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Abstract: Hierarchical graphs are graphs with layering structures; clustered graphs
are graphs with recursive clustering structures. Both have applications in VLSI de-
sign, CASE tools, software visualisation and visualisation of social networks and bi-
ological networks. Straight-line drawing algorithms for hierarchical graphs and clus-
tered graphs have been presented in [P. Eades, Q. Feng, X. Lin and H. Nagamochi,
Straight-line drawing algorithms for hierarchical graphs and clustered graphs, Algo-
rithmica, 44, pp. 1-32, 2006].

A straight-line drawing is called a convex drawing if every facial cycle is drawn
as a convex polygon. In this paper, it is proved that every internally triconnected
hierarchical plane graph with the outer facial cycle drawn as a convex polygon admits
a convex drawing. We present an algorithm which constructs such a drawing.

We then extend our results to convex representations of clustered planar graphs. It
is proved that every internally triconnected clustered plane graph with completely
connected clustering structure admits a convex drawing. We present an algorithm
to construct a convex drawing of clustered planar graphs.

Keywords: Graph Drawing, Convex Drawing, Hierarchical Graphs, Clustered
Graphs, Straight-line Drawing, Triconnected Planar Graphs.

1 Introduction

Graph drawing has attracted much attention for the last ten years due to its wide range of
applications such as VLSI design, software engineering and bioinformatics. Two or three di-
mensional drawings of graphs with a variety of aesthetics and edge representations have been
extensively studied (see [1]).

One of the most popular drawing conventions is the straight-line drawing, where all the
edges of a graph are drawn as straight-line segments. Every planar graph is known to have a
planar straight-line drawing [10].
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A straight-line drawing is called a convex drawing if every facial cycle is drawn as a convex
polygon. Note that not all planar graphs admit a convex drawing. Tutte [22] gave a necessary
and sufficient condition for a triconnected plane graph to admit a convex drawing. He also
showed that every triconnected plane graph with a given boundary drawn as a convex polygon
admits a convex drawing using the polygonal boundary. That is, when the vertices on the
boundary are placed on a convex polygon, inner vertices can be placed on suitable positions so
that each inner facial cycle forms a convex polygon. More specifically, he proposed a “barycen-
tric mapping” method which computes a convex drawing of a triconnected plane graph with n
vertices by solving a system of O(n) linear equations. This requires O(n3) time and O(n2) space
using the ordinary Gaussian elimination method, however it can be implemented in O(n1.5) time
and O(n logn) space using the sparse Gaussian elimination method [14].

Later, Thomassen [21] gave a necessary and sufficient condition for a biconnected plane
graph to admit a convex drawing. Based on this result, Chiba et al. [5] presented a linear time
algorithm for finding a convex drawing (if any) for a biconnected plane graph with a specified
convex boundary.

In general, the convex drawing problem has been well investigated for the last ten years by
the Graph Drawing community. For example, a problem of convex drawing of graphs with grid
constraints has been well studied [2, 3, 4, 17]. A convex drawing is called a convex grid drawing
if all the vertices are restricted to be placed on grid points. Every triconnected plane graph has a
convex grid drawing on an (n−2)× (n−2) grid, and such a grid drawing can be found in linear
time [4]. A linear time algorithm for finding a convex grid drawing of four-connected plane
graphs with four or more vertices on the outer face was presented in [17]. Another variation of
convex drawing with minimum outer apices was introduced in [15]. For constructing a strictly
convex drawing of graphs, see [20].

Recently, in our companion paper [11], we introduced a new problem of drawing planar
graphs with non-convex boundary constraints. A straight-line drawing is called an inner-convex
drawing if every inner facial cycle is drawn as a convex polygon. It is proved that every
triconnected plane graph admits an inner-convex drawing if its boundary is fixed with a star-
shaped polygon P , i.e., a polygon P whose kernel (the set of all points from which all points in P
are visible) is not empty [11]. Note that this is an extension of the classical result by Tutte [22]
since any convex polygon is a star-shaped polygon. We also presented a linear time algorithm for
computing an inner-convex drawing of a triconnected plane graph with a star-shaped boundary
[11].

In this paper, we present results on convex drawings of hierarchical graphs and clustered
graphs. Hierarchical graphs and clustered graphs are useful graph models with structured
relational information. Hierarchical graphs are graphs with layering structures; clustered graphs
are graphs with recursive clustering structures. Both have applications in VLSI design, CASE
tools, software visualisation and visualisation of social networks and biological networks [7].

Hierarchical graphs (sometimes called level graphs) are directed graphs with vertices as-
signed into layers (or levels). Hierarchical graphs are drawn with vertices of a layer on the
same horizontal line, and edges as curves monotonic in y direction. A hierarchical graph is
hierarchical planar (h-planar) (or level-planar) if it admits a drawing without edge crossings.
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The hierarchical structure in hierarchical graphs imposes constraints on the y-coordinate.
In this paper, it is proved that every internally triconnected hierarchical plane graph with

the outer facial cycle drawn as a convex polygon admits a convex drawing. We present an
algorithm which constructs such a drawing. Note that this extends the previous known result
that every hierarchical planar graph admits a straight-line drawing [7].

A clustered graph C = (G,T ) consists of an undirected graph (called the underlying graph)
G = (V,E) and a rooted tree (called the inclusion tree of C) T = (V,A), such that the leaves
of T are exactly the vertices of G [7]. Each node ν of T represents a cluster V (ν), a subset of
the vertices of G that are leaves of the subtree rooted at ν. A clustered graph C = (G,T ) is
a connected clustered graph if each cluster V (ν) induces a connected subgraph G(ν) of G [7].
A clustered graph C = (G,T ) is completely connected if, for every non-root node ν of T , both
subgraphs G(ν) and G[V − V (ν)] are connected [6].

In a drawing of a clustered graph C = (G,T ), graph G is drawn as points and curves as
usual. For each node ν of T , the cluster is drawn as a simple closed region R(ν) enclosed by
a simple closed curve such that the drawing of G(ν) is completely contained in the interior of
R(ν), the regions for all sub-clusters of ν are completely contained in the interior of R(ν), and
the regions for all other clusters are completely contained in the exterior of R(ν). A clustered
graph is compound planar (c-planar) if it admits a c-planar drawing without edge crossings or
edge-region crossings (i.e. the drawing of e crosses the boundary of region R more than once).

In this paper, it is proved that every connected clustered plane graph with internally tri-
connected underlying graph and completely connected clustering structure admits a convex
drawing. We present an algorithm to construct a convex drawing of clustered planar graphs.
Note that this extends the previous known results on straight-line drawings of connected clus-
tered planar graphs [7].

This paper is organized as follows: Section 2 reviews basic terminology. In Section 3 we
introduce the concept of archfree paths and archfree trees, which play an important role in our
convex drawing algorithm. Section 4 reviews the necessary and sufficient conditions for a convex
drawing of a biconnected plane graph. Section 5 proves our main theorem on convex drawings
of hierarchical planar graphs and presents an algorithm for constructing such a drawing. In
Section 6, we prove our second theorem on convex drawings of clustered planar graphs and
present an algorithm for constructing such a drawing. Section 7 concludes.

2 Preliminaries

Throughout the paper, a graph stands for a simple undirected graph unless stated otherwise.
Let G = (V,E) be a graph. The set of edges incident to a vertex v ∈ V is denoted by E(v). The
degree of a vertex v in G is denoted by dG(v) (i.e., dG(v) = |E(v)|). For a subset X ⊆ V , G[X]
denotes the subgraph induced by X (i.e., graph (V,E − ∪v∈V −XE(v))), and G − X denotes
subgraph G[V − X]. For a subset E′ ⊆ E, G − E′ denotes the graph obtained from G by
removing the edges in E′.

A vertex in a connected graph is called a cut vertex if its removal from G results in a
disconnected graph. A connected graph is called biconnected if it is simple and has no cut
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vertex. Similarly, a pair of vertices in a connected graph is called a cut pair (or separation pair)
if its removal from G results in a disconnected graph. A connected graph is called triconnected
if it is simple and has no cut pair. We say that a cut pair {u, v} separates two vertices s and t
if s and t belong to different components in G− {u, v}.

A graph G = (V,E) is called planar if its vertices and edges are drawn as points and curves
in the plane so that no two curves intersect except at their endpoints, where no two vertices
are drawn at the same point. In such a drawing, the plane is divided into several connected
regions, each of which is called a face. A face is characterized by the cycle of G that surrounds
the region. Such a cycle is called a facial cycle. A set F of facial cycles in a drawing is called
an embedding of a planar graph G. A plane graph G = (V,E, F ) is a planar graph G = (V,E)
with a fixed embedding F of G, where we always denote the outer facial cycle in F by fo ∈ F .

A vertex (respectively, an edge) in fo is called an outer vertex (respectively, an outer edge),
while a vertex (respectively, an edge) not in fo is called an inner vertex (respectively, an inner
edge). A pathQ between two vertices s and t inG is called inner if every vertex in V (Q)−{s, t} is
an inner vertex. The region enclosed by a facial cycle f ∈ F may be denoted by f for simplicity.
The set of vertices, set of edges and set of facial cycles of a plane graph G may be denoted by
V (G), E(G) and F (G), respectively.

A biconnected plane graph G is called internally triconnected if, for any cut pair {u, v}, u
and v are outer vertices and each component in G−{u, v} contains an outer vertex. Note that
every inner vertex in an internally triconnected plane graph must be of degree at least 3.

For a cut pair {u, v} of an internally triconnected plane graph G = (V,E, F ), if u and v are
not adjacent and there is an inner facial cycle f ∈ F such that {u, v} ∈ V (f), we say that f
separates two vertices s and t if the cut pair {u, v} separates them.

3 Archfree Paths and Archfree Trees

In this section, we review definitions of archfree paths and archfree trees, which were used to
construct inner convex drawings of triconnected plane graphs [11].

We say that a facial cycle f arches a path Q in a plane graph if there are two distinct
vertices a, b ∈ V (Q) ∩ V (f) such that the subpath Qa,b of Q between a and b is not a subpath
of f . A path Q is called archfree if no inner facial cycle f arches Q.

We easily observe the next property.

Lemma 1 For an internally triconnected plane graph, a subpath of any inner facial cycle is an
archfree path.

Let Q be an inner path that is contained in an inner path Q′ between two outer vertices
s′ and t′ in a plane graph G = (V,E, F ), and let s and t be the end vertices of Q, where Q
and Q′ are viewed as directed paths from s′ to t′, as shown in Fig. 1. The outer facial cycle fo

consists of a subpath f ′o from s′ to t′ and a subpath f ′′o from t′ to s′ when we walk along fo in
a clockwise direction.

We say that an inner facial cycle f ∈ F is on the left side if f is surrounded by f ′o and Q′,
and that f arches Q on the left side if f is on the left side of Q. For example, facial cycles f, f1
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and f2 in Fig. 1 arch path Q on the left side, where Q is displayed as thick lines. The case of
the right side is defined symmetrically.

Now we modify Q into a path L(Q) from s to t such that no inner facial cycle arches L(Q)
on the left side.

Let FQ be the set of all inner facial cycles f ∈ F that arch Q on the left side, but are not
contained in the region enclosed by Q and any other f ′ ∈ F . For example, facial cycle f1 in
Fig. 1 is enclosed by Q and f , and thereby f1 �∈ FQ.

The left-aligned path L(Q) of Q is defined as an inner path from s to t obtained by replacing
subpaths of Q with subpaths of cycles in FQ as follows. For each f ∈ FQ, let af and bf be
the first and last vertices in V (f) ∩ V (Q) when we walk along path Q from s to t, and fQ be
the subpath from af to bf obtained by traversing f in an anticlockwise direction. Let L(Q) be
the path obtained by replacing the subpath from af to bf along Q with fQ for all f ∈ FQ (see
Fig. 1 for an example of L(Q)).

It is not difficult to observe the next lemma.

Lemma 2 Given an inner path Q, the left-aligned path L(Q) of Q can be constructed in
O(|EQ| + |L(Q)|) time, where EQ is the set of all edges incident to a vertex in Q.

The right-aligned path R(Q) of Q is defined symmetrically to the left-aligned path.

f1 f2
t

s

f

G

fa fb

fo

s `

t `

Q

Figure 1: Construction of the left-aligned path L(Q) from an inner path Q between s and t,
where thick lines show Q and the path following the arrows show L(Q).

The following results have been previously shown [11].

Lemma 3 [11] Let G = (V,E, F ) be an internally triconnected plane graph, and Q be an inner
path from a vertex s to a vertex t. Then the left-aligned path L(Q) is an inner path from s to t,
and no inner facial cycle arches L(Q) on the left side. Moreover, if no inner facial cycle arches
Q on the right side, then L(Q) is an archfree path.

Corollary 4 [11] For any inner path Q from s to t in an internally triconnected plane graph
G, the right-aligned path R(L(Q)) of the left-aligned path L(Q) is an archfree path.

A path in a tree T is called a base path if it is a maximal induced path in T , i.e., end vertices
v and internal vertices u (if any) in the path satisfy dT (v) �= 2 and dT (u) = 2, respectively. A
tree T in a plane graph G is called archfree if every base path is an archfree path in G.
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4 Convex Drawings of Planar Graphs

In this section, we review the previous results on convex drawings of planar graphs.
For three points a1, a2, and a3 in the plane, the line segment whose end points are ai and aj

is denoted by (ai, aj), and the angle (a1, a2, a3) formed by line segments (a1, a2) and (a2, a3) is
defined by the central angle of a circle with center a2 when we traverse the circumference from
a1 to a3 in the clockwise order (note that (a1, a2, a3) + (a3, a2, a1) = π).

A polygon P is given by a sequence a1, a2, . . . , ap (p ≥ 3) of points, called apices, and edges
(ai, ai+1), i = 1, 2, . . . , p (where ap+1 = a1) so that no two line segments (ai, ai+1) and (aj , aj+1),
i �= j, intersect each other except at apices. Let A(P ) denote such a sequence of apices of a
polygon P , where A(P ) may be used to denote the set of the apices in A(P ).

The inner angle θ(ai) of an apex ai is the angle (ai+1, ai, ai−1) formed by two line segments
(ai, ai+1), (ai−1, ai), and an apex ai is called convex (respectively, concave and flat) if θ(ai) < π

(respectively, θ(ai) > π and θ(ai) = π). A polygon P has no apex a with θ(a) = 0 since no two
adjacent edges on the boundary intersect each other. A polygon P is called convex if it has no
concave apex.

A k-gon is a polygon with exactly k apices, some of which may be flat or concave. A side
of a polygon is a maximal line segment in its boundary, i.e., a sequence of edges (ai, ai+1),
(ai+1, ai+2), . . ., (ai+h−1, ai+h) such that ai and ai+h are non-flat apices and the other apices
between them are flat. A k-gon has at most k sides.

A straight-line drawing of a graph G = (V,E) in the plane is an embedding of G in the two
dimensional space �2 so that each vertex v ∈ V is drawn as a point ψ(v) ∈ �2 and each edge
(u, v) ∈ E is drawn as a straight-line segment (ψ(u), ψ(v)), where � is the set of real numbers.
Hence, a straight-line drawing of a graph G = (V,E) is defined by a function ψ : V → �2.

A straight-line drawing ψ of a plane graph G = (V,E, F ) is called an inner-convex drawing
(or simply a convex drawing) if every inner facial cycle is drawn as a convex polygon.

A convex drawing ψ of a plane graph G = (V,E, F ) is called a strictly convex drawing if it
has no flat apex ψ(v) for any vertex v ∈ V with dG(v) ≥ 3. We say that a drawing ψ of a graph
G is extended from a drawing ψ′ of a subgraph G′ of G if ψ(v) = ψ′(v) for all v ∈ V (G′).

Let G = (V,E, F ) be a plane graph with an outer facial cycle fo, and P be a |V (fo)|-gon.
A drawing φ of fo on P is a bijection φ : V (fo) → A(P ) so that the vertices in V (fo) appear
along fo in the same order as the corresponding apices in sequence A(P ).

Lemma 5 [5, 21] Let G = (V,E, F ) be a biconnected plane graph. Then a drawing φ of fo

on a convex polygon P can be extended to a convex drawing of G if, and only if, the following
conditions (i)-(iii) hold:

(i) For each inner vertex v with dG(v) ≥ 3, there exist three paths disjoint except v, each
connecting v and an outer vertex;

(ii) Every cycle of G which has no outer edge has at least three vertices v with dG(v) ≥ 3; and

(iii) Let Q1, Q2, . . . , Qk be the subpaths of fo, each corresponding to a side of P . The graph
G− V (fo) has no component H such that all the outer vertices adjacent to vertices in H
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are contained in a single path Qi, and there is no inner edge (u, v) whose end vertices are
contained in a single path Qi.

Every inner vertex of degree 2 must be drawn as a point subdividing a line segment in any
convex drawing. Hence we can assume without loss of generality that a given a plane has no
inner vertex of degree 2, since any convex drawing of the plane graph obtained by replacing each
maximal path containing inner vertices v with degG(v) = 2 with a single edge gives a convex
drawing of G by subdividing the replaced edges.

Then Lemma 5 can be restated as follows:

Lemma 6 [11] Let G = (V,E, F ) be a biconnected plane graph with no inner vertices of degree
2. Then a drawing φ of fo on a convex polygon P can be extended to a convex drawing of G if,
and only if, the following conditions (a) and (b) hold:

(a) G is internally triconnected.

(b) Let Q1, Q2, . . . , Qk be the subpaths of fo, each corresponding to a side of P . Each Qi is
an archfree path in G.

5 Convex Drawings of Hierarchical Planar Graphs

In this section, we now present the main result of this paper. More specifically, we prove
that every internally triconnected hierarchical plane graph with the outer face fixed with a
convex polygon admits a convex drawing. First, however, we review basic terminology related
to hierarchical planar graphs.

An edge with a tail u and a head v is denoted by (u, v). A hierarchical graph H = (V,A, λ, k)
consists of a directed graph (V,A), a positive integer k, and, for each vertex u, an integer
λ(u) ∈ 1, 2, . . . , k, with the property that if (u, v) ∈ A, then λ(u) < λ(v). For 1 ≤ i ≤ k, the
ith layer Li of G is the set {u | λ(u) = i}. The span of an edge (u, v) is λ(v) − λ(u). An edge
of span greater than one is long, and a hierarchical graph with no long edges is proper.

For each vertex v in H, denote {u ∈ V | (v, u) ∈ A} by V +
H (v) and {u ∈ V | (u, v) ∈ A} by

V −
H (v). A vertex v is called a source (respectively sink) if V −

H (v) = ∅ (respectively V +
H (v) = ∅).

For a non-sink vertex v, a vertex w ∈ V +
H (v) is called an up-neighbor of v (see Fig. 2). Further,

w is called the highest up-neighbor if λ(w) = max{λ(u) | u ∈ V +
H (v)}. Similarly, for a non-

source vertex v, a vertex w ∈ V −
H (v) is called a down-neighbor of v, and w is called the lowest

down-neighbor if λ(w) = min{λ(u) | u ∈ V −
H (v)}.

A hierarchical graph is conventionally drawn with layer Li on the horizontal line y = i,
and edges as curves monotonic in y direction. If no pair of non-incident edges intersect in the
drawing, then we say it is a hierarchical planar (h-planar) drawing. Note that a nonproper hier-
archical graph can be transformed into a proper hierarchical graph by adding dummy vertices
on long edges. It is easily shown that a nonproper hierarchical graph is h-planar if, and only if,
the corresponding proper hierarchical graph is h-planar.

A hierarchical planar embedding of a proper hierarchical graph is defined by the ordering
of vertices on each layer of the graph. Note that every such embedding has a unique external
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l   (v)-
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r   (v)-
H

l   (v)+
H

V   (v)
+
H

V   (v)
-
H

the right down-neighbor

the left down-neighbor

the right up-neighbor

the left up-neighbor

Figure 2: Definition of left-right relations in V −
H (v) and V +

H (v).

face. Also note that every proper h-planar graph admits a straight-line hierarchical drawing;
that is, a drawing where edges are drawn as straight-line segments. However, for nonproper
hierarchical graphs, the problem is not trivial, since no bends are allowed on long edges.

We call a plane embedded hierarchical graph a hierarchical plane graph. If a hierarchical
plane graph has only one source s and one sink t, then we call it a hierarchical-st plane graph.
Observe that a hierarchical-st plane graph is a connected graph, and its source s and sink t

must lie on the bottom layer and the top layer, respectively. Figure 3(a) shows a hierarchical-st
plane graph H.

The embedding of a hierarchical plane graph H determines, for every vertex v, a left-right
relation among up-neighbors of v (see Fig. 2). The head w of the rightmost (respectively
leftmost) edge outgoing from v is called the right up-neighbor (respectively the left up-neighbor)
of v, and is denoted by r+H(v) (respectively �+H(v)). The right down-neighbor r−H(v) and the left
down-neighbor �−H(v) of v are defined analogously.

Hierarchical graphs are directed graphs and thus we can borrow much of the standard
terminology of graph theory. The terms “path”, “cycle”, and “biconnectivity”, when applied
to a directed graph in this paper, refer to the underlying undirected graph.

To denote a cycle of a plane graph, we use the sequence of vertices on the cycle in clockwise
direction. For a cycle or path P = (v1, v2, . . . , vk), an edge between two nonconsecutive vertices
in P is called a chord of P. A cycle or path is called chordless if it has no chord. In hierarchical
graphs, edges are directed from a lower layer to a higher layer. A path is called monotonic if
the directions of the edges do not change along the path. In other words, a path is monotonic
if the layer increases (or decreases) as we go along the path.

Note that from a vertex v, a monotonic and chordless path from v to a sink can be obtained
by traversing the highest up-neighbors one after another. Similarly, a monotonic and chordless
path from a source to v can be found by tracing the lowest down-neighbors from v.
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For straight-line drawings of hierarchical-st plane graphs, the next result is shown.

Theorem 7 [7] Let H be a triangulated hierarchical-st plane graph, and its outer facial cycle
fo be drawn as a convex polygon P such that, for each chord (u, z) of fo, on each of the two
paths of cycle C between u and z, there exists a vertex v which is drawn as a convex apex of
polygon P . Then there exists a planar straight-line hierarchical drawing of H with external face
P , and such a drawing can be constructed in linear time.

The theorem implies that every hierarchical-st plane graph H admits a straight-line hierar-
chical planar drawing, because we can easily augment a given biconnected hierarchical-st plane
graph into a triangulated hierarchical-st plane graph H ′ by triangulating each non-triangle in-
ner face. However, the drawing of H obtained by deleting added edges from the drawing of H ′

may not be a convex drawing.
In this paper, we prove the following result.

Theorem 8 For every hierarchical-st plane graph H which is internally triconnected, any con-
vex polygon P for the outer facial cycle fo can be extended to a convex drawing of H. Such a
drawing can be computed in O(n2) time.

We first observe a key lemma to derive the theorem.

Lemma 9 Let H be a hierarchical-st plane graph that satisfies conditions (a) and (b) in Lemma 6.
For any monotonic inner path Q from a vertex u to a vertex v, R(L(Q)) is a monotonic archfree
path.

Proof: By Corollary 4, R(L(Q)) is an archfree path. It suffices to show that operation L

of constructing path L(Q) from a monotonic inner path Q preserves the monotonicity of Q
(operation R can be treated symmetrically). For this, we consider an inner facial cycle f on
the left side of Q, where af and bf are the first and last vertices in V (f)∩ V (Q) when we walk
along path Q from s to t (see Fig. 1), and prove that the subpath Pf from af to bf obtained
by traversing f in an anticlockwise direction is monotonic.

If Pf is not monotonic, then there are three vertices u1, u2 and u3 which appear in this
order on Pf and whose y-coordinates y(u1), y(u2) and y(u3) satisfy y(u1) > y(u2) < y(u3).
This, however, implies that u2 is another source, since H is a hierarchical-st plane graph, which
contradicts the situation where H has no other source than s. This proves the lemma.

We prove Theorem 8 by induction on the number of inner faces. It suffices to show the
case where there is no inner vertex of degree 2. The theorem holds if H has only one inner
face. Consider an internally triconnected hierarchical-st plane graph H, and assume that the
theorem holds for any triconnected hierarchical-st plane graph which has a smaller number of
inner faces than H. We distinguish two cases:

Case 1: There is an outer vertex v (�= s, t) of degree 2. Let v′ and v′′ be the up- and
down-neighbours of v. If v is a flat apex in P , then we see that H with P has a convex drawing
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Figure 3: (a) A hierarchical-st plane graph H with a convex polygon P , where three monotonic
paths with thick lines are archfree paths. (b) Three hierarchical-st plane graphs obtained by
the archfree paths. (c) A convex drawing of H in (a).

D since replacing two edges (v′′, v) and (v, v′) with a new edge (v′′, v′) deleting vertex v results
in a hierarchical-st plane graph H ′ with a new convex boundary P ′, which admits a convex
drawing D′ by the induction hypothesis (D can be obtained from D′ by regaining point v on
P ′).

We now assume that v is a convex apex in P . We construct a hierarchical-st plane graph
H ′ from H by removing v and adding a new edge (v′′, v′) if v′′ �∈ V −

H (v′). Let P ′ be the polygon
obtained by replacing the segments (v′′, v) and (v, v′) in P with a new segment (v′′, v′), which
will form a new side of P ′. We claim that H ′ with boundary P ′ satisfies conditions (a) and (b)
in Lemma 6.

Consider the graph H ′′ obtained from H by adding a new edge (v′′, v′) if v′′ �∈ V −
H (v′)

(H ′′ = H if v′′ ∈ V −
H (v′)). We easily see that H ′′ with P still satisfies conditions in (a) and

(b) in Lemma 6, and that H ′′ − v remains to be internally triconnected due to the existence of
edge (v′′, v′). We show that path Q = (v′′, v′), which corresponds to the new side of P ′, is an
archfree path in H ′.

Assume that Q is not an archfree path, i.e., there is a facial cycle f that arches Q. Thus,
f contains two vertices v′′ and v′, but not edge (v′′, v′). This, however, means that removal
of v′′ and v′ from H results in at least three components, which contradicts to the internal
triconnectivity of H. Hence, this proves the claim.

By the induction hypothesis, H ′ with P ′ admits a convex drawing D′. It is not difficult to
see that D′ can be modified into a convex drawing of H with P by adding segments (v′′, v) and
(v, v′) and deleting segment (v′′, v′) if v′′ �∈ V −

H (v′).

Case 2: Every outer vertex v(�= s, t) is of at least 3 degrees. There must be an outer vertex
v (�= s, t) which is a convex apex in P ; without loss of generality, v is on the rightmost path
from s to t.

We consider the leftmost monotonic path Qv from v (i.e., a path obtained by traversing the
left up-neighbors), and let w be the first vertex in Qv that has at least one down-neighbor, and
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Figure 4: (a) A monotonic archfree path between two outer vertices v and w. (b) Constructing
three monotonic archfree paths starting from v, w and u, respectively.

Q1 be the subpath from v to w along Qv. For example, see vertices v and w in Fig. 3(a) and
(b). Hence, Q1 is a subpath of an inner facial cycle fv which contains v, and is an archfree path
by Lemma 1.

Here we consider the two subcases: (i) w is an outer vertex (see Fig. 4(a)) and (ii) w is an
inner vertex (see Fig. 4(b)).

Case 2(i): The outer facial cycle fo together with path Q1 splits the interior of P into
two regions, say R1 and R2. We split H into two hierarchical-st plane graphs H1 and H2 such
that H1 and H2 share Q1, and each Hi, i = 1, 2, contains all faces in Ri. We draw Q1 as a
straight line between two points v and w, by which the x-coordinates of all points on Qi are
uniquely determined. Let P1 and P2 be the two convex polygons for the boundaries of H1 and
H2, respectively. By choosing the vertex with the (respectively, lowest) highest position on Pi

as s (respectively, t) of graph Hi, we can regard Hi as a hierarchical-st plane graph.
We claim that each Hi with boundary Pi still satisfies the two conditions in Lemma 6. Since

Q1 is an archfree path and any side of P is an archfree path, Hi with Pi satisfies condition (b)
in Lemma 5. It can be immediately seen that condition (a) in Lemma 6 still holds for each Hi

with Pi, since it is a subgraph of H which contains all vertices and edges enclosed by a cycle.
This proves the claim.

Therefore each Hi admits a convex drawing Di by the induction hypothesis, implying that
a convex drawing of H with P can be obtained by placing D1 and D2 in the corresponding
region inside P .

Case 2(ii): We choose a monotonic path Qz that starts from w and ends up with an outer
vertex z. We also choose a monotonic path Qu to w, from an outer vertex u. By Lemma 9, H
has monotonic archfree paths Q2 from w to z and Q3 from u to w. By placing w at a point in
the interior of P , we draw each path Qi, i = 1, 2, 3 as a straight line between its end points, by
which the x-coordinates of all points on Qi are uniquely determined (see Fig. 3(b)). Note that
v, z and w are not on a single straight line since v is a convex apex in P . Therefore, w can be
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placed at a point such that the polygons obtained from P by the straight lines are all convex.
By choosing the vertex with the (respectively, lowest) highest position on Pi as s (respectively,
t) of graph Hi, we can regard Hi as a hierarchical-st plane graph.

Since each Qi is an archfree path and each of the resulting subgraphs Hi is internally
triconnected, we see that Hi with Pi satisfies the condition in Lemma 6. We then have a convex
drawing Di of Hi with Pi by the inductive hypothesis. We see that a convex drawing of G
with P can be obtained by combining D1, D2 and D3 in the corresponding region inside P (see
Fig. 3(c)).

This completes an induction, proving the existence of a desired convex drawing of H in
Theorem 8.

It is not difficult to see that an O(n2) time algorithm for drawing a convex drawing of H
can be obtained from the above proof.

6 Convex Drawings of Clustered Plane Graphs

In this section, we present our main results on convex drawings of clustered planar graphs.
First, we define terminology related to clustered planar graphs.

A clustered graph C = (G,T ) consists of an undirected graph G = (V,E) and a rooted tree
T = (V,A), such that the leaves of T are exactly the vertices of G. We call G the underlying
graph and T the inclusion tree of C. To distinguish vertices in T from those in G, vertices in T
are called nodes. Each node ν of T represents a cluster V (ν), a subset of the vertices of G that
are leaves of the subtree rooted at ν. Then for the root ν of T , V (ν) = V . A node ν in T (or
its cluster V (ν)) is called nontrivial if ν is neither the root or a leaf of T . Let G(ν) denote the
subgraph G[V (ν)] of G induced by V (ν). Note that the tree T represents a laminar family of
subsets of the vertices in G. If a node ν ′ is a descendant of a node ν in the tree T , then we say
that the cluster of ν ′ is a sub-cluster of ν.

A clustered graph C = (G,T ) is a connected clustered graph if each cluster V (ν) induces a
connected subgraph G(ν) of G. A clustered graph C = (G,T ) is completely connected if, for
every non-root node ν of T , both subgraphs G(ν) and G[V − V (ν)] are connected [6]. Note
that G is biconnected if C = (G,T ) is completely connected, since G[V − {v}] is connected for
every leaf cluster {v} in T .

For example, among clustered graphs C1 and C2 in Fig. 5 and C3 in Fig. 6(a), C2 and C3

are connected clustered graphs, and only C3 is completely connected.
In a drawing of a clustered graph C = (G,T ), graph G is drawn as points and curves as

usual. For each node ν of T , the cluster is drawn as a simple closed region R(ν) enclosed by a
simple closed curve such that:

• the drawing of G(ν) is completely contained in the interior of R(ν);

• the regions for all sub-clusters of ν are completely contained in the interior of R(ν);

• the regions for all other clusters are completely contained in the exterior of R(ν).

12



(a) C (b)  C

f

ν
ν

f

21

Figure 5: (a) A c-planar clustered graph C1, which is not a connected clustered graph. (b)
A c-planar and connected clustered graph C2, which is not completely connected, where only
nontrivial clusters are enclosed by grey curves in (a) and (b).

We say that the drawing of edge e and region R have an edge-region crossing if the drawing
of e crosses the boundary of R more than once. A drawing of a clustered graph is compound
planar (c-planar, for short) if there are no edge crossings or edge-region crossings. If a clustered
graph C has a c-planar drawing, then we say that it is c-planar. Figure 5(a) and (b) show
examples of c-planar drawings of clustered graphs.

The characterization of c-planar clustered graphs is known only for connected clustered
graphs.

Theorem 10 [8] A connected clustered graph C = (G,T ) is c-planar if and only if graph G is
planar and there exists a planar drawing of G, such that for each node ν of T , all the vertices
and edges of G[V − V (ν)] are in the external face of the drawing of G(ν).

It is shown that a completely connected clustered graph C = (G,T ) is c-planar if and only
if the underlying graph G is planar [6, 13].

A c-planar drawing of a clustered graph is called a planar straight-line convex cluster drawing
if edges are drawn as straight-line segments and clusters are drawn as convex polygons. The
drawings in Fig. 5(a) and (b) are planar straight-line convex cluster drawing.

Theorem 11 [7] Let C = (G,T ) be a c-planar clustered graph with n vertices. A planar
straight-line convex cluster drawing of C in which each cluster is a convex hull of points in the
cluster can be constructed in O(n2) time.

In this paper, we define a fully convex drawing as a planar straight-line convex cluster
drawing such that facial cycles are also drawn as convex polygons. Among the four c-planar
drawings in Fig. 5 and Fig. 6, only the drawing in Fig. 6(b) is fully convex. In what follows, we
only consider c-planar and connected clustered graphs, and present a characterization of these
clustered graphs that have fully convex drawings.

13



(a) C (b) H

s=1

74

6
5

3

2

t=8 7

6

t=8

s=1

4

5

3
2

3

Figure 6: (a) A c-planar and completely connected clustered graph C3 together with a c-st
numbering of vertices, where non-leaf and non-root clusters are enclosed by grey curves. (b) A
convex drawing of the hierarchical-st plane graph H obtained by the c-st numbering in (a).

We define a region-face crossing as follows. In a c-planar drawing of a clustered graph
C = (G,T ), the region R of a cluster and a cycle f of G cross each other if the boundary of
R cross the drawing of more than two edges in f (i.e., removing vertices in R from the facial
cycle f leaves more than one subpath).

We now prove the following main result.

Theorem 12 Let C = (G,T ) be a c-planar and connected clustered graph that has a c-planar
drawing ψ such that the outer facial cycle does not cross any cluster region, and G be internally
triconnected. Then

(i) There exists a fully convex drawing of C if and only if C is completely connected.

(ii) A fully convex drawing of C (if any) can be constructed from drawing ψ in O(n2) time,
where each cluster is a convex hull of points in the cluster and n is the number of vertices
in G.

Necessity of Theorem 12(i): We prove the necessity in Theorem 12(i) via several lemmas.

Lemma 13 If a c-planar and connected clustered graph C admits a planar straight-line convex
cluster drawing such that the drawing of G is inner-convex, then there is no region-face crossing
between regions for clusters and inner facial cycles.

Proof: We see that if there is a region-face crossing between the region R(ν) of a cluster ν and
an inner facial cycle f in G, then it is impossible to draw both R(ν) and f as convex polygons
in one drawing (note that G(ν) is connected). Therefore, if C admits a fully convex drawing,
then there is no region-face crossing between regions for clusters and inner facial cycles.
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Lemma 14 Suppose that a connected clustered graph C = (G,T ) has a c-planar drawing which
has no region-face crossing between regions for clusters and inner facial cycles. Then for every
non-root node ν of T , every component of the subgraph G[V − V (ν)] contains an outer vertex.

Proof: Let ψ be such a c-planar drawing of C. In ψ, G is a plane graph (V,E, F ), and
we denote the outer facial cycle of G by fo. Let ν be a non-root node of T . To derive a
contradiction, assume that G[V − V (ν)] has a component GA that contains no vertex in fo. In
ψ, GA is a plane graph, and we denote its boundary by BA and the set of inner faces of GA by
FA. Since R(ν) is a simple closed region, GA is not completely surrounded by R(ν).

Consider a facial cycle f ∈ F−FA that shares a vertex with BA. Since GA is an inclusionwise
maximal component in G[V − V (ν)], a vertex in f is contained in R(ν). By assumption, there
is no region-face crossing in ψ, and hence f consists of two subpaths f ′ and f ′′, one is the
intersection with B1 and the other with R(ν).

We now consider all such facial cycle f1, f2, . . . , fp ∈ F − FA that share vertices with BA.
Then we see that the subpaths f ′′1 , f ′′2 , . . . , f ′′p of them form a closed curve, which implies that
GA is enclosed by R(ν), a contradiction. This proves the lemma.

Lemma 15 Suppose that a connected clustered graph C = (G,T ) has a c-planar drawing which
has no region-face crossing. Then C is completely connected.

Proof: Let ψ be such a c-planar drawing of C. In ψ, G is a plane graph (V,E, F ), and we
denote the outer facial cycle of G by fo. Since C is a connected clustered graph, it suffices to
show that, for every non-root node ν of T , subgraph G[V − V (ν)] is connected.

Let ν be a non-root node of T . To derive a contradiction, assume that G[V − V (ν)] is not
connected, and GA and GB be two components in G[V − V (ν)]. By Lemma 14, both GA and
GB contain outer vertices in fo. This, however, contradicts that region R(ν) and fo has no
region-face crossing.

We are ready to prove the necessity in Theorem 12(i).
Let ψ be a fully convex drawing of C. Clearly ψ is a convex drawing on G, and G must

be internally triconnected by Lemma 6(i). We show that C is completely connected. By
Lemma 13, there is no region-face crossing between regions for clusters and inner facial cycles.
By assumption on C, there is no region-face crossing between regions for clusters and the outer
facial cycle, either. By Lemma 15, C is completely connected. This proves the necessity in
Theorem 12(i).

Sufficiency of Theorem 12(i):
To prove the sufficiency of Theorem 12(i), we follow an approach due to Eades et al. [7]

which was used to derive Theorem 11. They used the c-st numbering of vertices in G, which
is an extension of st numberings. Suppose that (s, t) is an edge of a biconnected graph G with
n vertices. In an st numbering, the vertices of G are numbered from 1 to n so that vertex s
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receives number 1, vertex t receives number n, and any vertex except s and t is adjacent both
to a lower-numbered vertex and a higher-numbered vertex.

A c-st numbering for a clustered graph C = (G,T ) is an st numbering of the vertices in
G such that the vertices that belong to the same cluster are numbered consecutively. This
numbering gives us a layer assignment of the vertices of G. Hence, a c-planar clustered graph
C is transformed to a hierarchical-st plane graph H, and each cluster has consecutive layers.

Based on this property, Eades et al. [7] proved that a planar straight-line convex cluster
drawing can be constructed from the straight-line hierarchical drawing. In this method, a
given underlying graph is augmented to a triangulated graph to ensure the existence of c-st
numberings in the clustered graph, and then all added edges are removed from a drawing of the
triangulated graph to obtain a desired straight-line drawing of C.

However, the resulting drawing may not be convex. Since we aim to construct a convex
drawing of G, we cannot use triangulation to find c-st numberings. Fortunately, complete
connectedness ensures the existence of c-st numberings instead.

Lemma 16 Suppose that C = (G,T ) is a c-planar and completely connected clustered graph.
Then C has a c-st numbering such that s and t can be chosen as adjacent vertices in the outer
facial cycle, and such a c-st numbering can be computed in linear time.

Proof: We give only a sketch. It is known [7] that the lemma holds if, in addition, G is
triangulated, i.e., all facial cycles are triangles (note that every connected clustered graph C is
completely connected if its underlying graph is triangulated). The correctness of the proof in
[7] relies on only complete connectedness of C = (G,T ), not on triangulation.

Hence the argument can be carried over to the case of completely connected clustered graphs,
and the lemma holds.

We are ready to prove the sufficiency in Theorem 12(i) and Theorem 12(ii).
Let C = (G,T ) be a c-planar and completely connected clustered graph, and ψ be a c-planar

drawing such that the outer facial cycle fo does not cross any cluster region.
First, we compute a c-st numbering of C = (G,T ) such that s and t are chosen as adjacent

vertices in the outer facial cycle fo. This can be done in linear time. For example, Figure 6(a)
illustrates a c-planar and completely connected clustered graph C3 and its c-st numbering.

Next, we regard the plane graph G as a hierarchical-st plane graph by assigning the layer
of each vertex with its c-st number. Figure 6(b) illustrates the hierarchical-st plane graph H

obtained from clustered graph C3 by its c-st numbering.
Then, we compute a convex drawing ψ∗ of H. Such a drawing ψ∗ can be obtained in O(n2)

time by Theorem 8.
Finally, for each cluster V (ν), we let the convex hull of the vertices in V (ν) in ψ∗ be the

region R(ν) of the cluster. A convex hull of a given simple polygon with m apices can be
constructed in O(m) time [19]. Then the total time of computing all convex hulls in C = (G,T )
is O(n2).

Overall, the entire running time of the above algorithm is O(n2).
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To prove the sufficiency in Theorem 12(i) and Theorem 12(ii), we only need to prove that
the resulting drawing (ψ∗, {R(ν) | ν ∈ V}) is a fully convex drawing.

By Theorem 8, ψ∗ is a convex drawing. We show that (ψ∗, {R(ν) | ν ∈ V}) is c-planar.
Since R(ν) is a convex hull of the vertices in V (ν) in ψ∗ and edges are drawn as line-

segments, it contains the drawing of G(ν) (and hence the regions of all sub-clusters of ν). The
c-st numbers within a cluster are consecutive, thus if the convex hulls of two clusters overlap in
y-coordinate, then one is a sub-cluster of the other. This keeps the disjoint clusters apart; For
two clusters ν and ν ′ with V (ν) ∩ V (ν ′) = ∅, the convex hulls of ν and ν ′ are disjoint.

We finally see that there are no edge crossings and no edge-region crossings. Since ψ∗ is a
plane drawing of G, it has no edge crossings. Assume that the drawing of an edge e intersects
region R(ν) of a cluster ν twice (i.e., the endvertices of e are outside R(ν)). This, however,
contradicts that ψ∗ is a plane drawing of G, since G(ν) is connected and the line-segment for e
must create an edge crossing with some edge in G(ν). Therefore, (ψ∗, {R(ν) | ν ∈ V}) is a fully
convex drawing of C.

This completes the proof of Theorem 12.

From the argument for establishing Theorem 12, we easily derive the following corollary.

Corollary 17 Let C = (G,T ) be a c-planar and connected clustered graph, and G be internally
triconnected. Then

(i) There exists a planar straight-line convex cluster drawing of C such that the drawing of
G is inner-convex if and only if, for every non-root node ν of T , every component of the
subgraph G[V − V (ν)] contains an outer vertex.

(ii) Such a drawing of C in (i) (if any) can be constructed from drawing ψ in O(n2) time,
where each cluster is a convex hull of points in the cluster and n is the number of vertices
in G.

Proof: (i): By Lemmas 13 and 14, we see the necessity of this corollary. To show the
sufficiency, we augment the clustered graph C as follows. Let Vo be the set of outer vertices in
G. We create a new vertex s∗ in the exterior of G, join G and s∗ with new edges (s∗, v), v ∈ Vo

to obtain a new plane graph G∗, where its boundary f∗o is a triangle, and add new clusters
ν∗ = V ∪ {s∗}, νv = {v}, v ∈ Vo to T .

We see that the resulting clustered graph C∗ = (G∗, T ∗) remains c-planar and connected.
Also we easily see that C∗ has no region-face crossing between regions for clusters and facial
cycles. Hence by applying Theorem 12 to C∗, there is a fully convex drawing ψ of C∗. After
removing the drawing of s∗ and edges (s∗, v), v ∈ Vo from ψ, we obtain a desired drawing of C.

(ii): Immediate from (i) and Theorem 12(ii).

7 Conclusion

In this paper, we extend the previous known results on straight-line drawings of hierarchical
planar graphs and clustered planar graphs into convex drawings.
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It is proved that every internally triconnected hierarchical plane graph with the outer facial
cycle drawn as a convex polygon admits a convex drawing. We then extend our results to convex
representations of clustered planar graphs. We have proved that every internally triconnected
clustered plane graph with completely connected clustering structure admits a convex drawing.
We also present an algorithm to construct convex drawings of hierarchical planar graphs and
clustered planar graphs.

It would be interesting to apply the notion of archfree paths/trees to convex drawings or
inner convex drawings of other types of graphs. Further, adding more constraints such as angles
of vertices to convex representations may be an interesting research direction in the future.
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