
An explicit exchange algorithm for linear semi-infinite programming

problems with second-order cone constraints∗

Shunsuke Hayashi† and Soon-Yi Wu‡

Abstract In this paper, we propose an explicit exchange algorithm for solving semi-
infinite programming problem (SIP) with second-order cone (SOC) constraints. We prove,
by using the slackness complementarity conditions, that the algorithm terminates in a fi-
nite number of iterations and the obtained solution sufficiently approximates the original
SIP solution. In existing studies on SIPs, only the nonnegative constraints were considered,
and hence, the slackness complementarity conditions were separable to each component.
However, in our study, the existing componentwise analyses are not applicable anymore
since the slackness complementarity conditions are associated with SOCs. In order to
overcome such a difficulty, we introduce a certain coordinate system based on the spec-
tral factorization. In the numerical experiments, we solve some test problems to see the
effectiveness of the proposed algorithm.

1 Introduction

A semi-infinite programming problem (SIP) [2, 12, 16, 17, 18, 29] is to minimize an objective function
with a finite-dimensional argument under an infinite number of constraints. Generally, SIP is written
as follows:

Minimize f(x)

subject to x ∈ X, g(x, t) ≥ 0 (∀t ∈ T ), (1.1)

where f : <n → < and g : <n × T → < are given functions, X ⊆ <n is a given convex set, and T is a
given compact Hausdorff space. If T is a finite set, the problem (1.1) reduces to a finite optimization
problem such as nonlinear programming problem (NLP) or linear programming problem (LP) . The
SIP plays an important role in various fields such as approximation theory, optimal control, numerous
engineering problems, etc [11, 21, 23, 24].

Many approaches have been studied for solving SIPs. One of important methods is the discretiza-
tion method [21, 24, 26], in which the infinite set T is approximated by a sequence of finite subsets
{T k} such that the distance1 from T k to T tends to 0 as the iteration k goes infinity. For a sufficiently

∗Technical Report 2007-012, June 8, 2007
†Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501,

Japan (shunhaya@amp.i.kyoto-u.ac.jp, +81-75-753-4758)
‡Department of Mathematics, National Cheng Kung University / National Center for Theoretical Sciences, Tainan,

Taiwan, R.O.C. (soonyi@mail.ncku.edu.tw, +886-6-2757575 Ext. 65080)
1For two sets Y and Yσ ⊆ Y , their distance is defined by dist (Yσ, Y ) := supy∈Y infyσ∈Yσ ‖y − yσ‖.

1



large k, however, a general discretization method may become very expensive, since the number of
elements in T k can be huge, and it takes very long time to verify the feasibility with respect to the
approximated subproblem. The local reduction based method was introduced by [13, 16]. It solves,
in each iteration, a locally reduced problem with finite constraints, which is defined by using certain
implicit functions associate with local minimizers of g(x, ·) over T . Discretization SQP type meth-
ods and trust region type methods based on the local reduction have been studied by some authors
[6, 19, 25]. Exchange method [16, 28] is also well-known. It solves, in each iteration, the relaxed version
of SIP (1.1) with T replaced by a finite set T k. Then, {T k} is updated so that T k+1 ⊆ T k∪{t1, . . . , tr}
where {t1, . . . , tr} ⊆ T \T k. Similar to exchange method, [29] proposed an iterative method for solving
KKT system of the SIP in which they drop some redundant points at some iterations. For the linear
SIP, Lai and Wu [18] proposed the explicit algorithm in which they drop out redundant points in T k

for each k and only keep active points. This will ensure |T k| ≤ n for each k, and hence the algorithm is
very efficient in saving computational time. Lai and Wu’s explicit algorithm is also a kind of exchange
method.

In this paper, we focus on the linear SIP with second-order cone constraints (LSSIP) of the form

Minimize c>x

subject to x ∈ Kn, a(t)>x− b(t) ≥ 0 (∀t ∈ T ), (1.2)

where vector c ∈ <n, functions b : T → < and a : T → <n are given, and Kn ⊂ <n is the n-dimensional
second-order cone (SOC) defined by

Kn :=
{
x = (x1, x̃) ∈ < × <n−1

∣∣∣ x1 ≥ ‖x̃‖
}
.

Throughout the paper, ‖ · ‖ denotes the Euclidean norm, and a vector x ∈ <n is described as x :=
(x1, x̃) ∈ <×<n−1 with x̃ := (x2, . . . , xn)> ∈ <n−1. For n = 1, K1 is the set of nonnegative reals, i.e.,
K1 = <+.

In this decade, the problems with SOC constraints attract much attention. For instance, the linear
second-order cone programming problem (SOCP), which involves some classes of convex quadratic
programming problems as special cases, is solved by the interior point method efficiently [1, 20].
Especially, the primal-dual interior point method for the linear programming problems (LP) was
extended to the linear SOCP by some researchers. Also, some softwares have been proposed [27].
However, the simplex type method is not popular for linear SOCP since, on the contrary to LP, the
feasible region is not polyhedral in general. Although some simplex type approach for linear SOCP
was studied in [22], it is applicable only to a restricted class of SOCP, and generally requires an
infinite number of iterations to converge. On the other hand, nonlinear SOCP is more complicated,
and there exist fewer studies. In [30], the authors proposed an algorithm which involves a primal-dual
merit function that consists of the barrier function and the potential function, and showed its global
convergence. The second-order cone complementarity problem (SOCCP) is an extension of the linear
and nonlinear complementarity problem [7, 8] to SOC version. In [10], the authors introduced Jordan
algebra to SOCCP, and analyzed some properties for the smoothing functions that are necessary for
developing efficient algorithms. Based on the analyses in [10], Hayashi, Yamashita and Fukushima
[15] proposed a globally and quadratically convergent algorithm with smoothing and regularization
methods. Chen, Chen and Tseng [5] studied some properties of nonsmooth vector-valued functions for
SOCCP, which are helpful for analyzing the convergence properties of algorithms. For linear SOCCP,

2



a matrix splitting method was proposed in [14], which is efficient for SOCCPs with large-scaled and
sparse matrices.

The main purpose of the paper is to construct an algorithm for solving LSSIP (1.2) and study its
convergence properties. Actually, we extend Lai and Wu’s explicit algorithm [18] for linear SIP to
LSSIP (1.2). However, its analysis technique is quite different. While the slackness complementarity
conditions for each subproblem was analyzed componentwisely in [18], those for LSSIP (1.2) cannot
be decomposed to each component. We therefore define the coordinate system based on the spectral
factorization associated with SOCs. We also note that our algorithm introduces the relaxed scheme
which does not require solving the global minimization problem with respect to t ∈ T in each iteration.
Instead of solving such a minimization problem, the algorithm has only to find some t ∈ T such that
a certain criterion with small γ > 0 is satisfied. We prove that the algorithm outputs an approximate
solution in a finite number of iterations, and the obtained approximate solution converges to the
original LSSIP solution as γ tends to 0.

One may think the LSSIP of the form (1.2) is too restrictive. We can indeed define a more general
LSSIP in which a finite number of equality constraints are added, and the SOC constraint is replaced
by the Cartesian version: x ∈ Kn1 × · · · × Knm with n1 + · · · + nm = n. Such an LSSIP involves
every linear SOCP as a subproblem, and several applications such as robust optimization [3, 4] can
be considered. However, in the paper, we focus only on a simple LSSIP of the form (1.2) to avoid
complicating the analyses too much. We believe that the obtained results and proof techniques will
be a foothold for the studies of more general LSSIPs.

This paper is organized as follows. In Section 2, we give some preliminaries. We first introduce
the spectral factorization associated with SOCs, which is a fundamental and important tool for an-
alyzing the SOCs. Next we give the duality theorem and the slackness complementarity conditions
for LSSIP (1.2). Since LSSIP (1.2) has an infinite number of constraints, the decision variable for the
dual problem cannot be written as a finite-dimensional vector. In Section 3, we propose an explicit
exchange algorithm for LSSIP (1.2), and show the finite termination and some convergence result. In
Section 4, we give some numerical results to see the performance of the algorithm. In Section 5, we
conclude the paper with some remarks.

2 Preliminaries

In this section, we give some preliminaries that are necessary for analyzing and understanding the
proposed algorithms.

2.1 Spectral factorization associated with second-order cones

We first introduce the spectral factorization for SOCs. This technique is one topic of Jordan algebra
[9], and plays an important role in describing the relation between the SOC and the current iteration
point in the algorithm.

For an arbitrary vector x := (x1, x̃) ∈ < × <n−1 with n ≥ 2, its spectral values λ1(x), λ2(x) ∈ <

3



and spectral vectors v1(x), v2(x) ∈ <n are defined by

λi(x) := x1 + (−1)i‖x̃‖,

vi(x) :=





1
2

(
1, (−1)i x̃

‖x̃‖
)

if x̃ 6= 0,

1
2

(
1, (−1)iw

)
if x̃ = 0,

(i = 1, 2)

respectively, where w ∈ <n−1 is an arbitrary vector such that ‖w‖ = 1. Then the spectral factorization
for x is given by

x = λ1(x)v1(x) + λ2(x)v2(x). (2.1)

Note that λ1(x) ≤ λ2(x) always holds, and λ1(x) ≥ 0 if and only if x ∈ Kn. Moreover, λ1(x) = 0 if
and only if x ∈ bdKn (boundary of Kn), and λ1(x) > 0 if and only if x ∈ intKn (interior of Kn). We
also have ‖v1(x)‖ = ‖v2(x)‖ = 1/

√
2 and v1(x)>v2(x) = 0.

2.2 Duality theory and complementarity slackness conditions

Next, we introduce the duality theory for LSSIP (1.2), and the complementarity slackness conditions.
Let M(T ) be the space of all bounded regular Borel measures on T , and M+(T ) be the nonnegative
cone in M(T ). Then, the dual problem for LSSIP (1.2) is given by

Maximize
∫

T
b(t)dµ(t)

subject to µ ∈ M+(T ), c−
∫

T
a(t)dµ(t) ∈ Kn, (2.2)

where
∫

T
a(t)dµ(t) :=

(∫

T
a1(t)dµ(t), . . . ,

∫

T
an(t)dµ(t)

)>
∈ <n.

For any primal and dual feasible pair (x, µ), the weak duality holds, that is,

c>x ≥
∫

T
b(t)dµ(t),

since x, y ∈ Kn entails x>y ≥ 0. Moreover, under some mild assumptions, the strong duality also
holds.

Proposition 2.1 (Strong duality theorem)

(a) Suppose that the primal problem (1.2) has an optimum x∗, and there exists a feasible point
x ∈ Kn such that a(t)>x− b(t) > 0 for any t ∈ T . Then the dual problem (2.2) has an optimum
µ∗ ∈ M+(T ) such that c>x∗ =

∫
T b(t)dµ∗(t).

(b) Suppose that the dual problem (2.2) has an optimum ν∗, and there exists a feasible point µ ∈
M+(T ) such that c− ∫

T a(t)dµ(t) ∈ intKn for any t ∈ T . Then the primal problem (1.2) has an
optimum x∗ such that c>x∗ =

∫
T b(t)dµ∗(t).

By using the strong duality theorem, we can derive the complementarity slackness conditions for
LSSIP (1.2). We omit the proof since it can be obtained in a trivial manner.

4



Proposition 2.2 (Complementarity slackness conditions) Let x∗ ∈ <n and µ∗ ∈ M(T ) be fea-
sible solutions for (1.2) and (2.2), respectively. Suppose that the assumption in either Proposition
2.1 (a) or (b) holds. Then, both x∗ and µ∗ are optimal if and only if

µ∗ ∈ M+(T ), a(t)>x∗ − b(t) ≥ 0 (∀t ∈ T ),
∫

T

(
a(t)>x∗ − b(t)

)
dµ∗(t) = 0,

x∗ ∈ Kn, c−
∫

T
a(t)dµ∗(t) ∈ Kn, (x∗)>

{
c−

∫

T
a(t)dµ∗(t)

}
= 0. (2.3)

The vectors x ∈ <n and z ∈ <n are said to satisfy the SOC complementarity conditions if

x ∈ Kn, z ∈ Kn, and x>z = 0. (2.4)

In (2.3), the vectors x∗ and c− ∫
T a(t)dµ∗(t) satisfy the SOC complementarity conditions.

If two vectors satisfy the SOC complementarity conditions, then the following proposition holds.

Proposition 2.3 Suppose that n-dimensional vectors x and z satisfy the SOC complementarity con-
ditions (2.4). Then, either of the following three cases holds for spectral values:

(a) 0 = λ1(x) = λ2(x) and 0 ≤ λ1(z) ≤ λ2(z) (i.e., x = 0 and z ∈ Kn),

(b) 0 ≤ λ1(x) ≤ λ2(x) and 0 = λ1(z) = λ2(z) (i.e., x ∈ Kn and z = 0),

(c) 0 = λ1(x) ≤ λ2(x) and 0 = λ1(z) ≤ λ2(z) (i.e., x ∈ bdKn,

z ∈ bdKn, and x ⊥ z).

Moreover, the spectral vectors for x and z can be chosen so that

v1(x) = v2(z) and v2(x) = v1(z). (2.5)

Proof. Suppose that x and z satisfy the SOC complementarity conditions (2.4). It is obvious that
(a) and (2.5) hold if x = 0, and (b) and (2.5) also hold if z = 0. Therefore, we only consider the case
where x 6= 0 and z 6= 0. If x̃ = 0, then it follows 0 = x>z = x1z1 + x̃>z̃ = x1z1, i.e., x1 = 0 or
z1 = 0. However, this together with x1 ≥ ‖x̃‖ and z1 ≥ ‖z̃‖ yields x = 0 or z = 0. Hence, we have
x̃ 6= 0. We also have z̃ 6= 0 in an analogous way. Now, we first show (2.5). Let θ denote the angle
between x̃ and z̃. Then we have 0 = x1z1 + x̃>z̃ ≥ ‖x̃‖‖z̃‖+ x̃>z̃ = ‖x̃‖‖z̃‖(1 + cos θ). Since x̃ 6= 0
and z̃ 6= 0, we have cos θ = −1, which implies x̃ = −αz̃ for some α > 0. We thus obtain (2.5). Next
we show (c), i.e., λ1(x) = λ1(z) = 0. Note that cos θ = −1 implies x̃>z̃ = −‖x̃‖‖z̃‖. Then we have
0 = x1z1 + x̃>z̃ = x1z1 − ‖x̃‖‖z̃‖ ≥ x1‖z̃‖ − ‖x̃‖‖z̃‖, which together with z̃ 6= 0 implies x1 ≤ ‖x̃‖.
Since x1 ≥ ‖x̃‖ from x ∈ Kn, we have x1 − ‖x̃‖ = λ1(x) = 0. We also obtain λ1(z) = 0 in a similar
manner. This completes the proof.

From Proposition 2.3, the spectral factorizations for vectors x and z satisfying SOC complementarity
conditions can be rewritten as

x = x̂1ê1 + x̂2ê2, z = ẑ1ê1 + ẑ2ê2, (2.6)

where

x̂1 = λ1(x)/
√

2, x̂2 = λ2(x)/
√

2, ẑ1 = λ2(z)/
√

2, ẑ2 = λ1(z)/
√

2

ê1 =
√

2v1(x) =
√

2v2(z), ê2 =
√

2v2(x) =
√

2v1(z).

Moreover, the following statements hold.

5



(a) ê1, ê2 ∈ bdKn, ‖ê1‖ = ‖ê2‖ = 1, (ê1)>ê2 = 0, and ê1 + ê2 = (
√

2, 0)>.

(b) 0 ≤ x̂1 ≤ x̂2, 0 ≤ ẑ2 ≤ ẑ1, and min{x̂1, ẑ1} = min{x̂2, ẑ2} = 0.

In the subsequent analyses, we adopt the expression (2.6) instead of the original spectral factorization.
The above statement (b) and the expression (2.6) correspond to the componentwise expression for

the usual complementarity conditions and the orthonormal system in <n, respectively. If the vectors
x and z satisfy the usual complementarity conditions:

x ≥ 0, z ≥ 0, and x>z = 0,

then it follows for every i, xi ≥ 0, zi ≥ 0, and min{xi, zi} = 0. In this case, x and z can be decomposed
as x =

∑n
i=1 xiei and z =

∑n
i=1 ziei, respectively, where ei is the n-dimensional vector whose i-th

component is 1 and other components are 0. Similarly, ê1 and ê2 are the orthonormal bases for the
2-dimensional subspace containing x, z, and the axis2 of the SOC. We note, however, that ê1 and ê2

depend on (x,z), while ei is fixed for every i.

3 Explicit exchange algorithm

In this section, we propose an explicit exchange algorithm for solving LSSIP (1.2). Moreover, we show
that the algorithm terminates in a finite number of iterations, and the obtained solution is sufficiently
close to the original LSSIP solution if the criterion value is sufficiently close to 0.

In the algorithm, we solve the finitely constrained SOCP as the subproblem for each iteration. For
a finite set T ′ := {t1, . . . , tm} ⊂ T , we define the finitely constrained linear SOCP, say LSOCP(T ′), as

Minimize c>x

subject to x ∈ Kn, a(tj)>x− b(tj) ≥ 0 (j = 1, . . . , m),

and its dual problem DLSOCP(T ′) as

Maximize
m∑

j=1

b(tj)ν(tj)

subject to ν(tj) ≥ 0, c−
m∑

j=1

a(tj)ν(tj) ∈ Kn.

Here, the dual variable {ν(tj)}m
j=1 can be regarded as an m-dimensional real vector. In the remainder

of the paper, we denote the optimal values of LSOCP(T ′) and DLSOCP(T ′) by VP (T ′) and VD(T ′),
respectively. Moreover, we denote the optimal value of LSSIP (1.2) by VP (T ) for convenience.

One possible choice for solving LSSIP (1.2) is to apply the discretization method, which solves
LSOCP(T k) at each iteration and updates {T k} so that dist(T k, T ) → 0. Another possible choice is
the implicit cutting plane algorithm, which solves LSOCP(T k) at each iteration and updates {T k} so
that T k+1 := T k ∪ {tk} with tk ∈ argmint∈T {a(t)>xk − b(t)}. These two algorithms are intuitively
comprehensible, and the convergence analyses in the existing literature may be applied to SOC version
directly. However, they have fatal flaws. As k becomes larger, the constraints of each subproblem

2The axis of SOC is defined by {(α, 0, . . . , 0)> ∈ <n |α ∈ <}.

6



increase unboundedly, and hence it becomes more and more expensive. In order to avoid such a diffi-
culty, we propose an explicit exchange algorithm based on the approach in [18]. The algorithm keeps
the size of subproblems bounded by removing inactive constraints. Moreover, the global minimization
problem with respect to t ∈ T need not be solved in each iteration. The detailed steps are given as
follows.

Algorithm 3.1

Step 0 Choose a small real number γ > 0 and finite points E0 := {t01, . . . , t0m0
} ⊂ T . Solve

LSOCP(E0) to obtain its optimum x0. Set k := 0.

Step 1 Find a tknew ∈ T such that

a(tknew)>xk − b(tknew) < −γ. (3.1)

If such a tknew does not exist, i.e., mint∈T {a(t)>xk − b(t)} ≥ −γ, then terminate.
Otherwise, let

E
k+1 := Ek ∪ {tknew}.

Step 2 Solve LSOCP(Ek+1) and DLSOCP(Ek+1) to obtain their solutions xk+1 and {νk+1(t) |
t ∈ E

k+1}, respectively.

Step 3 Let

Ek+1 := {t ∈ E
k+1 | νk+1(t) > 0}.

Set k := k + 1 and return to Step 1.

In Step 1, it is also possible to choose multiple elements satisfying (3.1). Although we only deal
with the one-point exchange scheme in the following analyses, they are also applicable to multiple
exchange type algorithms. In Step 2, LSOCP(Ek+1) and DLSOCP(Ek+1) can be solved simultaneously
by using an existing method. Here, we note that xk+1 also solves LSOCP(Ek+1). In Step 3, all
inactive constraints at the optimum xk are removed, since the complementarity conditions imply
that a(t)>x − b(t) = 0 for any t such that νk+1(t) > 0. This step is the main difference from the
discretization method and the implicit cutting plane algorithm.

Before showing the finite termination of the algorithm, we define some notations for convenience.
Let {xk} and {νk} be the sequence generated by Algorithm 3.1. Then, we denote

Zk := {t ∈ E
k | νk(t) = 0}, yk(t) := a(t)>xk − b(t), zk := c−

∑

t∈Ek

a(t)νk(t).

It is obvious that Ek ∪ Zk = E
k and Ek ∩ Zk = ∅. Moreover, from the complementarity slackness

conditions, it follows

νk(t) ≥ 0, yk(t) ≥ 0, νk(t) yk(t) = 0, (∀t ∈ E
k)

xk ∈ Kn, zk ∈ Kn, (xk)>zk = 0.

We decompose the iteration points xk and zk in a way analogous to (2.6) as follows:

xk = x̂k
1ê

k
1 + x̂k

2ê
k
2 and zk = ẑk

1 êk
1 + ẑk

2 êk
2.

7



Notice that (êk
1, ê

k
2) 6= (êk+1

1 , êk+1
2 ) in general. We further define the indices sets by

Uk
+ := {i ∈ {1, 2} | x̂k

i > 0}, Uk
0 := {i ∈ {1, 2} | x̂k

i = 0}.

For i = 1 and 2, i ∈ Uk
+ implies ẑk

i = 0 since min{x̂k
i , ẑ

k
i } = 0. Moreover, due to x̂k

1 ≤ x̂k
2, only the

following three cases are possible:

(i) Uk
0 = ∅, Uk

+ = {1, 2}, (ii) Uk
0 = {1}, Uk

+ = {2}, (iii) Uk
0 = {1, 2}, Uk

+ = ∅.

Next, we give some assumptions and lemmas that are necessary for the subsequent analyses. We
first introduce the following assumption.

Assumption A For all k, (i) LSOCP(Ek) and DLSOCP(Ek) have unique solutions respectively, and
(ii) VP (Ek) = VD(Ek).

Assumption A(i) usually holds since the feasible regions of LSOCP(Ek) and DLSOCP(Ek) are inter-
sections of a polyhedral and an SOC (or its affine transformation), respectively. Assumption A(ii) is
the strong duality, which also holds in most cases. Under the above assumption, we have the following
lemma.

Lemma 3.1 Suppose that Assumption A holds. Then, it follows for all k ≥ 0 that

(a) VP (Ek) < VP (Ek+1),

(b) tknew ∈ Ek+1.

Proof. We first show (a). Let Fk and Fk be the feasible regions of LSOCP(Ek) and LSOCP(Ek),
respectively. Then, we have xk 6= xk+1 since xk+1 ∈ Fk+1 and xk /∈ Fk+1. Moreover, VP (Ek) ≤
VP (Ek+1) since VP (Ek+1) = VP (Ek+1) and Fk ⊇ Fk+1. Now, we assume VP (Ek) = VP (Ek+1) for
contradiction. Then, xk+1 solves not only LSOCP(Ek+1) but also LSOCP(Ek) since VP (Ek) =
VP (Ek+1) = VP (Ek+1) and Fk ⊇ Fk+1. Hence, both xk and xk+1 solve LSOCP(Ek). However, we
have xk 6= xk+1, which contradicts Assumption A. Hence we have (a).

Next we show (b). Assume tknew /∈ Ek+1 for contradiction. Then we have νk+1(tknew) = 0, which
yields VD(Ek+1) = b(tknew)νk+1(tknew) +

∑
t∈Ek b(t)νk+1(t) = 0 +

∑
t∈Ek b(t)νk+1(t) = VD(Ek). This,

together with VD(Ek+1) = VP (Ek+1) and VD(Ek) = VP (Ek), implies VP (Ek+1) = VP (Ek), which
contradicts (a). We thus have (b).

The following lemma evaluates the increment of {VP (Ek)} in each iteration.

Lemma 3.2 Suppose that Assumption A holds. Then we have

VP (Ek+1)− VP (Ek) =
∑

t∈Zk+1

yk+1(t)νk(t) + (zk)>xk+1

= −(zk+1)>xk − yk(tknew)νk+1(tknew).

Proof. From the definition of zk, we have

(zk)>xk+1 =



c−

∑

t∈Ek

a(t)νk(t)





>

xk+1

8



= −
∑

t∈Ek

a(t)>xk+1νk(t) + c>xk+1

= −
∑

t∈Ek

(
yk+1(t) + b(t)

)
νk(t) + VP (Ek+1)

= −
∑

t∈Ek

yk+1(t)νk(t)−
∑

t∈Ek

b(t)νk(t) + VP (Ek+1)

= −
∑

t∈Zk+1

yk+1(t)νk(t)− VP (Ek) + VP (Ek+1),

where the last equality holds since

∑

t∈Ek

b(t)νk(t) =
∑

t∈E
k

b(t)νk(t) = VD(Ek) = VP (Ek)

and

∑

t∈Ek

yk+1(t)νk(t) = −yk+1(tknew)νk(tknew) +
∑

t∈E
k+1

yk+1(t)νk(t)

= 0 +
∑

t∈Zk+1

yk+1(t)νk(t)

with yk+1(t) = 0 for t ∈ Ek+1 and tknew ∈ Ek+1. Hence, we have the first equality.
Next, we show the second equality. From the definition of yk(t), we have

∑

t∈E
k+1

yk(t)νk+1(t) =
∑

t∈E
k+1

(
a(t)>xk − b(t)

)
νk+1(t)

=
( ∑

t∈E
k+1

a(t)νk+1(t)
)>

xk −
∑

t∈E
k+1

b(t)νk+1(t)

=
( ∑

t∈Ek+1

a(t)νk+1(t)
)>

xk −
∑

t∈Ek+1

b(t)νk+1(t)

= (−zk+1 + c)>xk − VP (Ek+1)

= −(zk+1)>xk + VP (Ek)− VP (Ek+1).

Since yk(t) = 0 for all t ∈ Ek, the above equality yields

VP (Ek+1)− VP (Ek) = −(zk+1)>xk − yk(tknew)νk+1(tknew).

This completes the proof.

Next, we introduce a second group of assumptions.

Assumption B There exist M > 0 and δ > 0 such that the following statements hold for all k ≥ 1.

(a) ‖xk‖ ≤ M , ‖zk‖ ≤ M .

(b) νk(t) ≥ δ for all t ∈ Ek.

(c) δ ≤ max{x̂k
i , ẑ

k
i } ≤ M for i = 1, 2.

(d) If xk ∈ bdKn and xk 6= 0, then there exists t ∈ Ek such that a(t)>êk
2 /∈ (−δ, 0].

9



(e) If xk ∈ intKn, then it follows λmin(HkH
>
k ) ≥ δ, where λmin denotes the minimum

eigenvalue, and the matrix Hk is defined by

Hk :=
(
a(tk1), . . . ,a(tkmk

)
)
∈ <n×mk (3.2)

with Ek = {tk1, . . . , tkmk
}.

Assumption B (a) asserts the boundedness of the generated sequence. Assumptions B (b) and (c) say
that the complementarity slackness conditions for each subproblem holds strictly enough. Moreover,
Assumption B (c) together with min{x̂k

i , ẑ
k
i } = 0 implies

i ∈ Uk
0 ⇐⇒ x̂k

i = 0, ẑk
i ≥ δ,

i ∈ Uk
+ ⇐⇒ x̂k

i ≥ δ, ẑk
i = 0.

Assumptions B (d) and (e) claim a kind of regularity, which holds in most cases. Indeed, Assumption
B (d) is violated only when a(t)>êk

2 belongs to the minute interval (−δ, 0] for all t ∈ Ek. Assumption
B (e) implies that the matrix Hk is sufficiently full rank. We note, however, that the vector xk is
usually on the boundary of Kn. Otherwise, the SOC constraint in LSOCP (Ek) exercises no influence
on the solution xk.

By using the aforementioned lemmas, we derive the main theorem of this section.

Theorem 3.1 Suppose that Assumptions A and B hold. Then, Algorithm 3.1 terminates in a finite
number of iterations.

Proof. Assume that Algorithm 3.1 does not terminate in finite iterations for contradiction. Then,
from Lemma 3.1 (a) and VP (Ek) ≤ VP (T ), we have limk→∞(VP (Ek+1) − VP (Ek)) = 0. Moreover,
Assumption B(a) and {tknew} ⊆ T imply the existence of xa ∈ <n, ta ∈ T and S ⊆ {0, 1, 2, . . .} such
that limk→∞,k∈S(xk, tknew) = (xa, ta). Let ya : T → < be defined by

ya(t) := a(t)>xa − b(t).

Then, we have limk→∞,k∈S yk(tknew) = ya(ta). Since yk(tknew) < −γ for all k, it follows

ya(ta) ≤ −γ. (3.3)

Now, choose any sufficiently small ε such that 0 < ε < min(δ, δ2). Then, we can find a large integer
N = N(ε) ∈ S such that

0 < VP (EN+1)− VP (EN ) < ε2, (3.4)∣∣∣ya(ta)− yN (tNnew)
∣∣∣ < ε2. (3.5)

In what follows, we divide the proof in two parts. In Part 1, we show

UN
+ = UN+1

+ and UN
0 = UN+1

0 . (3.6)

By using this result, we derive a contradiction in Part 2.

(Part 1) Since UN
+ ∪UN

0 = {1, 2} and UN
+ ∩UN

0 = ∅, it suffices to show UN
0 ⊆ UN+1

0 and UN
+ ⊆ UN+1

+ .
From (3.4) and Lemma 3.2, we have

0 <
∑

t∈ZN+1

yN+1(t)νN (t) + (zN )>xN+1 < ε2. (3.7)

10



From zN ∈ Kn and xN+1 ∈ Kn we have (zN )>xN+1 ≥ 0, which together with (3.7) and
∑

t∈ZN+1

yN+1(t)νN (t) ≥ 0 yields (zN )>xN+1 < ε2. Hence, we have

ε2 > (zN )>xN+1

= (ẑN
1 êN

1 + ẑN
2 êN

2 )>(x̂N+1
1 êN+1

1 + x̂N+1
2 êN+1

2 ). (3.8)

First we show UN
0 ⊆ UN+1

0 . If UN
0 = {1}, then ẑN

2 = 0. Hence, (3.8) reduces to

ε2 > (ẑN
1 êN

1 )>(x̂N+1
1 êN+1

1 + x̂N+1
2 êN+1

2 )

= (ẑN
1 êN

1 )>
{
x̂N+1

1 (êN+1
1 + êN+1

2 )
}

+ (ẑN
1 êN

1 )>(x̂N+1
2 − x̂N+1

1 )êN+1
2

≥ ẑN
1 x̂N+1

1 (êN
1 )>(êN+1

1 + êN+1
2 )

= ẑN
1 x̂N+1

1 ,

where the second inequality is due to x̂N+1
1 ≤ x̂N+1

2 and (êN
1 )>êN+1

2 ≥ 0, and the last equality holds
from êN+1

1 + êN+1
2 = êN

1 + êN
2 = (

√
2, 0)> and (êN

i )>(êN
j ) = δij . Thus we have x̂N+1

1 < ε2/ẑN
1 ≤

ε2/δ < ε < δ, which implies x̂N+1
1 = 0 from Assumption B (c). If UN

0 = {1, 2}, then δ ≤ ẑN
2 ≤ ẑN

1 ,
and hence we have from (3.8) that

ε2 > (ẑN
1 êN

1 + ẑN
2 êN

2 )>(x̂N+1
1 êN+1

1 + x̂N+1
2 êN+1

2 )

≥ (ẑN
1 êN

1 + ẑN
2 êN

2 )>(x̂N+1
2 êN+1

2 )

= ẑN
2 (êN

1 + êN
2 )>(x̂N+1

2 êN+1
2 ) +

{
(ẑN

1 − ẑN
2 )êN

1

}>
(x̂N+1

2 êN+1
2 )

≥ ẑN
2 x̂N+1

2 (êN
1 + êN

2 )>êN+1
2

= ẑN
2 x̂N+1

2 ,

where the second inequality follows since (ẑN
1 êN

1 + ẑN
2 êN

2 )>(x̂N+1
i êN+1

i ) ≥ 0 for i = 1 and 2, the third
inequality follows from ẑN

1 ≥ ẑN
2 , and the last equality holds from êN

1 + êN
2 = êN+1

1 + êN+1
2 = (

√
2, 0)>

and (êN+1
i )>(êN+1

j ) = δij . Hence, we have x̂N+1
2 < ε2/ẑN

2 ≤ ε2/δ < ε < δ, which implies x̂N+1
2 = 0

from Assumption B (c). Since x̂N+1
1 ≤ x̂N+1

2 , we also have x̂N+1
1 = 0.

Next we show UN
+ ⊆ UN+1

+ . Since yN+1(t) = 0 for any t ∈ EN+1 and tNnew ∈ EN+1, we have
∑

t∈ZN+1

yN+1(t)νN (t) =
∑

t∈E
N+1

yN+1(t)νN (t) =
∑

t∈EN

yN+1(t)νN (t).

Hence, by (3.7), we have

0 <
∑

t∈EN

yN+1(t)νN (t) + (zN )>xN+1 < ε2. (3.9)

Now, choose tN ∈ EN arbitrarily. Since (zN )>xN+1 ≥ 0, yN+1(tN ) ≥ 0, and νN (tN ) > 0, we have
from (3.9) that 0 ≤ yN+1(tN )νN (tN ) < ε2. Dividing this by νN (tN ) ≥ δ, we obtain 0 ≤ yN+1(tN ) <

ε2/δ < ε, which also implies

0 ≤ a(tN )>(xN+1 − xN ) < ε (3.10)

since a(tN )>(xN+1 − xN ) = yN+1(tN ) − yN (tN ) and yN (tN ) = 0. First, we consider the case where
UN

+ = {2}, i.e., x̂N
1 = 0 and x̂N

2 ≥ δ. Assume that 2 /∈ UN+1
+ for contradiction. Then, xN+1 = 0

since x̂N+1
2 = 0 and 0 ≤ x̂N+1

1 ≤ x̂N+1
2 . Hence, (3.10) yields 0 ≤ −a(tN )>(x̂N

2 êN
2 ) ≤ ε, that is,

11



0 ≤ −a(tN )>êN
2 ≤ ε/x̂N

2 < δ2/δ = δ. However, this contradicts Assumption B (d) since tN is an
arbitrary element in EN . Hence, we have 2 ∈ UN+1

+ . Next, we consider the case where UN
+ = {1, 2},

i.e., δ ≤ x̂N
1 ≤ x̂N

2 . By (3.10), we have

H>
N (xN+1 − xN ) = O(ε),

where HN is the matrix defined by (3.2) for k := N . By Assumption B (e), we have xN+1−xN = O(ε),
which implies x̂N+1

i − x̂N
i = O(ε) for i = 1, 2 since

√
2x̂N

i = xN
1 + (−1)i{(xN

2 )2 + · · · + (xN
n )2}1/2 for

xN = (xN
1 , xN

2 , . . . , xN
n )>. If i ∈ UN

+ , then x̂N
i ≥ δ, which together with x̂N+1

i − x̂N
i = O(ε) yields

x̂N+1
i > 0 (i.e., x̂N+1

i ≥ δ). Thus we obtain UN
+ ⊆ UN+1

+ .

(Part 2) From Lemma 3.2 and (3.4), we have

0 <
∑

t∈ZN+1

yN+1(t)νN (t) + (zN )>xN+1 < ε2, (3.11)

0 < −(zN+1)>xN − yN (tNnew)νN+1(tNnew) < ε2. (3.12)

Consider

(zN+1)>xN = (ẑN+1
1 êN+1

1 + ẑN+1
2 êN+1

2 )>(x̂N
1 êN

1 + x̂N
2 êN

2 ).

Then, due to (3.6), the following three cases are possible: (i) UN
+ = UN+1

+ = ∅, (ii) UN
+ = UN+1

+ =
{1, 2}, (iii) UN

+ = UN+1
+ = {2}. If (i) holds, then x̂N

1 = x̂N
2 = 0, and hence (zN+1)>xN = 0. If (ii)

holds, then ẑN+1
1 = ẑN+1

2 = 0, and hence, (zN+1)>xN = 0. If case (iii) holds, then ẑN
2 = x̂N+1

1 = 0,
which together with (3.11) and yN+1(t)νN (t) ≥ 0 for all t ∈ ZN+1 yields

ε2 > (zN )>xN+1 = ẑN
1 x̂N+1

2 (êN
1 )>êN+1

2 ≥ δ2(êN
1 )>êN+1

2 .

Since (êN
1 )>êN+1

2 = (êN
2 )>êN+1

1 from the definition, it follows (êN
2 )>êN+1

1 < ε2/δ2. We thus have

(zN+1)>xN = ẑN+1
1 x̂N

2 (êN+1
1 )>êN

2 <
M2ε2

δ2

for every case (i) – (iii). This together with (3.12) yields 0 < −yN (tNnew)νN+1(tNnew) < (1 + M2/δ2)ε2.
Hence, by (3.4), we have

|ya(ta)| < |yN (tNnew)|+ ε2 <
(1 + M2/δ2)ε2

νN+1(tNnew)
+ ε2 ≤

(
1 +

δ2 + M2

δ3

)
ε2,

where the last inequality follows since Lemma 3.1(b) and Assumption B(b) imply νN+1(tNnew) ≥ δ.
Since ε > 0 can be chosen arbitrarily small, it must hold ya(ta) = 0, which contradicts (3.3).

Thus far, we have shown the finite termination of Algorithm 3.1. Nevertheless, the above theorem
would be meaningless if the obtained solution were far from the original LSSIP optimum. The following
theorem guarantees that, if γ > 0 is sufficiently small, then the solution obtained by Algorithm 3.1 is
also close to the original LSSIP optimum.

Theorem 3.2 Suppose that Assumptions A and B hold. Let k(γ) be the number of iterations in which
Algorithm 3.1 terminates. Then, it follows limγ→0 VP (Ek(γ)) = VP (T ). Moreover, if LSSIP (1.2) has
a unique solution x∗, then limγ→0 xk(γ) = x∗.

12



Proof. Let F be the feasible region of LSSIP (1.2), and Fγ be defined by

Fγ :=
{
x

∣∣∣ x ∈ Kn, a(t)>x− b(t) ≥ −γ (∀t ∈ T )
}
.

Then, we can see xk(γ) ∈ Fγ , Fγ ⊇ F , and

lim
γ→0

dist (F ,Fγ) = 0. (3.13)

Let x
k(γ)
pr be the projection of xk(γ) onto F . Then we have

0 < VP (T )− VP (Ek(γ))

=
[
c>xk(γ)

pr − VP (Ek(γ))
]
−

[
c>xk(γ)

pr − VP (T )
]

≤ c>xk(γ)
pr − c>xk(γ)

≤ ‖c‖ ‖xk(γ)
pr − xk(γ)‖, (3.14)

where the second inequality follows from x
k(γ)
pr ∈ F . Since xk(γ) ∈ Fγ , we have

‖xk(γ)
pr − xk(γ)‖ = dist(xk(γ), F) ≤ dist (F ,Fγ),

which together with (3.13) and (3.14) yields limγ→0 VP (Ek(γ)) = VP (T ). The second statement of the
theorem can be proved easily by using the boundedness of {xk(γ)} (Assumption B(a)).

Remark In Step 1 of Algorithm 3.1, we can choose p different points {tk1, . . . , tkp} such that a(tki )
>xk−

b(tki ) < −γ for i = 1, . . . , p, and let E
k+1 := Ek∪{tk1, . . . , tkp}. For such a multiple exchange algorithm,

Theorems 3.1 and 3.2 can be proved in a similar manner.

4 Numerical Results

In this section, we report some numerical results. To implement Algorithm 3.1 practically, we set
the details as follows. In Step 0, we set γ := 10−6, and solve LSOCP(E0) by the SOCCP algorithm
proposed in [15], where each component of the initial point is chosen from [−1, 1] randomly. In Step
1, we calculate tknew by combining the bisection method with Newton’s method. In Step 2, we solve
LSOCP(Ek+1) and DLSOCP(Ek+1) simultaneously by the same SOCCP algorithm, where the initial
point is chosen by exploiting the solutions of the previous subproblems. For a linear SIP with <n

+ or
<n instead of Kn, it is known that the simplex method is efficient for solving subproblems. However,
as far as we know, there are no simplex type algorithms suitable for LSOCP(Ek) and DLSOCP(Ek).
In Step 3, we relax the positivity criterion νk+1(t) > 0 to νk+1 > 10−6. The algorithms are coded in
MATLAB 7.0 and run on a machine with Intel(R) Xeon(TM) CPU 3.60GHz and 2GB RAM.

In the first experiment, we solve the LSSIP (1.2) with T = [−1, 1],

a(t) :=




α1,3t
3 + α1,2t

2 + α1,1t− 1
α2,3t

3 + α2,2t
2 + α2,1t

...
αn,3t

3 + αn,2t
2 + αn,1t




, and b(t) := −(β1t + β2)2 − (β3 + 3), (4.1)

13



where αi,j , βj (i = 1, . . . , n, j = 1, 2, 3), and all components of c are randomly chosen from [−2, 2].
Then, for any choices of αi,j and βj , the feasible region of LSSIP (1.2) is compact and has nonempty
interior. This can be observed as follows. Since a(0) = −(1, 0, . . . , 0)> and −b(0) > 0, the feasible
region of LSOCP({0}) is nonempty and compact. Moreover, for a sufficiently small ε > 0, the vector
uε := (ε, 0, . . . , 0)> satisfies uε ∈ intKn and a(t)T uε − b(t) > 0 for any t ∈ T . In this experiment, we
generate 100 test problem instances for each n = 100, 200, . . . , 500 and solve them by the proposed
algorithm with E0 = {0}. The obtained results are shown in Table 1, in which λ1(x∗) and λ2(x∗)
denote the spectral values of the solution x∗, ]ite denotes the number of iterations, and cpu(s) denotes
the CPU time in seconds. All values are averages of 100 runs for each n. As the table shows, the
algorithm finds the optimal solutions on the boundary of SOCs for all trials.3 It is also seen that the
computational cost becomes higher and higher as n becomes larger, whereas the number of iteration
does not depend on the size of problems. Actually, we obtained the solution in 3 iterations for one
problem and in 14 iterations for another problem, but the average was around 7 for every n.

In the second experiment, we solve the following two LSSIPs:

Minimize
7∑

i=1

xi

i

subject to x ∈ K7,
7∑

i=1

ti−1xi ≥
4∑

i=0

t2i (∀ t ∈ [0, 1]).
(4.2)

Minimize h

subject to

(
h

x

)
∈ K8, h ≥

∣∣∣∣∣
7∑

i=1

ti−1xi − sin
(

5πt

6

)∣∣∣∣∣ (∀ t ∈ [0, 1]).
(4.3)

Note that problem (4.3) is equivalent to the 7-dimensional unconstrained minimization problem with
objective function f(x) := maxt∈[0,1]{‖x‖, |

∑7
i=1 ti−1xi − sin(5πt/6)|}. Although (4.3) is not of the

form LSSIP (1.2), it reduces to LSSIP (1.2) by setting c = (1, 0, . . . , 0)> ∈ <8, T = [0, 1] ∪ [2, 3], and

a(t) :=





(
1, 1, t, t2, . . . , t6

)>
if t ∈ [0, 1]

(
1,−1,−(t− 2),−(t− 2)2, . . . ,−(t− 2)6

)>
if t ∈ [2, 3]

0 otherwise ,

b(t) :=





sin
(

5πt

6

)
if t ∈ [0, 1]

− sin
(

5π(t− 2)
6

)
if t ∈ [2, 3]

−∞ otherwise .

The obtained results are shown in Table 2, where the values of ]ite and cpu(s) are the average of 100
runs with random choices of E0 such that |E0| = n and initial points in solving LSOCP(E0). We
observe that, for all trials in LSSIP (4.2), the number of iteration is always 1. Moreover, at the solution
x∗, the active index set E∗ := {t ∈ T |a(t)>x∗ − b(t) = 0} is the singleton {1}, which is the extreme
point of T . On the other hand, for LSSIP (4.3), the number of iterations is between 2 and 4, and it
varies with the choice of E0 and initial points. Moreover, at the solution x∗, we have E∗ = {0.540},
which is not an extreme point of T .

3If vector c is chosen artificially, the solution can be at the origin or in the interior of SOC.

14



Table 1: Obtained results for LSSIP with (4.1)
n λ1(x∗) λ2(x∗) ]ite cpu(s)

100 0 8.12 7.31 2.81
200 0 8.61 6.85 5.88
300 0 8.49 7.14 13.17
400 0 8.07 7.33 23.90
500 0 8.71 7.55 39.53

Table 2: Obtained results for LSSIPs (4.2) and (4.3)
LSSIP λ1(x∗) λ2(x∗) ]ite cpu(s)
(4.2) 0 3.27 1 0.20
(4.3) 0 0.90 2.98 0.36

5 Concluding Remarks

We proposed the explicit exchange algorithm for solving linear SIP with SOC constraints, and proved
the finite termination. Particularly, in the analyses, we adopted the special coordinate system based
on the spectral factorization for SOCs. We also observed by some numerical experiments that the
proposed algorithm finds the solution efficiently.

Our study is still in the infancy, and several issues remain to be addressed. In the paper, we
considered only a single SOC for the constraint of x ∈ Kn. However, in the practical situation, we
are often required to consider the multiple SOCs version, i.e., x ∈ Kn1 ×Kn2 × · · · × Knm . Although
we expect that the algorithm can be extended to multiple SOCs version in a natural fashion, the
convergence analyses will be quite complicated. It is also challenging to develop the special algorithms
for solving each SOCP. One may think of extending the simplex method for LP to SOCP. However,
it is difficult in general since the feasible region of linear SOCP is not polyhedral and has an infinite
number of extreme points.

References

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Programming,
95 (2003), pp. 3–51.

[2] E. J. Anderson and S.-Y. Wu, The continuous complementarity problem, Optimization, 22
(1991), pp. 419–426.

[3] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathematics of Operations
Research, 23 (1998), pp. 769–805.

[4] , Robust solutions of uncertain linear programs, Operations Research Letters, 25 (1999),
pp. 1–13.

[5] J.-S. Chen, X. Chen, and P. Tseng, Analysis of nonsmooth vector-valued functions associated
with second-order cones, Mathematical Programming, 101 (2004), pp. 95–117.

15



[6] I. D. Coope and C. J. Price, Exact penalty function methods for nonlinear semi-infinite pro-
gramming, in Semi-Inifinte Programming, R. Reemtsen and J. Rückmann, eds., Kluwer Academic
Publishers, Boston, 1998, pp. 137–157.

[7] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem, Aca-
demic Press, San Diego, 1992.

[8] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementar-
ity Problems, Springer-Verlag, New York, 2003.

[9] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Clarendon Press, New York, 1994.

[10] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-order cone com-
plementarity problems, SIAM Journal on Optimization, 12 (2001), pp. 436–460.

[11] M. A. Goberna and M. A. Lopéz, Semi-Infinite Programming: Recent Advances, Kluwer
Academic Publishers, Dordrecht, 2001.

[12] , Linear semi-infinite programming: An updated survey, European Journal of Operational
Research, 143 (2002), pp. 390–405.

[13] G. Gramlich, R. Hettich, and E. Sachs, Local convergence of SQP-methods in semi-infinite
programming, SIAM Journal on Optimization, 5 (1995), pp. 641–658.

[14] S. Hayashi, T. Yamaguchi, N. Yamashita, and M. Fukushima, A matrix splitting method
for symmetric affine second-order cone complementarity problems, Journal of Computational and
Applied Mathematics, 175 (2005), pp. 335–353.

[15] S. Hayashi, N. Yamashita, and M. Fukushima, A combined smoothing and regularization
method for monotone second-order cone complementarity problems, SIAM Journal on Optimiza-
tion, 15 (2005), pp. 593–615.

[16] R. Hettich and K. O. Kortanek, Semi-infinite programming: theory, methods, and applica-
tions, SIAM Review, 35 (1993), pp. 380–429.

[17] H. C. Lai and S.-Y. Wu, Extremal points and optimal solutions for general capacity problems,
Mathematical Programming, 54 (1992), pp. 87–113.

[18] , On linear semi-infinite programming problems: an algorithm, Numerical Functional Analysis
and Optimization, 13 (1992), pp. 287–304.

[19] C. T. Lawrence and A. L. Tits, Feasible sequential quadratic programming for finely dis-
cretized problems from SIP, in Semi-Inifinte Programming, R. Reemtsen and J. Rückmann, eds.,
Kluwer Academic Publishers, Boston, 1998, pp. 159–193.

[20] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone
programming, Linear Algebra and Its Applications, 284 (1998), pp. 193–228.

[21] M. Loṕez and G. Still, Semi-infinite programming, European Journal of Operational Research,
to appear.

16



[22] M. Muramatsu, A pivoting procedure for a class of second-order cone programming, Optimiza-
tion Methods and Software, 21 (2006), pp. 295–314.

[23] E. Polak, Optimization: Algorithms and Consistent Approximation, Springer, New York, 1997.

[24] R. Reemsten and J. Rückmann, Semi-Infinite Programming, Kluwer Academic Publishers,
Boston, 1998.

[25] Y. Tanaka, M. Fukushima, and T. Ibaraki, A globally convergent SQP method for semi-
infinite nonlinear optimization, Journal of Computational and Applied Mathematics, 23 (1988),
pp. 141–153.

[26] K. L. Teo, X. Q. Yang, and L. S. Jennings, Computational discretization algorithms for
functional inequality constrained optimization, Annals of Operations Research, 98 (2000), pp. 215–
234.

[27] K. C. Toh, R. H. Tütüncü, and M. J. Todd, SDPT3 version 3.02 – a MATLAB software
for semidefinite-quadratic-linear programming, updated in December 2002. http://www.math.

nus.edu.sg/~mattohkc/sdpt3.html.

[28] S.-Y. Wu, S. C. Fang, and C. J. Lin, Relaxed cutting plane method for solving semi-infinite
programming problems, Journal of Optimization Theory and Applications, 99 (1998), pp. 759–779.

[29] S.-Y. Wu, D. H. Li, L. Qi, and G. Zhou, An iterative method for solving KKT system of the
semi-infinite programming, Optimization Methods and Software, 20 (2005), pp. 629–643.

[30] H. Yamashita and H. Yabe, A primal-dual interior point method for nonlinear opti-
mization over second order cones, report, 2005. http://www.optimization-online.org/

DB HTML/2005/07/1170.html.

17


