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Abstract: In this paper, we study a new problem of convex drawing of planar
graphs with non-convex boundary constraints. It is proved that every triconnected
plane graph whose boundary is fixed with a star-shaped polygon admits a drawing in
which every inner facial cycle is drawn as a convex polygon. We also prove that every
four-connected plane graph whose boundary is fixed with a crown-shaped polygon
admits such a drawing, called an inner-convex drawing. We present an algorithm to
construct an inner-convex drawing in linear time.
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1 Introduction

Graph drawing has attracted much attention over the last ten years due to its wide range of
applications, such as VLSI design, software engineering and bioinformatics. Two- or three-
dimensional drawings of graphs with a variety of aesthetics and edge representations have been
extensively studied (see [1]). One of the most popular drawing conventions is the straight-line
drawing, where all the edges of a graph are drawn as straight-line segments. Every planar graph
is known to have a planar straight-line drawing [7].

A straight-line drawing is called a convex drawing if every facial cycle is drawn as a convex
polygon. Note that not all planar graphs admit a convex drawing. Tutte [17] gave a necessary
and sufficient condition for a triconnected plane graph to admit a convex drawing. He also
showed that every triconnected plane graph with a given boundary drawn as a convex polygon
admits a convex drawing using the polygonal boundary. That is, when the vertices on the
boundary are placed on a convex polygon, inner vertices can be placed on suitable positions so
that each inner facial cycle forms a convex polygon. More specifically, he proposed a “barycen-
tric mapping” method which computes a convex drawing of a triconnected plane graph with n
vertices by solving a system of O(n) linear equations. This requires O(n3) time and O(n2) space
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using the ordinary Gaussian elimination method, however it can be implemented in O(n1.5) time
and O(n logn) space using the sparse Gaussian elimination method [10].

Later, Thomassen [16] gave a necessary and sufficient condition for a biconnected plane
graph to admit a convex drawing. Based on this result, Chiba et al. [6] presented a linear time
algorithm for finding a convex drawing (if any) for a biconnected plane graph with a specified
convex boundary.

In general, the convex drawing problem has been well investigated for the last ten years.
For example, a problem of convex drawing of graphs with grid constraints has been well studied
[3, 4, 5, 12]. A convex drawing is called a convex grid drawing if all the vertices are restricted
to be placed on grid points. Every triconnected plane graph has a convex grid drawing on an
(n − 2) × (n − 2) grid, and such a grid drawing can be found in linear time [5]. A linear time
algorithm for finding a convex grid drawing of four-connected plane graphs with four or more
vertices on the outer face was presented in [12]. Another variation of convex drawing with
minimum outer apices was introduced in [11]. For constructing a strictly convex drawing of
graphs, see [15].

However, not much attention has been paid to the problem of finding a convex drawing
with a non-convex boundary. In this paper, we study a new problem of drawing planar graphs
with non-convex boundary constraints. Our problem was originally inspired by a real world
application, such as visualisation of sensor networks with given floor planning. More formally,
a straight-line drawing is called an inner-convex drawing if every inner facial cycle is drawn as
a convex polygon, and is simply called a convex drawing if no confusion arises.

One can easily observe that not every triconnected plane graph has a convex drawing if its
boundary is fixed as a non-convex polygon. For example, Fig. 1 shows three examples of plane
graphs which have no convex drawing; the inner facial cycle f1 in Fig. 1(b) (respectively, one
of the inner facial cycles f1 and f2 in Figs. 1(a) and (c)) cannot be drawn as a convex polygon.

(a) (b) (c)
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Figure 1: (a) A biconnected plane graph with a convex boundary; (b) An internally triconnected
plane graph with a star-shaped boundary; (c) A triconnected plane graph whose boundary is
crown-shaped but not star-shaped.

No characterisation is known for any class of plane graphs that have inner-convex drawings
with non-convex boundaries. In this paper, we prove that every triconnected plane graph has

2



an inner-convex drawing if its boundary is fixed with a star-shaped polygon P , i.e., a polygon P
whose kernel (the set of all points from which all points in P are visible) is not empty. This is an
extension of the classical result by Tutte [17] since any convex polygon is a star-shaped polygon.
Our proof gives a linear time algorithm for computing an inner-convex drawing of a triconnected
plane graph with a star-shaped boundary. We also prove that every four-connected plane graph
whose boundary is fixed with a crown-shaped polygon admits an inner-convex drawing.

This paper is organized as follows. Section 2 reviews basic terminology and proves an
important property of triconnected plane graphs and four-connected plane graphs. Section 3
proves that a triconnected plane graph has an archfree tree, a spanning tree with a special
property. Section 4 reviews the necessary and sufficient condition for a biconnected plane graph
with a boundary drawn as a convex polygon to admit a convex drawing. Section 5 presents
a linear time algorithm to construct an inner-convex drawing of a triconnected plane graph
with a star-shaped boundary constraints. Section 6 describes how to construct an inner-convex
drawing of a four-connected plane graph with a crown-shaped boundary constraints. Section 7
concludes.

2 Preliminaries

Throughout the paper, a graph stands for a simple undirected graph. Let G = (V,E) be a
graph. The set of edges incident to a vertex v ∈ V is denoted by E(v). The degree of a vertex
v in G is denoted by dG(v) (i.e., dG(v) = |E(v)|). For a subset X ⊆ E (respectively, X ⊆ V ),
G−X denotes the graph obtained from G by removing the edges in X (respectively, the vertices
in X together with the edges in ∪v∈XE(v)).

A vertex in a connected graph is called a cut vertex if its removal from G results in a
disconnected graph. A connected graph is called biconnected if it is simple and has no cut
vertex. Similarly, a pair of vertices in a connected graph is called a cut pair (or separation pair)
if its removal from G results in a disconnected graph. A connected graph is called triconnected
if it is simple and has no cut pair. We say that a cut pair {u, v} separates two vertices s and t
if s and t belong to different components in G− {u, v}. In general, a graph G with more than
k vertices is called k-connected if G−X remains connected for any subset X of k − 1 vertices.

A graph G = (V,E) is called planar if its vertices and edges are drawn as points and curves
in the plane so that no two curves intersect except for their endpoints, where no two vertices
are drawn at the same point. In such a drawing, the plane is divided into several connected
regions, each of which is called a face. A face is characterized by the cycle of G that surrounds
the region. Such a cycle is called a facial cycle. A set F of facial cycles in a drawing is called
an embedding of a planar graph G. A plane graph G = (V,E, F ) is a planar graph G = (V,E)
with a fixed embedding F of G, where we always denote the outer facial cycle in F by fo.

A vertex (respectively, an edge) in fo is called an outer vertex (respectively, an outer edge),
while a vertex (respectively, an edge) not in fo is called an inner vertex (respectively, an inner
edge). A pathQ between two vertices s and t inG is called inner if every vertex in V (Q)−{s, t} is
an inner vertex. The region enclosed by a facial cycle f ∈ F may be denoted by f for simplicity.
The set of vertices, set of edges and set of facial cycles of a plane graph G may be denoted by
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V (G), E(G) and F (G), respectively.
A biconnected plane graph G is called internally triconnected if, for any cut pair {u, v}, u and

v are outer vertices and each component in G− {u, v} contains an outer vertex. For example,
the graph in Fig. 1(a) is biconnected but not internally triconnected, the graph in Fig. 1(b) is
internally triconnected but not triconnected, and the graph in Fig. 1(c) is triconnected. Note
that every inner vertex in an internally triconnected plane graph must be of degree at least 3.

For a cut pair {u, v} of an internally triconnected plane graph G = (V,E, F ), if u and v are
not adjacent and there is an inner facial cycle f ∈ F such that {u, v} ∈ V (f), we say that f
separates two vertices s and t if the cut pair {u, v} separates them.

We then observe the following:

Lemma 1 Let G be an internally triconnected plane graph. Then G has an inner path con-
necting two outer vertices s and t if and only if no facial cycle separates s and t.

We now show some key properties of a triconnected plane graph.

Lemma 2 Every triconnected plane graph G = (V,E, F ) has a spanning tree T such that each
vertex v ∈ V (fo) is a leaf of T . Such a tree can be found in linear time.

Proof: Since G has no cut pair, there is an inner path between any two vertices in V (fo) by
Lemma 1. Let V (fo) = {v1, v2, . . . , vp}, where vertices v1, v2, . . . , vp appear in this order when
we traverse fo in the clockwise order. For each v ∈ V (fo), let ev ∈ E(v) be the edge that
appears after edge (v = vi, vi+1) when we visit the edges in E(v) around v = vi in the clockwise
order. To prove the lemma, it suffices to show that G∗ = G − ∪v∈V (fo)(E(v) − {ev}) remains
connected, since any spanning tree T of the graph satisfies the condition of the lemma, and it
is immediate to see that such a tree can be computed in linear time.

To show the connectedness of G∗, we define an inner path Qv from v = vi to vi−1 as follows.
Let E(v) = {(v, u1 = vi+1), (v, u2), (v, u3), . . . , (v, uh−1), (v, uh = vi−1)}, where (v, u1), . . . , (v, uh)
appear in this order when we visit the edges in E(v) in the clockwise order around v, and
fj ∈ F , j = 1, 2, . . . , h be the facial cycle that contains edges (v, uj) and (v, uj+1), where
V (fj)∩V (fo) = {vi} and fj �= fj′ for j �= j′ by the triconnectivity of G. Then there is an inner
path Qv from v = vi to vi−1 which consists of subpaths fj − v, j = 2, 3, . . . , h− 1. That is, path
Qv and edge (v = vi, uh = vi−1) surround the union of faces fj , j = 2, 3, . . . , h− 1.

Note that G− (E(v)−{ev}) contains Qv. Hence if G has an inner path Q from v ∈ V (fo) to
a vertex w ∈ V that does not use edge ev, then Q must use an edge (v, uj) ∈ E(v) − {ev} and
the subpath from v to uj along Qv and the subpath from uj to w along Q give rise to an inner
path from v to w without using any edge in E(v) − {ev}. By noting that E(v) ∩ E(Qv′) = ∅
for any two v, v′ ∈ V (fo), this implies that any two vertices in V (fo) are connected by an
inner path in G∗ = G−∪v∈V (fo)(E(v)− {ev}) and that G∗ contains a tree T ′ that connects all
vertices in V (fo) (note that each vertex v ∈ V (fo) is a leaf in T ′ since the degree of v is 1 in
G− ∪v∈V (fo)(E(v) − {ev})).

To complete the proof for the connectedness of G∗, we show that an arbitrary vertex u ∈
V − V (T ′) is connected to a vertex in V (T ′) in G∗. There are adjacent vertices w1, w2 ∈ V (fo)
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such that u is located in the region enclosed by edge (w1, w2) and the path T ′
w1,w2

between w1

and w2 along T ′. No vertex in this region is incident to E(v) with v �∈ {w1, w2}. Hence, if u is
not connected to any vertex in T ′ in G∗, then {w1, w2} would be a cut pair which separates u
and a vertex not in the region, contradicting the triconnectivity of G.

Therefore, G∗ = G− ∪v∈V (fo)(E(v) − {ev}) remains connected, as required.
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Figure 2: (a) Subgraph G− V (fo) and subpath Q in fo; (b) Matching M joining outer vertices
and inner vertices, where matching edges are displayed by thick lines.

We next show some key properties of a four-connected plane graph.

Lemma 3 Let G = (V,E, F ) be a 4-connected plane graph, and denote the vertices in fo by
v1, v2, . . . , vq such that they appear in this order when we walk along fo in the clockwise order
(see Fig. 2(a)). Let Q be a subpath of the outer facial cycle fo with |V (Q)| ≥ 2, where the
vertices V (Q) are denoted by vg+1, vg+2, . . . , vq. Let v′g+1 denote the first inner vertex when we
visit all neighbours of vg+1 in the clockwise order starting with vg+2, and v′q be the first inner
vertex when we visit all neighbours of vq in the anticlockwise order starting with vq−1. Then

(i) G− V (fo) and G′ = G− (V (fo) − V (Q)) are both internally triconnected.

(ii) Let B be the set of vertices in the boundary of G′. Then, there is a matching M =
{(vj , wj) ∈ E | j = 1, . . . , g} ∪ {(vg+1, v

′
g+1), (vq, v

′
q)} such that wj ∈ B, j = 1, . . . , g (see

Fig. 2(b)). Such a matching M can be obtained in linear time.

Proof: (i) We see that |V − V (fo)| ≥ 2, since otherwise G is not four-connected. We now
show that G′ is internally triconnected (internal triconnectivity of G − V (fo) can be treated
analogously). Hence G′ contains at least four vertices. We first show that G′ is biconnected.

Let s, t be arbitrary vertices in G′. By Menger’s theorem [2], G has four internally disjoint
paths P1, P2, . . . , P4 between s and t, which divided the plane into four regions R1, R2, . . . , R4,
where we assume without loss of generality R1 contains the outer region of G surrounded by
P3 and P4. Then paths P1 and P2 do not touch R1 except at s and t, which means that these
paths are also contained in G′. Since |V (G′)| ≥ 3 and any two vertices in G′ are connected by
two internally disjoint paths, G′ is biconnected.
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Assume that G′ is not internally triconnected, i.e., for some cut pair {u, v} of G′, G′−{u, v}
has a component which has no outer vertex in the boundary of G′. This, however, implies that
{u, v} remains a cut pair in G, contradicting the four-connectivity. Therefore G′ is internally
triconnected.

(ii) We choose wj ∈ B by traversing the boundary of G − V (fo) in the clockwise order
starting with v′q. After starting from v′q, we choose the first vertex w ∈ B′ that is adjacent to
v1 as w1. Note that such a vertex w ∈ B′ − {v′g} exists, since otherwise v1 would have only
one inner adjacent vertex, contradicting the four-connectivity of G. We can repeatedly choose
wj+1 as the neighbour w ∈ B′ of vj+1 that appears after visiting wj until a desired set M of
matching edges is obtained.

From the above construction, it is easy to see that a desired matching M can be obtained
in linear time.

3 Archfree Paths and Archfree Trees

We say that a facial cycle f arches a path Q in a plane graph if there are two distinct vertices
a, b ∈ V (Q) ∩ V (f) such that the subpath Qa,b of Q between a and b is not a subpath of f . A
path Q is called archfree if no inner facial cycle f arches Q. Note that any subpath of a facial
cycle in a triconnected plane graph is an archfree path.

Let Q be an inner path that is contained in an inner path Q′ between two outer vertices s′

and t′ in a plane graph G = (V,E, F ), and let s and t be the end vertices of Q, where Q and Q′

are viewed as directed paths from s′ to t′, as shown in Fig. 3. The outer facial cycle fo consists
of subpath f ′o from s′ to t′ and subpath f ′′o from t′ to s′ when we walk along fo in the clockwise
order.

We say that an inner facial cycle f ∈ F is on the left side if f is surrounded by f ′o and Q′,
and that f arches Q on the left side if f is on the left side of Q. The case of the right side is
defined symmetrically. For example, facial cycles f, f1 and f2 in Fig. 3 arch path Q on the left
side, where Q is displayed as thick lines.

Now we modify Q into a path L(Q) from s to t such that no inner facial cycle arches L(Q)
on the left side. Let FQ be the set of all inner facial cycles f ∈ F that arch Q on the left side,
but are not contained in the region enclosed by Q and any other f ′ ∈ F . For example, facial
cycle f1 in Fig. 3 is enclosed by Q and f , and thereby f1 �∈ FQ.

The left-aligned path L(Q) of Q is defined as an inner path from s to t obtained by replacing
subpaths of Q with subpaths of cycles in FQ as follows. For each f ∈ FQ, let af and bf be
the first and last vertices in V (f) ∩ V (Q) when we walk along path Q from s to t, and fQ be
the subpath from af to bf obtained by traversing f in the anticlockwise order. Let L(Q) be
the path obtained by replacing the subpath from af to bf along Q with fQ for all f ∈ FQ (see
Fig. 3 for an example of L(Q)).

The following is then observed:

Lemma 4 Given an inner path Q, the left-aligned path L(Q) of Q can be constructed in
O(|EQ| + |L(Q)|) time, where EQ is the set of all edges incident to a vertex in Q.
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Figure 3: Construction of the left-aligned path L(Q) from an inner path Q between s and t,
where thick lines show Q and the path following the arrows shows L(Q).

The right-aligned path R(Q) of Q is defined symmetrically to the left-aligned path.

Lemma 5 Let G = (V,E, F ) be an internally triconnected plane graph, and Q be an inner path
from a vertex s to a vertex t. Then the left-aligned path L(Q) is an inner path from s to t, and
no inner facial cycle arches L(Q) on the left side. Moreover, if no inner facial cycle arches Q
on the right side, then L(Q) is an archfree path.

Proof: Since G is internally triconnected, we can extend Q to an inner path between two outer
vertices s′ and t′. Let FQ be the set of all inner facial cycles f ∈ F that arch Q on the left side,
but are not enclosed by Q and any other f ′ ∈ F . It is clear that L(Q) is an inner path, since a
subpath of Q is replaced with a subpath of f ∈ FQ which is not adjacent to any outer vertex.

Assume that an inner facial cycle f∗ ∈ F − FQ − {fo} arches L(Q) on the left side. Let af∗

and bf∗ be the first and last vertices in V (f∗) along path L(Q). Note that neither af∗ or bf∗ is
contained in subpath fQ for any f ∈ FQ since face f contains no edge. Then both af∗ and bf∗

are in V (Q). This, however, implies that f∗ arches Q on the left side in G, contradicting the
choice of FQ.

We consider the case where Q has no inner facial cycle that arches Q on the right side.
Assume that an inner facial cycle f̂ ∈ F −FQ −{fo} arches L(Q) on the right side. Let af̂ and

bf̂ be the first and last vertices in V (f̂) along path L(Q). Note that both af̂ and bf̂ belong to

Q or a subpath fQ with f ∈ FQ, since otherwise Q would intersect the interior of face f̂ . Since
no inner facial cycle arches Q on the right side by the assumption on Q, both af̂ and bf̂ must
belong to subpath fQ for some f ∈ FQ. This implies that af̂ and bf̂ is a cut pair. Since G is
internally triconnected, it must hold af̂ , bf̂ ∈ V (fo). However, it is clear that G− {af̂ , bf̂} has
at least three components, contradicting the internal triconnectivity of G.

Corollary 6 For any inner path Q from s to t in an internally triconnected plane graph G,
the right-aligned path R(L(Q)) of the left-aligned path L(Q) is an archfree path.

A path in a tree T is called a base path if it is a maximal induced path in T , i.e., end vertices
v and internal vertices u (if any) in the path satisfy dT (v) �= 2 and dT (u) = 2, respectively. A
tree T in a plane graph G is called archfree if every base path is an archfree path in G.
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Lemma 7 For a triconnected plane graph G = (V,E, F ), let S be a subset of V (fo) with |S| ≥ 2.
Then G contains an archfree tree T such that the set of leaves of T is equal to S. Such a tree
T can be obtained in linear time.

Proof: By Lemma 2, G contains a spanning tree T1 such that each vertex v ∈ V (fo) is a leaf
of T1. Let T2 be the tree obtained from T1 by removing all vertices that are not in the path
between any two vertices in S. Note that T2 is a tree such that the set of leaves of T2 is S
and each base path of T2 is an inner path of G. Choose a vertex s ∈ S as the root of T2 with
each base path as a directed path from the root to leaves. Let T3 be the tree obtained from
T2 by replacing each base path Q of T2 with its left-aligned path L(Q). Then T4 be the tree
obtained from T3 by replacing each base path Q of T3 with its right-aligned path R(Q). From
Corollary 6, T4 is an archfree tree whose leaf set is S.

By Lemma 2, spanning tree T1 can be computed in linear time. It is clear that T2 can be
constructed from T1 in linear time. By Lemma 4, T3 can be computed in O(

∑{|EQ|+ |L(Q)| |
base paths Q in T2}) = O(

∑
f∈F |E(f)|) = O(|V |) time. Analogously T4 can be obtained in

O(|V |) time.

4 Convex Drawing with a Convex Boundary

For three points a1, a2, and a3 in the plane, the line segment whose end points are ai and aj

is denoted by (ai, aj), and the angle (a1, a2, a3) formed by line segments (a1, a2) and (a2, a3) is
defined by the central angle of a circle with center a2 when we traverse the circumference from
a1 to a3 in the clockwise order (note that (a1, a2, a3) + (a3, a2, a1) = π).

A polygon P is given by a sequence a1, a2, . . . , ap (p ≥ 3) of points, called apices, and
edges (ai, ai+1), i = 1, 2, . . . , p (where ap+1 = a1) such that no two line segments (ai, ai+1) and
(aj , aj+1), i �= j intersect each other except at apices. Let A(P ) denote such a sequence of
apices of a polygon P , where A(P ) may be used to denote the set of the apices in A(P ). The
inner angle θ(ai) of an apex ai is the angle (ai+1, ai, ai−1) formed by line segments (ai, ai+1)
and (ai−1, ai), and an apex ai is called convex (respectively, concave and flat) if θ(ai) < π

(respectively, θ(ai) > π and θ(ai) = π). A polygon P has no apex a with θ(a) = 0 since no
two adjacent edges on the boundary intersect each other. Thus, the interior of a polygon has a
positive area.

A polygon P is called convex if it has no concave apex. A k-gon is a polygon with exactly
k apices, some of which may be flat or concave. A side of a polygon is a maximal line segment
in its boundary, i.e., a sequence of edges (ai, ai+1), (ai+1, ai+2), . . . , (ai+h−1, ai+h) such that ai

and ai+h are non-flat apices and the other apices between them are flat. A k-gon has at most
k sides.

A straight-line drawing of a graph G = (V,E) in the plane is an embedding of G in the two
dimensional space 	2 such that each vertex v ∈ V is drawn as a point ψ(v) ∈ 	2 and each
edge (u, v) ∈ E is drawn as a straight-line segment (ψ(u), ψ(v)), where 	 is the set of reals.
Hence, a straight-line drawing of a graph G = (V,E) is defined by a function ψ : V → 	2. A
straight-line drawing ψ of a plane graph G = (V,E, F ) is called an inner-convex drawing (or
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simply a convex drawing) if every inner facial cycle is drawn as a convex polygon. A convex
drawing ψ of a plane graph G = (V,E, F ) is called a strictly convex drawing if it has no flat
apex ψ(v) for any vertex v ∈ V with dG(v) ≥ 3. We say that a drawing ψ of a graph G is
extended from a drawing ψ′ of a subgraph G′ of G if ψ(v) = ψ′(v) for all v ∈ V (G′).

Let G = (V,E, F ) be a plane graph with an outer facial cycle fo, and P be a |V (fo)|-gon.
A drawing φ of fo on P is a bijection φ : V (fo) → A(P ) such that the vertices in V (fo) appear
along fo in the same order as the corresponding apices in sequence A(P ).

Lemma 8 [6, 16] Let G = (V,E, F ) be a biconnected plane graph. Then a drawing φ of fo

on a convex polygon P can be extended to a convex drawing of G if and only if the following
conditions (i)-(iii) hold:

(i) For each inner vertex v with dG(v) ≥ 3, there exist three paths disjoint except v, each
connecting v and an outer vertex;

(ii) Every cycle of G which has no outer edge has at least three vertices v with dG(v) ≥ 3;
and

(iii) Let Q1, Q2, . . . , Qk be the subpaths of fo, each corresponding to a side of P . The graph
G − V (fo) has no component H such that all the outer vertices adjacent to vertices in H are
contained in a single path Qi, and there is no inner edge (u, v) whose end vertices are contained
in a single path Qi.

Since every inner vertex of degree 2 must be drawn as a point sub-dividing a line segment
in any convex drawing, we can assume without loss of generality that a given biconnected plane
graph has no inner vertex of degree 2. Then Lemma 8 can be restated as follows.

Lemma 9 Let G = (V,E, F ) be a biconnected plane graph which has no inner vertex with
degree 2. Then a drawing φ of fo on a convex polygon P can be extended to a convex drawing
of G if and only if the following conditions (a) and (b) hold:

(a) G is internally triconnected.
(b) Let Q1, Q2, . . . , Qk be the subpaths of fo, each corresponding to a side of P . Each Qi is

an archfree path in G.

5 Convex Drawing with Star-Shaped Boundary Constraints

A kernel K(P ) of a polygon P is the set of all points from which all points in P are visible.
The boundary of a kernel, if any, is a convex polygon. A polygon P is called star-shaped if
K(P ) �= ∅. Throughout the paper, we assume that for a given star-shaped polygon, its kernel
has a positive area.

Let φ be a drawing of the outer facial cycle fo of a plane graph G on a star-shaped polygon
P , and let S = {v1, v2, . . . , vp} be a subset of V (fo), where the vertices v1, v2, . . . , vp in S appear
in this order when we traverse fo in the clockwise order (where vp+1 = v1). A subset S is valid
if S contains all vertices v ∈ V (fo) such that φ(v) is a concave apex of P and for any point
a ∈ K(P ), the angle (φ(vi), a, φ(vi+1)) formed by line segments (φ(vi), a) and (a, φ(vi+1)) is less
than π. Obviously S = V (fo) is valid if P is a star-shaped polygon.
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For a tree T of G whose leaf set is S = {v1, v2, . . . , vp}, we denote by H = T + fo the plane
subgraph of G obtained by joining T and fo, i.e., V (H) = V (T )∪V (fo), E(H) = E(T )∪E(fo)
and F (H) = {f1, f2, . . . , fp}, where fi is the cycle consisting of the path between vi and vi+1

along T and the subpath from vi to vi+1 in fo. We now describe an important lemma.

Lemma 10 Let G = (V,E, F ) be a triconnected plane graph, and φ be a drawing of the outer
facial cycle fo on a star-shaped polygon P . For drawing φ, let S be a valid subset of V (fo), and
T be an archfree tree whose leaf set is S. Then φ can be extended to a strictly convex drawing
ψ of H = T + fo. Such a drawing ψ can be obtained in linear time.

Proof: Let K be a circle contained in K(P ), where the center of K is denoted by c. It suffices
to show that the lemma holds only for the case where T contains no vertex v with dT (v) = 2,
since two edges in T that are adjacent at such a vertex v can be replaced with a single edge
and the eliminated vertex v can be re-inserted in a line segment in a straight-line drawing. See
Fig. 4(a), which illustrates H = T + fo with no vertex v with dT (v) = 2 and K centered at a
point c.

Now T has at least three leaves (since S is valid) but no vertex v with dT (v) = 2. We call a
non-leaf vertex in T a fringe vertex if it has no more than one neighbor u with dT (u) ≥ 2. If T
has exactly one fringe vertex, i.e., T is a star centered at a vertex v∗, then ψ with ψ(u) = φ(u),
u ∈ S and ψ(v∗) = c is a strictly convex drawing of H since each facial cycle fi is drawn as a
triangle whose sides do not intersect with any side of P by the validity of S.

We now consider the case where T has at least two fringe vertices. Each fringe vertex u

has at least two adjacent leaves and all adjacent leaves appear consecutively along fo, when we
visit the leaves of T along P in the clockwise order. We denote its first leaf (respectively, last
leaf) by au (respectively, bu). For example, vertex v in Fig. 4(a) has av = v1 and bv = vh.

A fringe vertex u is called wide in a drawing φ if the angle (φ(au), c, φ(bu)) formed by line
segments (c, φ(au)) and (c, φ(bu)) is no less than π (for example, vertex u in Fig. 4(a) is a wide
fringe vertex). Note that T has at most one wide fringe vertex.

We prove that a drawing φ of fo on P can be extended to a strictly convex drawing ψ of
H = T + fo such that ψ satisfies the following two conditions:

all non-leaf vertices of T are drawn strictly inside K, (1)

the angle (ψ(au), u, ψ(bu)) < π for all fringe vertices u
except for a wide fringe vertex.

(2)

We prove the lemma by induction on the number of vertices in a tree T . In the base case, T
has exactly two fringe vertices u1 and u2, where the wide fringe vertex (if any) is denoted by
u1. Draw vertex u1 as the center c of K, and vertex u2 as a point at the intersection of K
and triangle u1, au2 , bu2 . By the choice of u1, the resulting drawing ψ of H = T + fo is strictly
convex satisfying (1) and (2).

We now assume that the lemma holds for any tree T with at most k vertices. Let T be
a tree with k + 1 vertices. We prove that the lemma holds for T . Let v∗ ∈ V (T ) be a fringe
vertex which is not wide, and v1, v2, . . . , vh be the leaves adjacent to v∗, which appear in this

10



order when we traverse fo in the clockwise order, as shown in Fig. 4(a). We distinguish two
cases, h ≥ 3 and h = 2.

Case-1. h ≥ 3. Let T ′ be the tree obtained from T by removing leaves v2, v3, . . . , vh−1,
S′ = S−{v2, v3, . . . , vh−1}, f ′o be the cycle obtained from fo by replacing its subpath from v1 to
vh with an edge (v1, vh). Let P ′ be the polygon obtained from P by replacing the edges between
v1 and vh with a single edge, and φ′ be the resulting drawing of f ′o on P ′ (see Fig. 4(b)). Note
that v∗ remains a non-wide fringe vertex in T ′ and hence, S′ is valid in P ′.

By the inductive hypothesis, φ′ can be extended to a strictly convex drawing ψ′ of H ′ =
T ′ + f ′o that satisfies (1) and (2) (see Fig. 4(b)). We show that the original drawing φ of fo on
P can be extended to a strictly convex drawing ψ of H = T + fo satisfying (1) and (2).

Such a drawing ψ is obtained from φ and ψ′ by setting ψ(u) = ψ′(u), u ∈ V (H ′) and
ψ(vi) = φ(vi), i = 2, 3, . . . , h − 1. In the resulting drawing ψ, each deleted edge (v∗, vi),
i = 2, 3, . . . , h− 1 is drawn as a line segment (ψ′(v∗), φ(vi)) (see Fig. 4(c)). We see that each of
new facial cycle {v∗, vi−1, vi}, i = 2, 3, . . . , h− 1 is drawn as a triangle, which does not intersect
with P since ψ′(v∗) is in K and v remains as a non-wide fringe vertex in T by (2). Therefore,
φ is a strictly convex drawing of H which satisfies (1) and (2).

K

(a) (b)

v*

u K

(c)

v*
K

v2...

v1

vh

v*

c

v2...

v1

vh

v1

vh

P
PP `

Figure 4: (a) Reducing the number of leaves adjacent to v∗ in tree T ; (b) Re-inserting the
deleted leaves in a convex drawing of H ′ = T ′ + f ′o with boundary P ′; (c) A convex drawing of
H = T + fo with boundary P .

Case-2. h = 2. Let w be the unique neighbour of v∗ with dT (w) ≥ 3, and ea = (w, ua)
(respectively, eb = (w, ub)) be the edge incident to w that appears immediately before edge
(w, v∗) (respectively, immediately after edge (w, v∗)) when we walk around w in the clockwise
order. Since dT (w) ≥ 3, we have ea �= eb (see Fig. 5(a)).

Let T ′ be the tree obtained from T by contracting edge (v∗, w) into a vertex w. Obviously
the set of leaves in T ′ is S, which remains valid in P . By the inductive hypothesis, a drawing
φ of fo on P can be extended to a strictly convex drawing ψ′ of H ′ = T ′ + fo that satisfies (1)
and (2) (see Fig. 5(b)).

We show that the original drawing φ of fo on P can be extended to a strictly convex drawing
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ψ of H = T + fo satisfying (1) and (2). Such a drawing ψ is obtained from φ and ψ′ by setting
ψ(u) = ψ′(u), u ∈ V (H ′) − {v∗} and choosing ψ(v∗) of v as follows. Let fa (respectively,
fb) be the facial cycle containing edges ea and (w, v1) (respectively, eb and (w, vh)), and La

(respectively, Lb) be the half line which starts at φ′(w) in the direction from φ′(ua) to φ′(w)
(respectively, from φ′(ub) to φ′(w)). See Fig. 5(b).

To keep the faces fa and fb strictly convex after re-inserting edge (v∗, w), the position ψ(v∗)
of v∗ must be in the region R enclosed by the boundary of K and the two lines La and Lb. Since
ea �= eb, we can choose a position ψ(v∗) of v strictly inside K so that the resulting drawing ψ is
strictly convex that satisfies (1) and (2). This completes the proof for the existence of a desired
convex drawing ψ of H = T + fo.

(c)

w

v*

K

(b)(a)

w

v*

v2

v1

fa

fb

ea
eb w

v2

v1

fa
K

fb

eaeb

R

La

Lb

La

Lb

v1

fa

fb

eaeb

P

Figure 5: (a) Contracting edge (v∗, w) in tree T ; (b) Re-inserting a contracted edge (v∗, w) in
a convex drawing ψ′ of H ′ = T ′ + fo; (c) A convex drawing of H = T + fo with boundary P .

It is clear that the above inductive proof gives an algorithm for computing a desired drawing
φ of H. We now show that it runs in linear time.

The kernel K(P ) can be computed in linear time [14], and a circle K in K(P ) can be chosen
in linear time. The operation in Case-1 can be executed in O(1) time by placing v on a point in
R sufficiently closed to φ′(w). The operation in Case-2 can be executed in O(1) time per edge
to be deleted. Following the above construction, a desired convex drawing φ of H = T + fo can
be constructed in linear time.

This completes the proof.
We are now ready to prove Theorem 11.

Theorem 11 Every drawing φ of the outer facial cycle fo of a triconnected plane graph G =
(V,E, F ) on a star-shaped polygon can be extended to a convex drawing ψG of G. Such a drawing
ψG can be computed in linear time.

Proof: Choose a valid subset S = {v1, v2, . . . , vp} of V (fo) (for example S = V (fo)), and
compute an archfree tree T of G whose leaf set is S, which can be computed in linear time
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by Lemma 7 (see Fig. 6(a)). By Lemma 10, we can compute a strictly convex drawing ψ of
H = T + fo as an extension of drawing φ of fo on P in linear time (see Fig. 6(b)).

Now each facial cycle fi of H is drawn as a strictly convex polygon Pi. Let Gi be the
subgraph of G that consists of vertices and edges in the face fi (including those on the boundary
of fi). Since each side of Pi is an archfree path and ψ is a strictly convex drawing, Gi with the
boundary Pi satisfies condition (b) of Lemma 9.

It is clear that Gi with Pi also satisfies condition (a) of Lemma 9, since otherwise G with
P would violate (a), contradicting the triconnectivity of G. Hence, each plane graph Gi with
boundary Pi has a convex drawing ψi, and such a drawing ψi can be computed in O(|V (Gi)|+
|E(Gi)|) time by using the algorithm in [6].

Therefore, after computing convex drawings ψi for all Gi and placing them in the corre-
sponding faces in ψ, we obtain a convex drawing ψG of G which is an extension of drawing φ
of fo on P (see Fig. 6(c)).

The above algorithm runs in linear time.

(a) (b)

v1

v5

vp

v7

v6

v3

v2

f p

f 5

f 7
f 1

f 3

f 2

v4
f 4

kernel

(c)

v1

v5

vp

v7

v6

v3

v2

v4

Figure 6: (a) A triconnected plane graph G = (V,E, F ) with a star-shaped boundary P , where
an archfree tree T is denoted by thick black lines; (b) A convex drawing of H = T + fo with
boundary P ; (c) A convex drawing of G with boundary P .

6 Convex Drawing with Crown-Shaped Boundary Constraints

A polygon P is called crown-shaped if it has a side Q of P and a point p∗ outside P such that,
for any point p inside P , the line segment (p, p∗) does not intersect with any other side of P
than Q (i.e., all points in P are visible from a point p∗ if Q is removed from P ). We call such
a side Q and a point p∗ the base side and the pivot of a crown-shaped polygon. Note that any
two points in the boundary of P and p∗ are not collinear.

For example, Fig. 1(c) and Fig. 7(a) show plane graphs whose boundaries are drawn as
crown-shaped polygons. We easily see that if we divide a star-shaped polygon into two or more
polygons by a single straight line, then each of the resulting polygon is either star-shaped or
crown-shaped.
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As shown in Fig. 1(c), there is a triconnected plane graph with a crown-shaped boundary
that cannot be extended to a convex drawing. We show that four-connectivity suffices for a
plane graph with a crown-shaped boundary to admit a convex drawing.

Theorem 12 Every drawing φ of the outer facial cycle fo of a four-connected plane graph
G = (V,E, F ) on a crown-shaped polygon can be extended to a convex drawing ψG of G. Such
a drawing ψG can be computed in linear time.

Let P be the boundary of G which is a crown-shaped polygon, and Q and p∗ the base side
and pivot of P . We denote the vertices in fo and Q as v1, v2, . . . , vq and vg+1, vg+2, . . . , vq, as
in Lemma 3. Let V ∗ be the set of vertices v ∈ V (fo) such that φ(v) is a concave apex of P .
If V ∗ = ∅, i.e., P is convex, then theorem follows from the result by Chiba et al. [6]. We now
assume that V ∗ = {vj1 , vj2 . . . , vjh

} (h ≥ 1).
Consider graph G′ = G − (V (fo) − V (Q)), which is biconnected by Lemma 3(i), and v′g+1

and v′q be the neighbours of vg+1 and vq defined in Lemma 3. Fig. 7(a) shows an example of a
four-connected plane graph G.

j1w

j2w

j3w

v1

vg

g+1vvq

v2

v1

vg

g+1vvq

j1
v j2

v
j3

v

(a) (b)

j1
v j2

v
j3

v

j1w

j2w

j3w

base side

Figure 7: (a) A four-connected plane graph G = (V,E, F ) with a crown-shaped boundary P ,
where the path Q′ from vq to vg of the boundary of G′ and matching M are displayed as thick
lines; (b) A archfree tree T ∗ obtained from tree T with E(T ) = E(Q′) ∪M , where edges in T

are displayed as dashed lines.

By Lemma 3(ii), there is a matchingM = {(vji , wji) | i = 1, 2, . . . , h}∪{(vg+1, v
′
g+1), (vq, v

′
q)},

where each wji belongs to the boundary of G′. Let Q′ be the subpath from vq to vg of the bound-
ary of G′. Note that the edges in E(Q′)∪M form a tree T spanning vertices in V ∗ ∪{vg+1, vq},
where the degree of each wji in T is 3 (see Fig. 7(a)).

By applying Lemma 5 to every base path of T , we construct an archfree tree T ∗ from T ,
which can be done in linear time as analysed in Lemma 7. Note that the degree of each wji in
T ∗ remains 3 (see Fig. 7(b)).

Lemma 13 Let G = (V,E, F ) be a four-connected plane graph, and φ be a drawing of the outer
facial cycle fo on a crown-shaped polygon P . Let vg+1 and vq denote the vertices drawn as the
endvertices of the base side Q of P , and V ∗ �= ∅ be the set of vertices v ∈ V (fo) such that φ(v)
is a concave apex of P . Let T ∗ be an archfree tree such that its leaf set is V ∗ ∪ {vg+1, vq} and
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its edge set can be partitioned into a path between vg+1 and vq and a matching covering V ∗.
Then φ can be extended to a strictly convex drawing ψ of H = T ∗ + fo. Such a drawing ψ can
be obtained in linear time.

Proof: As observed in the proof of Lemma 10, it suffices to show that the lemma holds only
for the case where T ∗ contains no vertex v with dT ∗(v) = 2.

By definition, there is a pivot p∗. Place each internal vertex wji of T ∗ on a point in line
segment (φ(vji), p

∗) and strictly inside P (see Fig. 8(a)). Since all points inside P are visible
from p∗ if we ignore the base side Q, we easily see that the resulting drawing of T ∗ divides the
interior of P into h+ 2 convex regions.

This construction takes linear time.

v2

v1

vg

g+1vvq

p*

j1w

j1
v j2

v
j3

v
j2w

j3w

v2

v1

vg

g+1vvq

j1
v j2

v
jh

v

(a) (b)

T * Gh+1

h+2G

GhG1

G2

Figure 8: (a) A strictly convex drawing ψ of H = T ∗ + fo; (b) Internally triconnected plane
graphs Gi, i = 1, 2, . . . , h+ 2, with convex boundaries.

We are ready to complete the proof of Theorem 12 in a similar manner of the proof of
Theorem 11.

By Lemma 13, we can compute a strictly convex drawing ψ of H = T ∗ + fo as an extension
of drawing φ of fo on P in linear time (see Fig. 8(b)).

Now each facial cycle fi of H is drawn as a strictly convex polygon Pi. Let Gi be the
subgraph of G that consists of vertices and edges in the face fi (including those on the boundary
of fi). Since each side of Pi is an archfree path and ψ is a strictly convex drawing, Gi with the
boundary Pi satisfies condition (b) of Lemma 9.

It is clear that Gi with Pi also satisfies condition (a) of Lemma 9, since otherwise G with P
would violate (a), contradicting the four-connectivity of G. Hence, each plane graph Gi with
boundary Pi has a convex drawing ψi, and such a drawing ψi can be computed in O(|V (Gi)|+
|E(Gi)|) time by using the algorithm in [6].

Therefore, after computing convex drawings ψi for all Gi and placing them in the corre-
sponding faces in ψ, we obtain a convex drawing ψG of G which is an extension of drawing φ
of fo on P .
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The above algorithm runs in linear time.

7 Conclusion

In this paper, we initiate a new problem of convex drawings of planar graphs with non-convex
boundary constraints.

It is proved that every triconnected plane graph with a star-shaped boundary admits an
inner-convex drawing. We present a linear time algorithm for computing such an inner-convex
drawing. Similar results hold for four-connected graphs with crown-shaped polygon.

Recently, we prove that every internally triconnected hierarchical-st plane graph with a
convex boundary satisfying condition (b) in Lemma 9 admits a convex drawing [9].

It is left open to find a characterisation for a plane graph with a star-shaped boundary to
admit an inner-convex drawing.
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