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Abstract: Inferring graphs from path frequency has been studied as an important
problem which has a potential application to drug design and elucidation of chem-
ical structures. Given a multiple set g of strings of labels with length at most K,
the problem asks to find a vertex-labeled graph G that attains a one-to-one corre-
spondence between g and the occurrences of labels along all paths of length at most
K in G. In this paper, we prove that the problem with K = 1 can be formulated
as a problem of finding a loopless and connected detachment, based on which an
efficient algorithm for solving the problem is derived. Our algorithm also solves the
problem with an additional constraint such that every vertex in an inferred graph
is required to have a specified degree.
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1 Introduction

Kernel methods have been popular tools for designing classifiers such as support vector machines
[7]. In kernel methods, a set of objects (or data) in the target problem are mapped to a space,
called a feature space, where an object is transformed into a vector with real coordinates, and a
kernel function is defined as an inner product of two feature vectors. Recently, a feature space
has been used in a new approach in order to design or choose a desired (possibly unknown)
object [3, 4]. As in kernel methods, given objects mapped to points in a feature space, this
approach searches a point y in the feature space using a suitable objective function, and then
maps this point back to an object in the input space, where the object mapped back is called a
pre-image of the point. Given a mapping φ from an input space to a feature space and a point
y in the feature space, the pre-image problem asks to find an object x with y = φ(x) in the
input space. The pre-image problem for graphs is very important because it has a potential
application to drug design and elucidation of chemical structures from mass/NMR spectra data,
and has been studied by several researchers [4, 14].

However, the pre-image problem for graphs has not been studied from a computational
point of view until recently Akutsu and Fukagawa [1] started an investigation of the theoretical
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aspect of the problem of inferring graphs from path frequency. In this case, a feature vector g is
a multiple set of strings of labels with length at most K which represents path frequency (i.e.,
the numbers of occurrences of vertex-labeled paths of length at most K). Given a feature vector
g, they considered the problem of finding a vertex-labeled graph G that attains a one-to-one
correspondence between g and the set of sequences of labels along all paths of length at most K

in G (where the degrees of vertices in an inferred graph are not specified). They proved that the
problem of inferring planar graphs is NP-hard even for K = 4 [2]. Recently it was shown that
the problem of inferring graphs is NP-hard even for K = 2 [13]. For the problem of inferring a
tree, Akutsu and Fukagawa [1] gave dynamic programming algorithms that runs in polynomial
time in n when K and the number of labels are bounded by constants, where n denotes the size
of an output graph. Akutsu and Fukagawa [2] extended their dynamic programming algorithms
to the problem of inferring a graph in a restricted class of outerplanar graphs. However, the
time complexity of these dynamic programming algorithms is a polynomial of n whose exponent
is exponential in K and the number of labels.

In this paper, we consider the problem of inferring a multigraph from a feature vector g

of path frequency with K = 1. We show that the problem can be formulated as a problem of
finding loopless and connected detachments of graphs, and give an efficient algorithm based on
matroid intersection in discrete optimization. Our algorithm can test whether there exists a
solution to a given vector g or not in O(min{|g|2|g|, n3.5 + m}) time, where |g| is the number
of nonzero entries in an input vector g and n and m are the numbers of vertices and edges of
a multigraph to be constructed. For a feasible instance, the algorithm can deliver a solution in
O(n3.5 + m) time. In particular, for testing the feasibility of g, the running time is constant if
the number of labels is bounded by a constant. We next introduce a graph inference problem
with an additional constraint such that every vertex is required to have a specified degree, and
prove that, for K = 1, the graph inference problem with such a degree specification can be
solved in O(min{n + |g|2|g|, n3.5 + m} + mn2) time. We also consider an important variant
of this problem, which asks to find a vertex-labeled graph G whose path frequency contains a
given g as its subset, and prove that the variant can be solved in the same time complexity.

The paper is organized as follows. Section 2 introduces problems of inferring graphs from
path frequency. Section 3 reviews some mathematical notions on graphs and gives efficient
algorithms for finding loopless and connected detachments. Section 4 then shows that the
above-mentioned graph inference problems with K = 1 can be solved efficiently. Section 5
makes some concluding remarks.

2 Graph Inference Problem

This section defines problems of inferring graphs from path frequency.
A graph is called a multigraph if it is allowed to have multiple edges and self-loops; otherwise

it is called simple. A multigraph having no self-loops is called loopless. A multigraph G with
a vertex set V and an edge set E is denoted by (V, E). The vertex set and edge set of a given
multigraph G may be denoted by V (G) and E(G), respectively. An edge e with end vertices u

and v is denoted by {u, v}. An alternating sequence π = (v0, e1, v1, e2, v2, . . . , eh, vh) of vertices
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Figure 1: (a) A (Σ, ρ)-labeled multigraph H1, where Σ = {H, O, C}, ρ(x) = 1 if �(x) = H, ρ(x) = 2
if �(x) = O, and ρ(x) = 4 if �(x) = C, respectively; (b) occ(t, H1) = occ(t, H2) for all sequences
t ∈ Σ≤2; (c) A Σ-labeled multigraph H2.

and edges in G is called a walk if, for each i = 1, . . . , h, edge ei joins vertices vi−1 and vi, and
its length is defined by h (note that the same vertex and the same edge may appear more than
once in a walk).

Let Z+ denote the set of nonnegative integers. Let Σ be a set of labels, Σk be the set of all
sequences of k labels in Σ, and Σ≤k = ∪1≤j≤kΣj . Let Fk(Σ) denote the set of all nonnegative
integer vectors g whose coordinate are indexed by t ∈ Σ≤k+1 (i.e., g is a mapping from Σ≤k+1 to
Z+). A vector g ∈ Fk(Σ) may be called a feature vector. Let g(t) denote the entry of g ∈ Fk(Σ)
indexed by t ∈ Σ≤k+1.

A multigraph H is called Σ-labeled if each vertex v ∈ V (H) is labeled by a label �(v) ∈ Σ.
Let H be a loopless Σ-labeled multigraph. For a walk π = (v0, e1, v1, e2, v2, . . . , eh, vh) in H,
let �(π) denote the sequence of the vertex labels in π, i.e., �(π) = �(v0)�(v1) . . . �(vh). For a
label sequence t over Σ, let occ(t, H) denote the number of walks π such that �(π) = t. The
feature vector fK(H) of level K in H is a vector g ∈ FK(Σ) such that g(t) = occ(t, H) for all
t ∈ Σ≤K+1, i.e.,

fK(H) = (occ(t, H))t∈Σ≤K+1 .

For example, Figure 1(a) shows a loopless Σ-labeled multigraph H1, where Σ = {H, O, C},
Figure 1(b) gives occ(t, H1) for all t ∈ Σ≤2, and we have f1(H1) = (4, 1, 2, 0, 0, 0, 4, 4, 0, 2, 2, 2).
Figure 1(c) shows a different loopless Σ-labeled multigraph H2 such that f1(H2) = f1(H1).

For a given feature vector g ∈ FK(Σ), there may be no Σ-labeled multigraph H with
fK(H) = g. Different Σ-labeled graphs H and H ′ may have the same feature vector fK(H) =
fK(H ′) = g, as observed in Fig. 1.

Akutsu and Fukagawa [1] formulated the following important problem.

Graph Inference from Path Frequency (GIPF) Given a feature vector g ∈ FK(Σ), output
a loopless and connected Σ-labeled multigraph H with fK(H) = g. If there does not exist such
H, then output “no solution.”
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The following complexity results on GIPF are known. Akutsu and Fukagawa [1] proved
that GIPF with K = O(log n) is NP-hard even if both |Σ| and the maximum degree Δ of
inferred graphs are bounded from above by constants. Akutsu and Fukagawa [2] also showed
that GIPF with K = 3 is NP-hard even if inferred graphs are restricted to be tree, and that
GIPF with K = 4 is NP-hard even if inferred graphs are restricted to be planar, where |Σ|
and Δ are unbounded. Recently it was shown [13] that GIPF with K = 2 is NP-hard if |Σ|
and Δ are unbounded. Akutsu and Fukagawa [2] proposed a dynamic programming algorithm
that solves GIPF for trees in polynomial time in the size of an output graph H when K and
|Σ| are constant. They also extended their dynamic programming algorithm to the problem of
inferring an outerplanar graph such that both the degrees and the length of facial cycles are
bounded by constants. However, the time complexity of these dynamic programming algorithms
is exponential in |Σ| even if K = 1.

It is important to consider a problem of inferring a graph that meets some degree constraint
in some applications such as chemical graphs where every vertex with the same label has a
specified valence. In this paper, we define a degree-constrained graph inference problem as
follows. A valence-sequence ρ is a function ρ : V (H) → Z+. A Σ-labeled multigraph H is called
(Σ, ρ)-labeled if

deg(x; H) = ρ(x) for each x ∈ V (H).

(Note that ρ specifies the degree of each vertex, and possibly ρ(x) �= ρ(y) even if �(x) = �(y).)
Figure 1(a) shows a (Σ, ρ)-labeled multigraph H1 for valence-sequence ρ such that ρ(x) = 1

if �(x) = H, ρ(x) = 2 if �(x) = O, and ρ(x) = 4 if �(x) = C, respectively. Note that multigraph
H2 in Fig. 1(c) is not (Σ, ρ)-labeled.

Graph Inference from Path Frequency and Label Valence (GIFV) Given a feature
vector g ∈ FK(Σ) and a valence-sequence ρ, output a loopless and connected (Σ, ρ)-labeled
multigraph H with fK(H) = g. If there does not exist such H, then output “no solution.”

No complexity result on GIFV with K ≥ 1 is known. Note that GIFV with K = 0 is a
trivial problem which asks whether a given set V (H) of labeled vertices has an enough number
of degrees to form a connected graph, and can be easily solved by checking if the sum of degrees
of the labeled vertices is not less than the number of the labeled vertices minus 1. However,
the problem of enumerating all solutions to an instance of GIFV with K = 0 contains isomer
enumeration, which is one of the important research issue in chemical graph theory, and Pólya
[18] gave the most powerful enumeration method to the problem.

In this paper, we also consider the situation where a given feature vector g represents only
partial information on graphs that we want to infer. To handle this case, we modify the problem
setting of GIFV as follows.

Graph Inference from Partial Path Frequency and Label Valence (GIPPFV) Given
a feature vector g ∈ FK(Σ) and a valence-sequence ρ, output a loopless and connected (Σ, ρ)-
labeled multigraph H with (occ(t, H))t∈Σ = (g(t))t∈Σ and fK(H) ≥ g. If there does not exist
such H, then output “no solution.”
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In this paper, we show that, for K = 1, all of GIPF, GIFV and GIPPFV can be solved
efficiently. Before deriving these results, we will prepare some mathematical tools in the next
section.

3 Detachments in Multigraphs

This section shows some results on graph algorithms and combinatorial optimization.

3.1 Multigraphs and Matroids

A singleton set {x} may be simply written as x. Let G = (V, E) be a multigraph which may
have self-loops. For two subsets X, Y ⊂ V (not necessarily disjoint), E(X, Y ; G) denotes the set
of edges e joining a vertex in X and a vertex in Y (i.e., e = {u, v} satisfies u ∈ X and v ∈ Y ),
and d(X, Y ; G) denotes |E(X, Y ; G)|. Note that E(X, Y ; G) includes all self-loops {u, u} with
u ∈ X ∩ Y if any. We may write E(X, V −X; G) and d(X, V −X; G) as E(X; G) and d(X;G),
respectively. Note that d(u, v; G) is the number of multiple edges with end vertices u and v in
G. Then the number of edges incident to a vertex v is given by deg(v; G) = d(v; G)+d(v, v; G).
The degree of a vertex v is defined to be deg(v; G) = d(v; G) + 2d(v, v; G). A vertex v is called
isolated if deg(v; G) = 0. For a multigraph G = (V, E) and a subset X ⊆ E (resp., X ⊆ V ), let
G − X denotes the multigraph obtained by removing the edges in X (resp., the vertices in X

together with the incident edges) from G.
Let c(G) denote the number of components in a multigraph G. Removing k edges from G

increases the number of components at most by k. Hence we have:

Lemma 1 For a multigraph G = (V, E) and a subset E′ ⊆ E, c(G − E′) ≤ c(G) + |E′|.

We here review the definition and some important property of matroids (see [6, 15] for more
on matroid theory). For a finite set S, let I be a family of subsets of S. System (S, I) is called
a matroid if it satisfies three conditions (i) ∅ ∈ I, (ii) If I ∈ I, then any subset I ′ of I also
belongs to I, and (iii) For any I1, I2 ∈ I with |I1| < |I2|, there is an element e ∈ I2 − I1 such
that I1 ∪ {e} ∈ I. For a set I ∈ I of a matroid M = (S, I) and an element e ∈ S − I with
I ∪ {e} �∈ I, the set of elements e′ ∈ I ∪ {e} such that I ∪ {e} − e′ ∈ I is called a circuit and
is denoted by C(I, e). The rank function η of a matroid M = (S, I) is defined as a function
η : 2S → Z+ such that η(S′) is the maximum cardinality |I| of a member I ∈ I with I ⊆ S′. We
here review two examples of matroids. For a partition of S into k disjoint subsets S1, S2, . . . , Sk

and k nonnegative integers b1, b2, . . . , bk, family I = {I ⊆ S | |I ∩Si| ≤ bi , i = 1, 2, . . . , k} gives
a matroid, called a partition matroid. Another example is a graphic matroid (S, I), which is
defined from a graph G with E(G) = S so that I = {I ⊆ E(G) | I contains no cycle in G}.

Given two matroids M1 = (S, I1) and M1 = (S, I2) on the same set S, finding a maximum
common member I∗ ∈ I1 ∩ I2 is known as the matroid intersection problem. It is not difficult
to observe that |I| ≤ η1(S′) + η2(S −S′) holds for every I ∈ I1 ∩I2 and S′ ⊆ S, where ηi is the
rank function of Mi, i = 1, 2. Edmonds has proven the following min-max theory.

5



Theorem 2 [9] For two matroids Mi = (S, Ii) with rank function ηi, i = 1, 2, it holds

max{|I| | I ∈ I1 ∩ I2} = min{η1(S′) + η2(S − S′) | S′ ⊆ S}.

It is known that, for two matroids on the same set S, a maximum common member I∗ ∈
I1 ∩ I2 can be found by an O(|I∗|1.5|S|) oracle time algorithm [8].

3.2 Detachments

Let G be a multigraph which may have self-loops. A detachment H of G is a multigraph with
E(H) = E(G) such that V (H) can be partitioned into |V (G)| subsets Wv, v ∈ V (G) in such a
way that G is obtained from H by contracting each subset Wv into a single vertex v.

Given a function r : V (G) → Z+, a detachment H = (∪v∈V (G)Wv, E(G)) of G is called an
r-detachment of G if |Wv| = r(v), v ∈ V (G), where we denote Wv = {v1, v2, . . . , vr(v)}. In other
words, H is obtained from G by splitting each vertex v ∈ V (G) into r(v) copies of v, where
each edge {u, v} ∈ E(G) joins some vertices ui ∈ Wu and vj ∈ Wv. Hence an r-detachment H

of G is not unique in general. A self-loop {u, u} in G may be mapped to a self-loop {ui, ui} or
a non-loop edge {ui, uj} in a detachment H of G. Note that d(Wu, Wv; H) = d(u, v; G) holds
for all u, v ∈ V (G).

For example, an r-detachment of graph Gg in Fig. 2(a) is shown in Fig. 2(c), where r(H) = 4,
r(O) = 1 and r(C) = 2.

For a function r : V (G) → Z+, an r-degree specification is a set ρ of vectors ρ(v) =
(ρv

1, ρ
v
2, . . . , ρ

v
r(v)), v ∈ V (G) such that

∑

1≤i≤r(v)

ρv
i = deg(v; G).

An r-detachment H of G is called a ρ-detachment if each v ∈ V satisfies

deg(vi; H) = ρv
i for all vi ∈ Wv = {v1, v2, . . . , vr(v)}.

For a subset X ⊆ V (G), r(X) denotes
∑

v∈X r(v).
Nash-Williams [17] obtained the following characterization of connected r-detachments of

G which are allowed to have self-loops.

Theorem 3 [17] Let G = (V, E) be a multigraph and r : V → Z+. Then there exists a
connected r-detachment H of G if and only if

r(X) + c(G − X) − d(X, V ; G) ≤ 1 for every nonempty subset X ⊆ V . (1)

Furthermore, if G has a connected r-detachment then there exists a connected ρ-detachment Hρ

of G for every r-degree specification ρ.
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Figure 2: (a) A multigraph Gg obtained from the vector g ∈ F1({H, O, C}) in Fig. 1(c); (b) An
r-expansion Ĥ(Gg) of Gg, where r(H) = 4, r(O) = 1 and r(C) = 2; (c) An r-detachment of Gg.

The theorem does not characterize the necessary and sufficient condition for a given multi-
graph G to have a loopless connected r-detachment or ρ-detachment H. Note that G may
not have a loopless and connected ρ-detachment even if it has a loopless and connected r-
detachment. For example, consider multigraph G = ({u, v}, E = {e1 = {u, v}, e2 = {v, v}, e3 =
{v, v}), which has a loopless and connected r-detachment H for r(u) = 1 and r(v) = 2, but
cannot have a loopless and connected ρ-detachment Hρ for ρ(u) = (1) and ρ(v) = (4, 1).

3.3 Loopless Detachments

In this subsection, we give an efficient algorithm for computing a loopless and connected ρ-
detachment of a given multigraph. For this, we derive the necessary and sufficient conditions
for a given multigraph to have loopless connected r- and ρ-detachments as follows.

Theorem 4 Let G = (V, E) be a multigraph and r : V → Z+. Then:

(i) There exists a loopless and connected r-detachment H of G if and only if (1) holds and
r(v) ≥ 2 for each self-loop {v, v} ∈ E.

(ii) Whether (1) holds or not can be tested in O(min{r(V )3.5+|E|, r(V )1.5|E|r2
max}) time, and

a multigraph H in (i) if any can be constructed in O(min{r(V )3.5 + |E|, r(V )1.5|E|r2
max})

time, where rmax = maxv∈V r(v).

Theorem 5 Let G = (V, E) be a multigraph, r : V → Z+, and ρ be an r-degree specification.
Then:

(i) G has a loopless and connected ρ-detachment Hρ if and only if it hold (1) and

1 ≤ ρv
i ≤ d(v; G) + d(v, v; G) for all vi ∈ Wv and v ∈ V . (2)

(ii) Assume that (2) holds. Given a loopless and connected r-detachment H of G, a loopless
and connected ρ-detachment Hρ can be constructed in O(|E| min{r(V )2, |E|r2

max}) time.

7



3.3.1 Proof of Theorem 4

We first prove Theorem 4. First consider the necessity of Theorem 4(i). If r(v) = 1 for some
self-loop {v, v} ∈ E, then clearly G cannot have a loopless r-detachment. Assume that there is a
connected r-detachment H = (∪v∈V Wv, E(G)) of G = (V, E). Let X be an arbitrary nonempty
subset of V . For XH = ∪v∈XWv and E′ = E(XH , V (H); H), each vertex in XH has no incident
edge in graph H − E′, and c(H − E′) = |XH | + c(H − XH) ≥ r(X) + c(G − X) holds. Since
1 = c(H) ≥ c(H−E′)−|E′| holds by Lemma 1 and |E′| = d(XH , V (H); H) = d(X, V ; G) holds,
we have 1 ≥ r(X) + c(G − X) − d(X, V ; G), which implies the necessity of Theorem 4(i).

We now show the sufficiency of Theorem 4(i). Given a multigraph G = (V, E) and a function
r in Theorem 4, we define an r-expansion as a multigraph Ĥ(G) = (W = ∪v∈V Wv, F ) such that
its vertex set W is the union of |V | disjoint vertex subsets Wv = {v1, v2, . . . , vr(v)}, v ∈ V and
its edge set F is the union of |E| disjoint edge subsets Fe, e ∈ E defined by

Fe = {{ui, vj} | ui ∈ Wu, vj ∈ Wv} if e = {u, v} ∈ E (u �= v),
Fe = {{ui, uj} | ui, uj ∈ Wu, i �= j} if e = {u, u} ∈ E.

Note that |W | = r(V ) and |F | =
∑

{u,v}∈E:u �=v r(u)r(v)+
∑

{u,u}∈E r(u)(r(u)−1)/2 = O(|E|r2
max)

hold, and that the resulting multigraph (W, F ) is loopless since |Wu| = r(u) ≥ 2 holds for any
self-loop e = {u, u} ∈ E by the assumption on r. Any subset F ′ ⊆ F such that |F ′ ∩ Fe| = 1,
e ∈ F can be viewed as a loopless r-detachment (W, F ′) of G.

We here introduce a partition matroid M1 = (F, I1) with

I1 = {I ⊆ F | |I ∩ Fe| ≤ 1 ∀e ∈ E}

and the graphic matroid M2 = (F, I2) of Ĥ(G), i.e.,

I2 = {I ⊆ F | I contains no cycle in Ĥ(G)}.

Observe that, for any loopless r-detachment (W, F ′) of G, its maximal forest F ′′ ⊆ F ′ (i.e., a
maximal subset of F ′ having no cycle) satisfies

c((W, F ′′)) = |W | − |F ′′| and F ′′ ∈ I1 ∩ I2.

In particular, c((W, F ′′)) = |W | − |F ′′| = 1 if (W, F ′) is connected. Therefore, it suffices to
show that I1 ∩ I2 contains a subset I∗ with |I∗| = |W | − 1 if (1) holds, since this implies that
c((W, I∗)) = |W |− |I∗| = 1 and that a loopless and connected r-detachment (W, F ′) is obtained
from I∗ by adding |E| − |I∗| more edges choosing an arbitrary edge e′ ∈ Fe for each e ∈ E with
I∗ ∩ Fe = ∅ so that |F ′ ∩ Fe| = 1 holds for all e ∈ E.

By Theorem 2, the maximum cardinality |I| of a member I ∈ I1∩I2 is equal to min{η1(F ′)+
η2(F −F ′) | F ′ ⊆ F}, where ηi is the rank function of Mi, i = 1, 2. We prove the next property,
which is a variant of a result in [17] to prove Theorem 3.

Lemma 6 For rank function ηi of matroid Mi, i = 1, 2, if (1) holds, then

η1(F ′) + η2(F − F ′) ≥ r(V ) − 1 for every subset F ′ ⊆ F . (3)
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Proof: Let F ′ be an arbitrary subset of F . Let

E′ = {e ∈ E | F ′ ∩ Fe �= ∅}.

Then we have η1(F ′) = |E′|. To show η2(F − F ′) ≥ r(V ) − 1 − |E′|, we consider the graph
G − E′. Let X be the set of isolated vertices in G − E′, and G1, G2, . . . , Gp be the remaining
components of G−E′, where each Gi contains at least one edge. Then E′ ⊆ E(X, V ; G) holds,
and |E′′| = |E′| − d(X, V ; G) holds for E′′ = E′ − E(X, V ; G). Note that

p = c((G − X) − E′′) holds.

By Lemma 1, we have c((G − X) − E′′) ≤ c(G − X) + |E′′|. Hence p ≤ c(G − X) + |E′′| =
c(G − X) + |E′| − d(X, V ; G). Since r(X) + c(G − X) − d(X, V ; G) ≤ 1 by (1), we have

p ≤ |E′| + 1 − r(X). (4)

Now consider the r-expansion Ĥ(Gi) of each Gi. The union Ĥ(G1) ∪ Ĥ(G2) ∪ · · · ∪ Ĥ(Gp) of
these graphs is a subgraph of Ĥ(G) satisfying

E(Ĥ(G1) ∪ Ĥ(G2) ∪ · · · ∪ Ĥ(Gp)) ⊆ F − F ′,

which implies

η2(F − F ′) ≥ η2(E(Ĥ(G1) ∪ Ĥ(G2) ∪ · · · ∪ Ĥ(Gp)))

= (|V (Ĥ(G1))|−1) + (|V (Ĥ(G2))|−1) + · · · + (|V (Ĥ(Gp))|−1)

= r(V (G1)) + · · · + r(V (Gp)) − p = r(V ) − r(X) − p

≥ r(V ) − 1 − |E′| (by (4)),

as required.

Given a multigraph G and a function r, we compute a member I∗ ∈ I1 ∩ I2 with the
maximum cardinality |I∗|. If (1) holds, then |I∗| = min{η1(F ′)+η2(F−F ′) | F ′ ⊆ F} ≥ r(V )−1
must hold by this lemma and Theorem 2, and G admits a loopless and connected r-detachment.
This shows the sufficiency of (1), proving Theorem 4(i).

To test whether (1) holds or not, we compute a maximum common member I∗ ∈ I1 ∩ I2.
Before resorting the matroid intersection algorithm to find such I∗, we reduce the size of graph
Ĥ(G) as follows. Since any member in I2 contains no cycle, we do not need to have multiple
edges in an r-expansion Ĥ(G) = (W, F ) of G. Let H̃ = (W, F̃ ) be the simple graph obtained
from Ĥ(G) by replacing multiple edges between two vertices with a single edge. Formally, the
edge set F̃ is given by ∪u,v∈V Fuv such that

Fuv = Fuv = {{ui, vj} | ui ∈ Wu, vj ∈ Wv}
if E contains an edge {u, v} (u �= v),

Fuu = {{ui, uj} | ui, uj ∈ Wu, i �= j}
if E contains a self-loop {u, u},

Fuv = Fvu = ∅ otherwise.
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Then graph H̃ = (W, F̃ ) is simple, and contains |F̃ | = O(min{|W |2, |F |}) = O(min{r(V )2, |E|r2
max})

edges. In H̃, we define a partition matroid

M̃1 = (F̃ , Ĩ1 = {I ⊆ F̃ | |I ∩ Fuv| ≤ d(u, v; G) ∀u, v ∈ V })

and a graphic matroid

M̃2 = (F̃ , Ĩ2 = {I ⊆ F̃ | I contains no cycle in H̃}).

By definition, we easily see that finding a maximum member in Ĩ1 ∩ Ĩ2 is equivalent to that in
I1 ∩ I2.

For the current common subset I ∈ Ĩ1 ∩ Ĩ2, the matroid intersection algorithm in [8]
constructs a bipartite digraph BI = (I ∪ {s1, s2}, F̃ − I, E) as follows. It has two vertex
sets I ∪ {s1, s2} and F̃ − I, where s1, s2 �∈ F̃ are new elements, and an edge set E which
consists of four types of sets of directed edges (i) {(s1, y) | y ∈ F̃ − I, I ∪ {y} ∈ I2}, (ii)
{(y, s2) | y ∈ F̃ − I, I ∪ {y} ∈ I1}, (iii) {(x, y) | x ∈ I, y ∈ F − I, x ∈ C2(I, y)}, and (iv)
{(y, x) | x ∈ I, y ∈ F − I, x ∈ C1(I, y)}, where Ci(I, e) denotes the circuit in I ∪ {e} for
matroid M̃i. It is known that the current I is a maximum common set if and only if BI has no
directed path from s1 to s2 (see [6, 10, 15, 16]). Moreover, starting from I = ∅, the algorithm
[8] finds a maximum common set I∗ in time O(|I∗|0.5 maxI∈I1∩I2 |BI |) time, where |BI | denotes
the number of vertices and edges in BI . The number of all edges (y, x) ∈ E is O(|F̃ |) and all
such edges can be identified in O(|F̃ |) time. For each y ∈ F − I, |C2(I, y)| = O(|I|) holds
and all x in C2(I, y) can be identified in O(|I|) time. Thus the total number of directed edges
(x, y) ∈ E is O(|I||F̃ |) and all such edges can be identified in O(|I||F̃ |) time.

Therefore, |BI | = O(|W ||F̃ |) holds, and the entire time complexity for computing a maxi-
mum common subset I∗ is O(|I∗|0.5|W ||F̃ |) = O(r(V )1.5|F̃ |) = O(min{r(V )3.5, r(V )1.5|E|r2

max}).
If |I∗| < r(V )−1, then we can conclude that the given G and r do not satisfy (1). Otherwise,

if |I∗| = r(V ) − 1, then we can construct a loopless and connected r-detachment by choosing
|E| − |I∗| more edges. This can be executed in O(r(u) + r(v) + d(u, v; G)) time for each pair of
u, v ∈ V and in O(|V |r(V ) + |E|) time in total. This proves Theorem 4(ii).

3.3.2 Proof of Theorem 5

Next we prove Theorem 5. We first consider the necessity of Theorem 5(i). Assume that G has
a loopless and connected ρ-detachment Hρ. It is easy to see that 1 ≤ deg(vi) = ρv

i holds for all
vi ∈ Wv and v ∈ V . If ρv

i = deg(vi) > d(v; G) + d(v, v; G) holds, then at least one self-loop in
E(v, v; G) must be incident to vi. Hence ρv

i ≤ d(v; G) + d(v, v; G) necessarily holds.
To show the sufficiency of Theorem 5(i), we again consider an r-detachment H of G as a

spanning subgraph H = (W, F ′) of the r-expansion Ĥ(G) = (W, F ) such that |F ′ ∩ Fe| = 1
for every e ∈ E. Given an r-degree specification ρ in Theorem 5, we show that F ′ can be
modified into a ρ-detachment of G. Let D(H) denote the sum

∑
v∈V

∑
1≤i≤r(v) |deg(vi; H)−ρv

i |
of difference of degrees.

Lemma 7 Let H = (W, F ′) be a connected spanning subgraph of the r-expansion Ĥ(G) such
that |F ′ ∩ Fe| = 1 for every e ∈ E. If D(H) > 0, then one of the following (i) and (ii) holds:
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(i) There are edges ea ∈ F ′ ∩ Fe and eb ∈ Fe − F ′ for some edge e ∈ E such that H ′ =
(W, (F ′ − ea) ∪ {eb}) remains connected and D(H ′) = D(H) − 2 holds.

(ii) There are edges ea ∈ F ′ ∩ Fe, eb ∈ Fe − F ′ e′a ∈ F ′ ∩ Fe′ and e′b ∈ Fe′ − F ′ for some
edges e, e′ ∈ E such that H ′ = (W, (F ′ − {ea, e

′
a}) ∪ {eb, e

′
b}) remains connected and

D(H ′) = D(H) − 2 holds.

Proof: Recall that Ĥ(G) = (W, F ) is a loopless multigraph. If D(H) > 0, then, for some
v ∈ V , there are vertices vj , vh ∈ Wv such that deg(vj ; H) < ρv

j and deg(vh; H) > ρv
h since

∑
1≤i≤r(v) ρv

i = deg(v; G) holds. Let Wv = {v1, v2, . . . , vr(v)} and assume deg(v1; H) < ρv
1

without loss of generality. We first claim that there is a vertex v� ∈ Wv such that E(v�, W −
v1; H) �= ∅. (hence deg(v�; H) ≤ ρv

� must hold). Otherwise if E(vi, W − v1; H) = ∅ holds for all
vi ∈ Wv − v1, i.e., all edges in F ′ incident to a vertex in Wv are incident to v1, then we would
have ρv

1 > deg(v1; H) ≥ d(v; G)+ d(v, v; G), contradicting the assumption of ρ. This proves the
claim.

Case-1: There is a vertex vk ∈ Wv such that deg(vk; H) > ρv
k and E(vk, W −v1; H) �= ∅. We

claim that v1 and vk remain connected in H−ea for some edge ea = {vk, uq} ∈ E(vk, W−v1; H),
where v1 �= uq ∈ Wu (possibly u = v). If E(vk, v1; H) �= ∅, then any edge ea ∈ E(vk, W −v1; H)
will do. Assume that E(vk, v1; H) = ∅. Then by deg(vk; H) > ρv

k ≥ 1, we now have two edges
e1, e2 ∈ E(vk, W − v1; H). We see that vk and v1 remain connected in H − e1 or H − e2 (since
v1 and vk become disconnected in (W, F ′ − e2) only when e2 is on every path between these
vertices, but in this case e1 is not on a path containing e2).

Therefore, v1 and vk are connected in H−ea for some edge ea = {vk, uq} ∈ E(vk, W−v1; H),
where ea belongs to Fe for some e = {v, u} ∈ E. Then by letting ea = {vk, uq} ∈ F ′ ∩ Fe and
eb = {v1, uq} ∈ Fe − F ′, we see that H ′ = (W, (F ′ − ea) ∪ {eb}) remains connected and
D(H ′) = D(H) − 2.

Case-2: There is no vertex vk ∈ Wv in Case-1. By the above claim, there are vertices
vk, v� ∈ Wv such that d(vk, v1; H) = deg(vk; H) > ρv

k ≥ 1 and E(v�, W − v1; H) �= ∅. Choose
edges ea ∈ E(vk, v1; H) and eb ∈ E(v�, W − v1; H), where ea = {vk, v1} ∈ F ′ ∩ Fe and e′a =
{vk, uq} ∈ F ′∩Fe′ for some edges e, e′ ∈ E. Note that vk and v1 remain connected in H−ea since
d(vk, v1; H) = deg(vk; H) > ρv

k ≥ 1. Let e′a = {vk, uq} ∈ F ′ ∩ Fe′ and e′b = {v1, uq} ∈ Fe′ − F ′.
Therefore H ′ = (W, (F ′ −{ea, e

′
a})∪ {eb, e

′
b}) remains connected and D(H ′) = D(H)− 2 holds.

After modifying F ′ into (F ′−ea)∪{eb} by edges ea and eb in (i) of this lemma, the resulting
H = (W, F ′) remains connected and satisfies |F ′ ∩ Fe| = 1 for every e ∈ E, and the difference
D(H) reduces by 2. We have an analogous observation for the modification by (ii) of the lemma.
Therefore by repeating these procedures until D(H) becomes zero, we obtain a loopless and
connected ρ-detachment H = (W, F ′) of G. This proves Theorem 5(i). Since D(H) ≤ 2|E|, and
the modification is applied O(|E|) times. We represent a multigraph H = (W, F ′) as an edge-
weighted subgraph of the above simple graph H̃ = (W, F̃ ), where the weight of an edge {u, v}
in the subgraph is given by d(u, v; H). Then the connectivity of two vertices in H can be tested
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in O(|F̃ |) = O(min{|W |2, |F |}) = O(min{r(V )2, |E|r2
max}) time, and we can obtain a loopless

and connected r-detachment of G in O(|E|min{r(V )2, |E|r2
max}) time, proving Theorem 5(ii).

4 Inferring Multigraphs

We are ready to prove our results on graph inference. Given a feature vector g ∈ FK(Σ), let
gk denote the vector which consists of entries g(t), t ∈ Σk, |gk| denote the number of nonzero
entries in gk, and let Vk = {t ∈ Σk | g(t) ≥ 1}, where |gk| = |Vk| holds. We assume that a
given feature vector g is represented only by its positive entries, since otherwise it would require
unnecessarily large space complexity to store many zero entries. Let |g| denote the number of
nonzero entries in g, and let n =

∑
t∈Σ1 g(t) and p = maxt∈Σ1 g(t). Thus, g ∈ F1(Σ) is given by

O(|g| log n) space.

4.1 Algorithms for GIPF and GIFV

This subsection gives an algorithm for GIPPFV. A feature vector g ∈ F1(Σ) is called valid with
respect to Σ if, for the label sets V1 = {t ∈ Σ1 | g(t) ≥ 1} and V2 = {t ∈ Σ2 | g(t) ≥ 1},

V2 ⊆ V1 × V1, g(uv) = g(vu) for all uv ∈ V2,

g(uu) is an even integer and g(u) ≥ 2 for all uu ∈ V2.

For a given valence-sequence ρ : ∪u∈V1Wu → Z+, we call g valid with respect to ρ if

|Wu| = g(u) for all u ∈ V1,

∑

x∈Wu

ρ(x) = g(uu) +
∑

v∈V1−{u}
g(uv) for all u ∈ V1.

1 ≤ ρ(x) ≤ g(uu)/2 +
∑

v∈V1−{u}
g(uv) for all x ∈ Wu and u ∈ V1.

Let m =
∑

t∈Σ2 g(t).
We easily observe the following properties.

Lemma 8 For any Σ-labeled loopless multigraph H, its feature vector f1(H) ∈ F1(Σ) of level
1 is valid with respect to Σ.

Lemma 9 For any (Σ, ρ)-labeled loopless multigraph H, its feature vector f1(H) ∈ F1(Σ) of
level 1 is valid with respect to Σ and ρ.

We derive the following results from Theorem 4.

Theorem 10 Given an instance I = g ∈ F1(Σ) of GIPF, the feasibility of I can be tested
in O(min{|g|2|g1|, n3.5 + m, n1.5mp2}) time, and a solution of I (if any) can be constructed in
O(min{n3.5 + m, n1.5mp2}) time.
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Proof: Given a feature vector g ∈ F1(Σ), we can check whether or not g is valid with respect
to Σ in O(|g1| + |g2|) = O(|g|) time. If g is not valid, then there is no loopless Σ-labeled
multigraph H with f1(H) = g by Lemma 8. Consider the case where g is valid. By regarding
V1 = {t ∈ Σ1 | g(t) ≥ 1} and V2 = {t ∈ Σ2 | g(t) ≥ 1} as a vertex set and an edge set, we
construct a multigraph Gg = (V = V1, E = V2) such that d(u, v; Gg) = g(uv)(= g(vu)) for all
u, v ∈ V with u �= v and d(u, u; Gg) = g(uu)/2 for all u ∈ V , where a set of edges E(u, v; Gg)
is stored as a single edge weighted by integer d(u, v; Gg). Let r(v) := g(v), v ∈ V . Since g is
valid, such a multigraph Gg exists and r(v) ≥ 2 holds for each self-loop {v, v} ∈ E. We see that
any loopless and connected Σ-labeled multigraph H with f1(H) = g is a loopless and connected
r-detachment of Gg. We test whether there exists an r-detachment H of Gg or not, and find
such a solution H to I if any. This can be done in O(min{r(V )3.5 + |E|, r(V )1.5|E|r2

max}) =
O(min{n3.5 + m, n1.5mp2}) time by Theorem 4(ii). Note that the feasiblity of I can also be
tested by checking (1) for all possible subsets X of V . This takes O(|g|2|g1|) time since c(Gg−X)
can be computed in O(|g|) time.

For example, given feature vector g ∈ F1({H, O, C}) with g(t) = occ(t, H1) in Fig. 1(b),
multigraph Gg = (V, E) in this proof is given as in Fig. 2(a). An r-expansion Ĥ(Gg) is given
in Fig 2(b), from which a loopless and connected r-detachment is obtained in Fig. 2(c), which
is equivalent to graph H2 in Fig. 1(c).

The case where inferred graphs are restricted to trees can be solved by Theorem 10.

Corollary 11 Given an instance I = g ∈ F1(Σ) of GIPF for trees, the feasibility of I can be
tested in O(min{|g|2|g1|, n3.5, n2.5p2}) time, and a solution of I (if any) can be constructed in
O(min{n3.5, n2.5p2} + min{mn2, m2p2}) time.

Proof: We can test if a given g satisfies m = n−1 or not in O(min{|g|, n}) time. If m �= n−1,
then no Σ-labeled tree T with f2(T ) = g exists. Otherwise (if m = n−1) we apply Theorem 10
to obtain a connected Σ-labeled multigraph H with f1(H) = g if any, which must be a tree
since |V (H)| = n and |E(H)| = m = n − 1.

Theorem 12 Given an instance I = (g ∈ F1(Σ), ρ) of GIFV, the feasibility of I can be tested
in O(min{n + |g|2|g1|, n3.5 + m, n1.5mp2}) time, and a solution of I (if any) can be constructed
in O(min{n3.5 + m, n1.5mp2} + min{mn2, m2p2}) time.

Proof: We can check if a given g is valid with respect to Σ and ρ in O(n + |g2|) time.
If g is not valid, then there is no loopless (Σ, ρ)-labeled multigraph H with f1(H) = g by
Lemma 9. Consider the case where g is valid. We construct a multigraph Gg = (V = V1, E =
V2), as in the proof of Theorem 10. For each v ∈ V , let r(v) := g(v) and ρv

i := ρ(vi) ≥ 1
(1 ≤ i ≤ r(v)). Since g is valid, such a multigraph Gg exists. Hence ρ satisfies the necessary
condition in (i) of Theorem 5. Now any loopless and connected (Σ, ρ)-labeled multigraph
H with f1(H) = g is a loopless and connected r-detachment of Gg. We test whether there
exists a ρ-detachment H of Gg or not and find such a solution H to I if any. This can be
done in O(min{r(V )3.5 + |E|, r(V )1.5|E|r2

max}) + O(|E|min{r(V )2, |E|r2
max}) = O(min{n3.5 +

13



m, n1.5mp2} + min{mn2, m2p2}) time by Theorems 4(ii) and 5(i)-(ii). We can also test the
feasibility of I by checking (1) for all subsets X of V , taking O(|g|2|g1|) time.

Analogously with Corollary 11, we have the next result.

Corollary 13 Given an instance I = (g ∈ F1(Σ), ρ) of GIFV for trees, the feasibility of I can
be tested in O(min{n+ |g|2|g1|, n3.5, n2.5p2}) time, and a solution of I (if any) can be constructed
in O(min{n3.5, n2.5p2}) time.

4.2 Algorithm for GIPPFV

This subsection gives an algorithm for GIPPFV with K = 1. Let g ∈ F1(Σ) be a valid
feature vector with respect to Σ, define V1 and V2 as in the previous subsection, and let m =
∑

u∈V1

∑
x∈Wu

ρ(x). For each u ∈ V1, we define its deficit by

dfc(u) :=
∑

x∈Wu

ρ(x) − g(uu) −
∑

v∈V1−{u}
g(uv).

For a given valence-sequence ρ : ∪u∈V1Wu → Z+, we call g weakly valid with respect to ρ if

|Wu| = g(u) for all u ∈ V1,

dfc(u) ≥ 0 for all u ∈ V1,

1 ≤ ρ(x) ≤ g(uu)/2 +
∑

v∈V1−{u}
g(uv) for all x ∈ Wu and u ∈ V1.

We easily see that g needs to be weakly valid respect to ρ to admit a feasible solution to
GIPPFV.

We now show how to reduce GIPPFV to GIFV. Suppose that there exists a loopless and
connected (Σ, ρ)-labeled multigraph H = (∪u∈V1Wu, F1 ∪ F2) with (occ(t, H))t∈Σ = (g(t))t∈Σ

and (occ(t, H))t∈Σ2 ≥ (g(t))t∈Σ2 , where F1 denotes the set of edges (g(t))t∈Σ2 and F2 denotes
the rest of edges in H. Observe that it holds

|F2| = (1/2)
∑

u∈V1

dfc(u).

For simplicity, we first consider the case where there is no label û ∈ V1 such that

dfc(û) >
∑

u∈V1−{û}
dfc(u). (5)

To reduce GIPPFV to GIFV, we introduce a new label e, and convert H into a Σ ∪ {e}-
labeled multigraph H ′ by subdividing each edge e = (v, v′) ∈ F2 with a new vertex ve labeled
with e (i.e., replacing e with two edges (v, ve) and (ve, v

′)). Note that H ′ remains loopless.
We then contract each set of vertices with the same label into a single vertex to obtain graph
G′ = (V1 ∪ {e}, E′), where e ∈ V (G′) stands for the vertex obtained from contracting the set
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of vertices labeled with e. Thus H ′ can be regarded as a loopless and connected detachment of
G′. Finally we encode G′ into a vector g′ ∈ F1(Σ ∪ {e}) and a valence-sequence ρ′ such that

g′(u) = g(u) for all u ∈ V1,

g′(e) = |F2| for e,

g′(uv) = g(uv) for all u, v ∈ V1,

g′(ue) = g′(eu) = d(e, u; G′) for all u ∈ V1,

ρ′(x) = ρ(x) for all x ∈ Wu, u ∈ V1,

ρ′(x) = 2 for all x ∈ We.

Note that it holds
g′(ue) = dfc(u) for all u ∈ V1,

g′(e) = (1/2)
∑

u∈V1

g′(ue),

implying that the above vector g′ can be determined uniquely from given g and ρ. Therefore, if
GIPPFV for the given g and ρ has a solution H, then GIFV for the above vector g′ ∈ F1(Σ∪{e})
and valence-sequence ρ′ has a solution H ′.

We now consider the case where there may exist a label û ∈ V1 satisfying (5), where such
a label is unique. This implies that at least (1/2)(dfc(û) − ∑

u∈V1−{û} dfc(u)) edges in F2 must
join vertices labeled with û in any solution to GIPPFV. Therefore, in this case, we apply the
following modification to the given vector g before converting it into the above vector g′: Let

g(ûû) := g(ûû) + dfc(û) −
∑

u∈V1−{û}
dfc(u),

while keeping the other entries in g unchanged (note that the modified vector g has no longer
a label satisfying (5)). We see that GIFV with the resulting g′ and ρ′ has a solution if so does
GIPPFV with given g and ρ.

We finally show that the converse is also true.

Lemma 14 Given a weakly valid vector g ∈ F1(Σ) with respect to a valence-sequence ρ :
∪u∈V1Wu → Z+, define vector g′ ∈ F1(Σ ∪ {e}) and valence-sequence ρ′ in the above. Then
if GIFV with g′ and ρ′ has a solution H ′, then a solution H to GIPPFV with g and ρ can be
constructed from H ′ in O(mn) time.

Proof: Let H ′ be a solution to GIFV with g′ and ρ′. A pair {(u, ue), (ue, u
′)} of edges incident

to a vertex ue labeled with e is called an e-pair. To obtain a soluton to GIPPFV from H ′, we
eliminate all e-pairs by apply the following transformations (a) and (b):

(a) If there is an e-pair {(v, ve), (ve, v)} of multiple edges, then find an e-pair {(u, ue), (ue, u
′)}

such that {v, ve} ∩ {u, u′, ue} = ∅, and replace two edges (v, ve) and (u, ue) with two new edges
(v, ue) and (u, ve). Repeat this until no e-pair of multiple edges exists.
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(b) Replace each e-pair {(v, ve), (ve, v
′)} with a single edge (v, v′). Let H be the resulting

Σ-labeled multigraph.
We see that an iteration in transformation (a) reduces the number of e-pairs of multiple edges

by one without losing the connectivitiy and looplessness of the solution. Hence it suffices to
show that a desired e-pair {(u, ue), (ue, u

′)} can always be chosen in (a). To lead a contradiction,
assume that, for an e-pair {(v, ve), (ve, v)} of multple edges, there is no e-pair {(u, ue), (ue, u

′)}
such that {v, ve}∩{u, u′, ue} = ∅ in (a). Then all e-pairs {(u, ue), (ue, u

′)} satisfy v ∈ {u, u′}, and
thereby dfc(v̂) >

∑
z∈V1−{v̂} dfc(z) holds for the label v̂ of vertex v. This, however, contradicts

that any label satisfying (5) in a given g has been eliminated by modifying g. Therefore we can
execute (a) and (b) to obtain H, which is a solution to GIPPFV with g and ρ.

The number of iterations in (a) is O(m), and an iteration in (a) can be executed in O(n)
time. Hence H can be obtained in O(mn) time.

By this lemma, we see that GIPPFV with g and ρ has a solution if and only if so does GIFV
with g′ and ρ′. By noting that G′ has O(|V (G′)|2) = O(|g1|2) weighted edges, we can derive
the following results from Theorem 12, Corollary 16 and Lemma 14.

Theorem 15 Given an instance I = (g ∈ F1(Σ), ρ) of GIPPFV, the feasibility of I can be
tested in O(min{n + |g1|22|g1|, n3.5 + m, n1.5mp2}) time, and a solution of I (if any) can be
constructed in O(min{n3.5 + m, n1.5mp2} + min{mn2, m2p2}) time.

Corollary 16 Given an instance I = (g ∈ F1(Σ), ρ) of GIPPFV for trees, the feasibility of
I can be tested in O(min{n + |g|2|g1|, n3.5, n2.5p2}) time, and a solution of I (if any) can be
constructed in O(min{n3.5, n2.5p2}) time.

5 Concluding Remarks

In this paper, we proved that the problem of inferring a multigraph from frequency of paths
of length at most K = 1 can be solved efficiently by formulating it as a problem of finding
a connected detachment. Our algorithm can handle the case where each vertex is required
to have a specified degree. Our new approach can be applied to problems of inferring multi-
graphs/digraphs with a higher connectivity since the characterizations of k-edge-connected de-
tachments of multigraphs/digraphs have already been obtained [5, 11, 12, 17].
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