τ)− Ii) (6)

(we use the strong Markov property of Y (t) in (4) and independence between ti and Y (t) in (5)

), problem (2) can be reduced to

sup
τ∈T

E[e−rτ max
i=1,2

(ai0Y (τ)− Ii)], (7)

where ai0 and Ii are defined by

ai0 =
Dihi

(r − µ)(r + hi − µ)
(8)

Ii = ki +
li

r + hi
. (9)

Here, ai0Y (τ) represents the expected discounted value of the future profit generated by tech-

nology i at the investment time τ, and Ii represents its total expected discounted cost at time

τ. Eq. (1) and (9) imply I1 < I2, but the inequality a10 < a20 does not necessarily hold depend-

ing upon a trade-off between hi and Di. Note that (7) is essentially the same as the problem

examined in [3]. Let V0(y) and τ∗0 denote the value function and the optimal stopping time of

problem (7), respectively. Notice that τ∗0 is expressed in a form independent of the initial value

y. As in most real options literature (e.g., [6]), we define

β10 =
1
2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
> 1, (10)

β20 =
1
2
− µ

σ2
−

√(
µ

σ2
− 1

2

)2

+
2r

σ2
< 0. (11)
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Proposition 2.1 The value function V0(y) and the optimal stopping time τ∗0 of the single firm’s

problem (7) are given as follows:

Case 1: 0 < a20/a10 ≤ 1

V0(y) =





A0y
β10 (0 < y < y∗10)

a10y − I1 (y ≥ y∗10),
(12)

τ∗0 = inf{t ≥ 0 | Y (t) ≥ y∗10}. (13)

Case 2: 1 < (a20/a10)β10/(β10−1) < I2/I1

V0(y) =





A0y
β10 (0 < y < y∗10)

a10y − I1 (y∗10 ≤ y ≤ y∗20)

B0y
β10 + C0y

β20 (y∗20 < y < y∗30)

a20y − I2 (y ≥ y∗30),

(14)

τ∗0 = inf{t ≥ 0 | Y (t) ∈ [y∗10, y
∗
20] ∪ [y∗30, +∞)}. (15)

Case 3: (a20/a10)β10/(β10−1) ≥ I2/I1

V0(y) =





B0y
β10 (0 < y < y∗30)

a20y − I2 (y ≥ y∗30),
(16)

τ∗0 = inf{t ≥ 0 | Y (t) ≥ y∗30}. (17)

Here, constants A0, B0, C0 and thresholds y∗10, y
∗
20, y

∗
30 are determined by imposing value match-

ing and smooth pasting conditions (see [6]). Note that I1 < I2 and β10 > 1.

Proof In Case 2, (14) and (15) immediately follows from the discussion in [3]. In Case 1, using

relationships a10 ≥ a20, I1 < I2 and Y (t) > 0, we have

sup
τ∈T

E[e−rτ max
i=1,2

(ai0Y (τ)− Ii)] = sup
τ∈T

E[e−rτ (a10Y (τ)− I1)],

which implies (12) and (13). In Case 3, by taking into consideration that the right-hand side

of (16) dominates a10y − I1, we can show (16) and (17) by a standard technique to solve an

optimal stopping problem (see [22]). ¤
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In Proposition 2.1, A0y
β10 , B0y

β10 and C0y
β20 correspond to the values of the option to

invest in technology 1 at the trigger y∗10, the option to invest in technology 2 at the trigger y∗30

and the option to invest in technology 1 at the trigger y∗20, respectively. In Case 1, where the

expected discounted profit of technology 1 is higher than that of technology 2, the firm initiates

development of technology 1 at time (13) independently of the initial market demand y. In Case

3, where technology 2 is much superior to technology 1, on the contrary, the firm invests in

technology 2 at time (17) regardless of y. In Case 2, where both projects has similar values

by the trade-off between the profitability and the research term and cost, the firm’s optimal

investment strategy has three thresholds y∗10, y
∗
20 and y∗30, and therefore the project chosen by

the firm depends on the initial value y. Above all, if y ∈ (y∗20, y
∗
30), the firm defers not only

investment, but also choice among the two projects (i.e, whether the firm invests in technology

2 when the market demand Y (t) increases to the upper trigger y∗30 or invests in technology 1

when Y (t) decreases to the lower trigger y∗20).

By letting volatility σ → +∞ with other parameters fixed, we have β10 → +1 by definition

(10) and therefore (a20/a10)β10/(β10−1) → +∞ if a10 < a20. As a result, with high product market

uncertainty, instead of Case 2, Case 3 holds and the firm chooses the higher-standard technology

2 rather than the lower-standard technology 1, unless the expected discounted profit generated

by technology 1 exceeds that of technology 2. The similar result has also been mentioned in [3].

3 Situation of two noncooperative firms

We turn now to a problem of two symmetric firms. This paper considers a symmetric setting to

avoid unnecessary confusion, but the results in this paper could remain true to some extent in

an asymmetric case. For a standard discussion of an asymmetric situation, see [13]. We assume

that two Poisson processes modeling the two firms’ innovation are independent of each other,

which means that the progress of the research project by one of the firms does not affect that of

its rival. The scenarios of the cash flows into the firms can be classified into four cases. Figure 1

illustrates the cash flows into the firm that has completed a technology first (denoted Firm 1) and

the other (denoted Firm 2). In the period when a single firm has succeeded in the development

of technology i, the firm obtains the monopoly cash flow DiY (t). If both firms develop the same
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1( ( ),0)D Y t 1( ( ),0)D Y t

1( ( ),0)D Y t 1 1 2 2( ( ), ( ))D Y t D Y t

2( ( ),0)D Y t 2( ( ),0)D Y t

Figure 1: (Firm 1’s cash flow, Firm 2’s cash flow)

technology i, the one that has completed first receives the profit flow DiY (t) resulting from the

patent perpetually and the other obtains nothing, according to the setup by [26]. Of course, the

firm that has completed the lower-standard technology 1 after the competitor’s completion of

the higher-standard technology 2 obtains no cash flow. When the firm has completed technology

2 after the competitor’s completion of technology 1, from the point technology 2 generates the

profit flow α2D2Y (t), and technology 1 generates α1D1Y (t), where αi is a constant satisfying

0 ≤ α1, α2 ≤ 1. It is considered that the technology’s share in the product market determines

α1 and α2.

As in [6, 13, 26], we solve the game between two firms backwards. We begin by supposing that

one of the firms has already invested, and find the optimal decision of the other. In the remainder

of this paper, we call the one who has already invested leader and call the other follower, though

we consider two symmetrical firms. Thereafter, in the next section, we look at the situation

where neither firms has invested, and consider the decision of either as it contemplates whether

to go first, knowing that the other will react in the way just calculated as the follower’s optimal

response. The main difference from [6, 13, 26] is that the follower’s optimal response depends

on the project chosen by the leader. Let Fi(Y ) and τ∗Fi
denote the expected discounted payoff

(at time t) and the investment time of the follower responding optimally to the leader who

has invested in technology i at time t satisfying Y (t) = Y. We denote by Li(Y ) the expected
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discounted payoff (at time t) of the leader who has invested in technology i at Y (t) = Y.

3.1 Case where the leader has invested in technology 2

This subsection derives F2(Y ), τ∗F2
and L2(Y ). Given that the leader has invested in technology

2 at Y (t) = Y, the follower’s problem is expressed as the following optimal stopping problem

with initial value Y.

sup
τ∈T

EY

[
e−h2τ max

{
EY [1{t1<s2}(

∫ τ+s2

τ+t1

e−rsD1Y (s)ds +
∫ ∞

τ+s2

e−rsα1D1Y (s)ds)

−e−rτk1 −
∫ τ+t1

τ
e−rsl1ds | Fτ ],

EY [1{t2<s2}

∫ +∞

τ+t2

e−rsD2Y (s)ds −e−rτk2 −
∫ τ+t2

τ
e−rsl2ds | Fτ ]

}]
,

(18)

where EY [·] means the (conditional) expectation with initial value Y, and ti and s2 represent the

Poisson arrival with hazard rate hi (i.e., the research term of the follower choosing technology i)

and the Poisson arrival with hazard rate h2 (i.e., the interval between τ and the discovery time

of the leader conditioned to be on the way to development of technology i at τ). Recall that

the two Poisson processes of the follower and leader are independent of each other. What has to

be noticed is that the follower’s problem (18) is discounted by e−h2τ differently from the single

firm’s problem (2). This is because the leader’s completion of technology 2 deprives the follower

of the future option to invest. As in the single firm’s problem (2), maxi=1,2 EY [· · · | Fτ ] means

that the follower chooses the better project at the investment time τ. Furthermore, 1{ti<s2}

denotes a defining function and means that the follower’s payoff becomes nothing if the leader

completes technology 2 first.

Via the similar calculation as (3)–(6) we can rewrite problem (18) as

sup
τ∈T

EY [e−(r+h2)τ max
i=1,2

(ai2Y (τ)− Ii)], (19)
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where aij are defined by

a11 =
D1h1

(r − µ)(r + 2h1 − µ)
, (20)

a12 =
D1h1

(r + h1 + h2 − µ)(r + h2 − µ)

(
1 +

α1h2

r − µ

)
, (21)

a21 =
D2h2

(r − µ)(r + h1 + h2 − µ)

(
1 +

α2h1

r + h2 − µ

)
, (22)

a22 =
D2h2

(r − µ)(r + 2h2 − µ)
. (23)

Quantity aijY (τ) represents the expected discounted value of the future cash flow of the firm that

invests in technology i at time τ when its opponent is on the way to development of technology

j. From the expression (19), we can show the following proposition.

Proposition 3.1 The follower’s payoff F2(Y ), investment time τ∗F2
and the leader’s payoff L2(Y )

are given as follows:

Case 1: 0 < a22/a12 ≤ 1

F2(Y ) =





A2Y
β12 (0 < Y < y∗12)

a12Y − I1 (Y ≥ y∗12),

τ∗F2
= inf{s ≥ t | Y (s) ≥ y∗12},

L2(Y ) =





a20Y − I2 − Ã2Y
β12 (0 < Y < y∗12)

a21Y − I2 (Y ≥ y∗12).

Case 2: 1 < (a22/a12)β12/(β12−1) < I2/I1

F2(Y ) =





A2Y
β12 (0 < Y < y∗12)

a12Y − I1 (y∗12 ≤ Y ≤ y∗22)

B2Y
β12 + C2Y

β22 (y∗22 < Y < y∗32)

a22Y − I2 (Y ≥ y∗32),

τ∗F2
= inf{s ≥ t | Y (s) ∈ [y∗12, y

∗
22] ∪ [y∗32, +∞)},

L2(Y ) =





a20Y − I2 − Ã2Y
β12 (0 < Y < y∗12)

a21Y − I2 (y∗12 ≤ Y ≤ y∗22)

a20Y − I2 − B̃2Y
β12 − C̃2Y

β22 (y∗22 < Y < y∗32)

a22Y − I2 (Y ≥ y∗32).
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Case 3: (a22/a12)β12/(β12−1) ≥ I2/I1

F2(Y ) =





B2Y
β12 (0 < Y < y∗32)

a22Y − I2 (Y ≥ y∗32),

τ∗F2
= inf{s ≥ t | Y (s) ≥ y∗32},

L2(Y ) =





a20Y − I2 − B̃2Y
β12 (0 < Y < y∗32)

a22Y − I2 (Y ≥ y∗32).

Here, β12 and β22 denote (10) and (11) replaced r by r + h2, respectively. Constants A2, B2, C2

and thresholds y∗12, y
∗
22, y

∗
32 are determined by both value matching and smooth pasting condi-

tions, while constants Ã2, B̃2 and C̃2 are determined by the value matching condition alone.

Note that I1 < I2 and β12 > 1.

Proof Problem (19) coincides with problem (7) replaced r and ai0 by r+h2 and ai2, respectively.

Thus, we easily obtain the follower’s payoff F2(Y ) and investment time τ∗F2
in the same way as

Proposition 2.1. We next consider the leader’s payoff L2(Y ). In Case 1 and 3, we readily have

the same expression as that of [26] since the follower’s trigger is single. In Case 2, we obtain

the similar expression, though the calculation becomes more complicated because of the three

triggers. ¤

Constants A2, B2, C2 and thresholds y∗12, y
∗
22, y

∗
32 in Proposition 3.1 correspond to constants

A0, B0, C0 and thresholds y∗10, y
∗
20, y

∗
30 in Proposition 2.1, respectively. Let us explain the leader’s

payoff briefly. Constants Ã2, B̃2 and C̃2 value the possibility that Y rises above y∗12 prior to the

leader’s completion, the possibility that Y rises above y∗32 prior to the leader’s completion, and

the possibility that Y falls bellow y∗22 prior to the leader’s completion, respectively. Since these

situations cause the follower’s investment, the leader’s payoff is reduced from the monopoly

profit a20Y − I2 (see Y ∈ (0, y∗12) in Case 1, Y ∈ (0, y∗12) ∪ (y∗22, y
∗
32) in Case 2, and Y ∈ (0, y∗32)

in Case 3).

3.2 Case where the leader has invested in technology 1

We now consider F1(Y ), τ∗F1
and L1(Y ). In the previous subsection, i.e., in the case where the

leader has chosen technology 2, the follower’s opportunity to invest is completely lost at the
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leader’s completion of technology 2. However, in the case where the leader has invested in

technology 1, there remains the follower’s option to invest in technology 2 from the leader’s

invention of technology 1 if the follower has not invested yet. Due to this option value, we need

more complicated discussion in this subsection.

Let f1(Y ) and τ∗f1
be the expected discounted payoff and the optimal stopping time of

the follower responding optimally to the leader who has already succeeded in development of

technology 1 at Y (t) = Y. In other words, f1(Y ) represents the remaining option value to invest

in technology 2 after the leader’s completion of technology 1. We need to derive f1(Y ) and τ∗f1

before analyzing F1(Y ) and τ∗F1
. Given that the leader has already completed technology 1 at

Y (t) = Y, the follower’s problem becomes

sup
τ∈T

EY [
∫ ∞

τ+t2

e−rtα2D2Y (t)dt− e−rτk2 −
∫ τ+t2

τ
e−rtl2dt], (24)

which is equal to a problem of a firm that can develop only technology 2. In the same way as

calculation (3)–(6), we can rewrite problem (24) as

sup
τ∈T

EY [e−rτ (α2a20Y (t)− I2)]. (25)

It is easy to obtain the value function f1(Y ) and the optimal stopping time τ∗f1
of problem (25).

If α2 > 0, then

f1(Y ) =





B′Y β10 (0 < Y < y′)

α2a20Y − I2 (Y ≥ y′),
(26)

τ∗f1
= inf{s ≥ t | Y (s) ≥ y′}, (27)

where B′ and y′ are constants determined by the value matching and smooth pasting conditions

(we omit the explicit solutions to avoid cluttering). If α2 = 0, we have f1(Y ) = 0 and τ∗f1
= +∞.

Assuming that the leader has begun developing technology 1 at Y (t) = Y, the follower’s

problem is expressed as follows:

sup
τ∈T

EY

[
e−h2τ max

{
EY [1{t1<s1}

∫ +∞

τ+t1

e−rsD1Y (s)ds− e−rτk1 −
∫ τ+t1

τ
e−rsl1ds | Fτ ],

EY [1{t2<s1}

∫ +∞

τ+t2

e−rsD2Y (s)ds + 1{t2≥s1}

∫ +∞

τ+t2

e−rsα2D2Y (s)ds− e−rτk2

−
∫ τ+t2

τ
e−rsl2ds | Fτ ]

}
+ 1{τ≥s1}e

−rs1f1(Y (s1))
]

.

(28)
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Compared with the follower’s problem (18) in the previous subsection, problem (28) has the

additional term EY [1{τ≥s1}e
−rs1f1(Y (s1))]. This term corresponds to the remaining option value

of the inactive follower. As in (3)–(6), problem (28) can be reduced to

sup
τ∈T

EY [e−(r+h1)τ max
i=1,2

(ai1Y (τ)− Ii) + 1{τ≥s1}e
−rs1f1(Y (s1))], (29)

where a11 and a21 are defined by (20) and (22), respectively. Generally, problem (29), unlike

(19), is difficult to solve analytically because of the additional term. In the next section, we

overcome the difficulty by focusing on two typical cases, namely, the de fact standard case, where

(α1, α2) = (1, 0), and the innovative case, where (α1, α2) = (0, 1).

4 Analysis in two typical cases

This section examines the firms’ behaviour in the de fact standard case, where (α1, α2) = (1, 0),

and the innovative case, where (α1, α2) = (0, 1). There might be a criticism that in the real

world both α1 > 0 and α2 > 0 are usually hold and that the two cases seem to be too extreme.

However, such a real case approximates to one of the two cases or has a middle property,

depending on the relationship between α1 and α2, and therefore analysis in the two cases has a

great significance of clarifying the essence of the problem. In order to exclude a situation where

both firms mistakenly invest simultaneously5, we assume that the initial value y is small enough,

that is,

Assumption A

max
i=1,2

(ai0y − Ii) < 0,

as in [26] when we discuss the preemption equilibrium. We moreover restrict our attention to the

case where the firm always chooses the higher-standard technology 2 in the single firm situation,

for the purpose of contrasting the competitive situation with the single firm situation. To put

it more concretely, we assume

5We must distinguish between mistaken simultaneous investment and joint investment which is examined in

Subsection 4.3. For a discussion of mistaken simultaneous investment, see [13, 24, 25].
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Assumption B (
a20

a10

) β10
β10−1

≥ I2

I1
,

so that Case 3 follows in Proposition 2.1.

In the first place, we analytically derive the follower’s payoff F1(Y ) and the leader’s payoff

L1(Y ) in both de fact standard and innovative cases. Note that the results on F2(Y ) and L2(Y )

in Proposition 3.1 hold true by substituting (α1, α2) = (1, 0) and (α1, α2) = (0, 1) into (21) and

(22). Then, using L1(Y ) and L2(Y ), we define

L(Y ) = max
i=1,2

Li(Y ),

F (Y ) =





F1(Y ) (L1(Y ) > L2(Y ))

F2(Y ) (L1(Y ) ≤ L2(Y )).

Comparing L(Y ) with F (Y ), we examine the situation where both firm try to preempt each

other.

4.1 De facto standard case

Since α2 = 0 holds in this case, the follower’s option value f1(Y ) vanishes just like in Subsection

3.2. Thus, we can solve the follower’s problem (29) in the same way as problem (19). Indeed,

F1(Y ) and τ∗F1
agree with F2(Y ) and τ∗F2

replaced ai2, βi2 with ai1, βi1, respectively in Proposition

3.1, where β11(> 1) and β21(< 0) denote (10) and (11) replaced discount rate r with r + h1,

respectively. Recall that a11 and a21 were defined by (20) and (22). In this case, we denote three

thresholds corresponding to y∗12, y
∗
22 and y∗32 in Proposition 3.1 by y∗11, y

∗
21 and y∗31, respectively.

Then, the leader’s payoff L1(Y ) coincides with L2(Y ) replaced a2i, I2, βi2 and y∗i2 by a1i, I1, βi1

and y∗i1, respectively in Proposition 3.1.

Let us compare the follower’s decision in the de facto standard case with the single firm’s

decision derived in Section 2. Using

a20

a10
=

D2h2(r + h1 − µ)
D1h1(r + h2 − µ)

>
D2h2(r + h1 + h2 − µ)
D1h1(r + h2 + h2 − µ)

=
a22

a12

>
D2h2(r + h1 + h1 − µ)
D1h1(r + h2 + h1 − µ)

=
a21

a11
,
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which result from r − µ > 0 and h1 > h2 > 0, we have

a21

a11
<

a22

a12
<

a20

a10
. (30)

Eq. (30) states that the relative expected profit of technology 2 to technology 1 is smaller than

that of the single firm case. Using 1 < β10 < β12 < β11, we also obtain

1 <
β11

β11 − 1
<

β12

β12 − 1
<

β10

β10 − 1
. (31)

Eq. (30) and (31) suggest a possibility that (a2i/a1i)β1i/(β1i−1) exceeds I2/I1 and 1 even under

Assumption B, and then the follower’s optimal choice could be technology 1. In consequence, the

presence of the leader increases the follower’s incentive to choose the lower-standard technology

1, which is easy to complete, compared with in the single firm situation.

From ai1 < ai2, r + h2 < r + h1, problem formulations (19) and (29) (note that f1 = 0 in

the de facto standard case), it follows that

F1(Y ) < F2(Y ) (Y > 0).

That is, from the follower’s viewpoint, the case where the leader has chosen technology 2 is

preferable to the case where the leader has chosen technology 1. This is due to that the leader

who has invested in technology 1 is more likely to preempt the follower because of its short

research term.

Finally, we take a look at the situation where neither firm has invested. Let us see that

there exists a possibility that technology 1 can be developed owing to the competition even if

technology 2 generates much more profit than technology 1 at its completion. Although, as has

been pointed out, (a2i/a1i)β1i/(β1i−1) could be larger than I2/I1 and 1 under Assumption B, we

now consider the case where (
a2i

a1i

) β1i
β1i−1

≥ I2

I1
(32)

holds, which means that a cash flow resulting from technology 2 is expected to be much greater

than that of technology 1.

Since the initial value Y (0) = y is small enough (Assumption A), in the single firm situation

the firm invests in technology 2 (Assumption B) as soon as the market demand Y (t) rises to
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the level y∗30 (Figure 2). Development of technology 1 is meaningless because the firm without

fear of preemption can defer the investment sufficiently. However, the firm with the fear of

preemption by its rival will try to obtain the leader’s payoff by investing a slight bit earlier

than its rival when the leader’s payoff L(Y ) is larger than the follower’s payoff F (Y ). Repeating

this process causes the investment trigger to fall to the point where L(Y ) is equal to F (Y )

(yP in Figure 3). At the point the firms are indifferent between the two roles, and then one

of the firms invests at time inf{t ≥ 0 | Y (t) ≥ yP } as leader, while the other invests at time

τ∗Fi
(if there remains the option to invest) as follower. This phenomenon is rent equalization

explained in [8, 26]. Thanks to the rent equalization, we can exclude the situation where both

firms mistakenly invest at the same leader’s trigger (see [13, 24, 25]). This asymmetric outcome

where one of the firm becomes a leader and the other becomes a follower is called preemption

equilibrium. If the fear of preemption hastens the investment time sufficiently (e.g., threshold

yP becomes smaller than ỹ in Figure 2), then threshold yP becomes the intersection of L1(Y )

and F1(Y ) rather than the intersection of L2(Y ) and F2(Y ) (Figure 3). It suggests a possibility

that in the preemption equilibrium the leader invests in technology 1. Needless to say, the leader

is more likely to choose technology 1 if (32) is not satisfied. The above discussion gives a good

account of the phenomenon observed frequently in de facto standard wars.

4.2 Innovative case

This subsection examines the innovative case, where (α1, α2) = (0, 1) is satisfied. We now

consider the follower’s optimal response assuming that the leader has invested in technology 1

at Y (t) = Y. Let F̃1(Y ) denote the payoff (strictly speaking, the expected discounted payoff at

time t) of the follower who initiate developing technology 2 at time τ∗f1
defined by (27). We

can show that in the innovative case the follower’s best response τ∗F1
coincides with τ∗f1

and also

show F̃1(Y ) = f1(Y ) = F1(Y ) = V0(Y ) as follows.

By α2 = 1, the payoff of the follower who invests in technology 2 at time s(≥ t) is a20Y (s)−I2,

whether the leader has completed technology 1 or not. Then we have F̃1(Y ) = f1(Y ). Under

Assumption B the single firm’s value function V0(Y ) is expressed as that of Case 3 in Proposition
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2.1. Using α2 = 1, we have

V0(Y ) = f1(Y ) = F̃1(Y ). (33)

On the other hand, by definition of the follower’s problem (29), it can readily be seen that the

relationship

F1(Y ) ≤ V0(Y ) (34)

holds between F1(Y ) and V0(Y ). Note that the follower’s option value to invest in technology 2

is the same as that of the single firm case but the follower’s option value to invest in technology

1 is lower than that of the single firm case owing to the fact that the follower’s option value to

invest in technology 1 vanishes completely at the leader’s invention of technology 1. Eq. (33)

and (34) suggest F1(Y ) ≤ F̃1(Y ). Thus, we have F̃1(Y ) = F1(Y ), taking account of F1(Y ) ≥
F̃1(Y ) resulting from the optimality of F1(Y ). Consequently, the follower’s optimal response τ∗F1

coincides with τ∗f1
and F̃1(Y ) = f1(Y ) = F1(Y ) = V0(Y ) holds. We should notice that the

follower behaves as if there were no leader.

Using the follower’s investment time τ∗F2
= τ∗f1

derived above (note that y′ = y∗30 in (27) by

α2 = 1), we have the leader’s payoff L1(Y ) as L2(Y ) replaced a2i, I2, β12 and y∗32 by a1i, I1, β11

and y∗30, respectively in Case 3 in Proposition 3.1.

Next, we compare the follower’s decision in the innovative case with the single firm’s decision.

Using

a20

a10
=

a22

a12
× r + h1 − µ

r + h1 + h2 − µ
× (r − µ)(r + 2h2 − µ)

(r + h2 − µ)2

<
a22

a12
,

a21 = a20 and a11 < a10, we have

1 <
a20

a10
<

a2i

a1i
(i = 1, 2). (35)

Eq. (35) means that the relative expected profit of technology 2 to technology 1 is greater than

that of the single firm case, contrary to (30) in the de facto standard case. Since (31) remains

true, the relationship between (a22/a12)β12/(β12−1) and I2/I1 depends on the parameters even

under Assumption B. This suggests a slight possibility that the follower chooses technology 1

in the case where the leader has chosen technology 2, while as we showed in the beginning of
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this subsection the follower’s best response to the leader who has invested in technology 1 is

choosing technology 2 regardless of Y . However, in most cases the effect of (35) dominates the

effect of (31), that is,

I2

I1
<

(
a20

a10

) β10
β10−1

<

(
a22

a12

) β12
β12−1

hold. To sum up, the presence of the leader, unlike in the de facto standard case, tends to

decreases the incentive of the lower-standard technology 1, which is easy to complete.

By definition of the follower’s problem (19) we can immediately show

F2(Y ) < V0(Y ) = F1(Y ) (Y > 0).

In other words, contrary to the de facto standard case, the follower prefers the leader developing

technology 1 to the leader developing technology 2. This is because the follower can deprive the

leader who has chosen technology 1 of the profit by completing technology 2.

Finally, let us examine the situation where neither firm has taken action. We obtain the

following proposition with respect to the preemption equilibrium.

Proposition 4.1 The inequality

L1(Y ) < F1(Y ) (Y > 0) (36)

holds, and therefore in the preemption equilibrium the leader always chooses technology 2.

Furthermore, if (
a22

a12

) β12
β12−1

>
I2

I1
(37)

(Eq. (37) is satisfied for reasonable parameter values as mentioned earlier), then in the preemp-

tion equilibrium the follower, also, always chooses technology 2.

Proof The leader’s payoff L1(Y ) is equal to

L1(Y ) =





a10Y − I1 − B̃1Y
β12 (0 < Y < y∗30)

a12Y − I1 (Y ≥ y∗30),

where the constant B̃1 > 0 is determined by the value matching condition at the trigger y∗30.

Using a10 > a12 and B̃1 > 0, we have

L1(Y ) < a10Y − I1 ≤ V0(Y ) = F1(Y ) (Y > 0),
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which implies that there is no incentive to invest in technology 1 earlier than the competitor.

Therefore, there arises no preemption equilibrium where the leader invests in technology 1. Next,

assume (37).

In this case, the follower’s decision corresponds to that of Case 3 in Proposition 2.1. In

consequence, in the preemption equilibrium, the follower, also, always chooses technology 2. ¤

Table 1 summarizes the comparison results between the de facto standard and innovative cases.

4.3 Case of joint investment

The joint investment equilibria, which are, unlike the preemption equilibria, symmetric out-

comes, may also occur even if the two firms are noncooperative. The results on the joint

investment equilibria in our setup become similar the results obtained in [26] and are therefore

briefly described below.

Assuming that the two firms are constrained to invest in the same technology at the same

timing, the firm’s problem can be reduced to

sup
τ∈T

E[e−rτ max
i=1,2

(aiiY (τ)− Ii)], (38)

in the same procedure as (3)–(6). Recall that a11 and a22 were defined by (20) and (23),

respectively. It is worth noting that the expression (38) does not depend on whether the de

facto standard case or the innovative case. Using

a20

a10
=

D2h2(r + h1 − µ)
D1h1(r + h2 − µ)

<
D2h2(r + 2h1 − µ)
D1h1(r + 2h2 − µ)

=
a22

a11

and Assumption B, we have

I2

I1
<

(
a20

a10

) β10
β10−1

<

(
a22

a11

) β10
β10−1

.

Thus, the value function (denoted by J(y)) and the optimal stopping time (denoted by τ∗J ) of

problem (38) coincide with V0(Y ) and τ∗0 replaced a20 with a22 in Case 3 in Proposition 2.1,

that is, the two firms set up the development of technology 2 at the same time

τ∗J = inf{t ≥ 0 | Y (t) ≥ y∗33}, (39)
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where y33 denotes the joint investment trigger corresponding to y30 in Proposition 2.1. As in

the single firm case, in joint investment both firms always choose technology 2.

If there exists any Y satisfying L(Y ) > J(Y ), then the only preemption equilibria (not

necessarily unique), which are asymmetric outcomes, occur. Otherwise, there arises the joint

investment equilibria (not necessarily unique) in addition to the preemption equilibria. In this

case, the joint investment equilibrium attained by the optimal joint investment rule (39) Pareto-

dominates the other equilibria. For further details of the joint investment equilibria, see [13, 26].

5 Numerical examples

This section presents some examples in which the single firm’s payoff V0(Y ), the leader’s payoff

F (Y ), the joint investment payoff J(Y ) and the equilibrium strategies are numerically computed.

We set the parameter values as Table 2 in order that Assumption B is satisfied and the single

firm case corresponds a standard example in [6] (note a20 = I2 = 1). Table 3 shows βij , and

Table 4 and 5 indicate aij , Ii and y∗ij . To begin with, we compute the single firm’s problem.

Figure 4 illustrates its value function V0(Y ) corresponding to Case 3 in Proposition 2.1, where

the investment time τ∗0 is

τ∗0 = inf{t ≥ 0 | Y (t) ≥ y∗30 = 2}. (40)

Second, let us turn to the de facto standard case. Because the inequalities

1 <

(
a2i

a1i

) β1i
β1i−1

<
I2

I1
(i = 1, 2)

hold, the follower’s optimal response τ∗Fi
has three triggers (see Table 5), that is, which technology

the follower chooses depends on the initial value Y. Figure 5 illustrates the leader’s payoff Li(Y )

and the follower’s payoff Fi(Y ). In Figure 5, Fi(Y ) is smooth while Li(Y ) changes drastically

at the follower’s triggers y∗1i, y
∗
2i and y∗3i. This means that the leader is greatly affected by the

technology chosen by the follower. Particularly, a sharp rise of Li(Y ) in the interval [y∗2i, y∗3i] in

Figure 5 states that the leader prefers the follower choosing technology 2 to the follower choosing

technology 1.

The payoffs L(Y ), F (Y ), and J(Y ) appear in Figure 6. Let us consider the firms’ equilibrium

strategies under Assumption A, i.e., the condition that the initial market demand y is small
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Table 1: Comparison between the de facto standard and innovative cases.

De facto standard Innovative

Relative expected profit a2i/a1i < a20/a10 a2i/a1i > a20/a10

Follower’s value function F1(Y ) < F2(Y ) F1(Y ) > F2(Y )

Preemption equilibrium Both firms: likely to choose

Tech. 1

Leader: Tech. 2, Follower:

Tech. 2 (in most cases)

Table 2: Parameter setting.

r µ σ D1 D2 h1 h2 k1 k2 l1 l2

0.04 0 0.2 0.025 0.05 0.32 0.16 0 0 0.18 0.2

Table 3: βij .

β10 β20 β11 β21 β12 β22

2 1 4.77 −3.77 3.7 −2.7

Table 4: Values common to both cases.

a10 a20 a11 a22 I1 I2 y∗30 y∗33

0.56 1 0.29 0.56 0.5 1 2 3.6

Table 5: Values dependent on the cases.

a12 a21 y∗11 y∗21 y∗31 y∗12 y∗22 y∗32

De facto standard 0.38 0.38 2.15 5.46 5.59 1.78 2.81 3.04

Innovative 0.08 1 N/A N/A 2 N/A N/A 2.47
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enough. Note that as mentioned in Section 4.3 the optimal joint investment strategy has the

unique trigger y∗33 and both firms always choose technology 2. We see from Figure 6 that the

preemption equilibrium is a unique outcome in the completion between the two firms, since

there exist Y satisfying J(Y ) < L(Y ). By assumption A, in the preemption equilibrium one of

the firms becomes a leader investing in technology 1 at

inf{t ≥ 0 | Y (t) ≥ yP = 0.93} (41)

(yP is the intersection of L(Y ) and F (Y ) in Figure 6) and the other invests in technology 1 as

follower at

τ∗F1
= inf{t ≥ 0 | Y (t) ≥ y∗11 = 2.15}

if the leader has not succeeded in the development until this point. We observe that the leader’s

investment time (41) becomes earlier than the single firm’s investment time (40). Furthermore,

we see that the preemption trigger yP in Figure 6 is the intersection of L1(Y ) and F1(Y ) instead

of that of L2(Y ) and F2(Y ) and see that both firms switch the target from technology 2 chosen

in the single firm situation to technology 1. Thus, consumers could suffer disadvantage that the

only lower-standard technology emerges due to the competition.

It is obvious from Figure 6 that in the case where the roles of the firms are exogenously

given, i.e., in the leader-follower game

sup
τ∈T

E[e−rτL(Y (τ))],

the leader invests in technology 1. Therefore, in this instance, rather than the fear of preemption

by the competitor, the presence of the competitor causes development of the lower-standard

technology 1, which is never developed in the single firm situation.

Let us now replace σ = 0.2 by σ = 0.8 with other parameters fixed in Table 2 and consider the

firms’ strategic behavior under Assumption A. Notice that the higher product market uncertainty

σ becomes the greater the advantage of technology 2 over technology 1 becomes. Figure 7

illustrates L(Y ), F (Y ) and J(Y ). Since J(Y ) > L(Y ) in Figure 7, the joint investment equilibria

arise together with the preemption equilibria. There are two preemption equilibria corresponding

the two leader’s triggers yP1 and yP2 . It is reasonable to suppose that which type of equilibria
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occurs depends on the firms’ inclination to the preemption behavior. In this instance, it can be

readily seen from Figure 7 that in the corresponding leader-follower game the leader invests in

technology 2 at the joint investment trigger y∗33. This suggests that relative to the case in Figure

6, the fear of preemption by the competitor could drive the leader to develop the lower-standard

technology 1, which never emerges in the noncompetitive situation, at the trigger yP1 .

Finally, we examine the innovative case. It can be deduced from the inequality

(
a22

a12

) β12
β12−1

>
I2

I1

that the follower always chooses technology 1 (Table 5). The leader’s payoff Li(Y ) and the

follower’s payoff Fi(Y ) appear in Figure 8. The payoff F1(Y ) dominates the others since it is

equal to V0(Y ) as shown in Section 4.2. Figure 9 illustrates L(Y ), F (Y ) and J(Y ). We examine

the firms’ strategic behaviour under Assumption A. There occurs no joint investment outcome

as there exist Y satisfying J(Y ) < L(Y ). In the preemption equilibrium, as shown in Proposition

4.1, both firms invests in the same technology 2 but the different timings. Indeed, in equilibrium

one of the firms invests in technology 2 at

inf{t ≥ 0 | Y (t) ≥ yP = 1.06} (42)

(yP denotes the intersection of L(Y ) and F (Y ) in Figure 9) as leader, while the other invests in

the same technology at

τ∗F2
= inf{t ≥ 0 | Y (t) ≥ y∗32 = 2.47}

as follower if the leader has yet to complete the technology at this point. We see that the leader’s

investment time (41) is earlier than the single firm’s investment time (40) but is later than (41)

in the de facto standard case. The preemption trigger yP is the intersection of L2(Y ) and F2(Y ),

and therefore the technology developed by firms remains unchanged by the competition. It is

worth noting that yP agrees with the preemption trigger in the case where the firms has no

option to choose technology 1, that is, the preemption trigger derived in [26].
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Figure 4: The single firm’s value function V0(Y ).
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Figure 5: Li(Y ) and Fi(Y ) in the de facto standard case.
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Figure 6: L(Y ), F (Y ) and J(Y ) in the de facto standard case.
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Figure 8: Li(Y ) and Fi(Y ) in the innovative case.
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Figure 9: L(Y ), F (Y ) and J(Y ) in the innovative case.
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6 Conclusion

This paper extended the R&D model in [26] to the case where a firm has the freedom to choose

the timing and the standard of the research project, where the higher-standard technology is

difficult to complete and generates a greater cash flow. First, we derived the firm’s optimal

decision in the single firm situation. We thereafter extended the model to the situation of two

firms and examined in full detail two typical cases, i.e., the de facto standard case and the

innovative case. The results obtained in this paper can be summarized as follows.

In the de facto standard case, the competition increases the incentive to choose the lower-

standard technology, which is easy to complete; in the innovative case, on the contrary, the

competition increases the incentive to choose the higher-standard technology, which is difficult

to complete. The main contribution of this paper is showing that in the de facto standard case

a lower-standard technology could emerge than is developed in the single firm situation. This

implies the possibility that too bitter competition among firms adversely affects not only the

firms but also consumers.

Finally, we mention potential extensions of this research. One of the remaining problems is

to find a system in which noncooperative firms conduct more efficient R&D investment from the

viewpoint of social welfare including consumers. A tax and a subsidy investigated in [11, 15]

could provide viable solutions to the problem. Although this paper considers a simple model

with two types of uncertainty, namely technological uncertainty and market uncertainty, other

types of uncertainty (see [12]) and other options, such as options to abandon and expand, could

be involved with practical R&D investment (see [23]). It also remains as an interesting issue

for future research to incorporate incomplete information (for example, uncertainty as to rivals’

behavior as investigated in [16, 21]) in the model.
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