
Approximating the Generalized Capacitated
Tree-routing Problem

Ehab Morsy, Hiroshi Nagamochi

Department of Applied Mathematics and Physics
Graduate School of Informatics

Kyoto University
Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan

{ehab,nag}@amp.i.kyoto-u.ac.jp

Abstract

In this paper, we introduce the generalized capacitated tree-routing problem (GCTR), which
is described as follows. Given a connected graph G = (V, E) with a sink s ∈ V and a set
M ⊆ V − {s} of terminals with a nonnegative demand q(v), v ∈ M , we wish to find a
collection T = {T1, T2, . . . , T`} of trees rooted at s to send all the demands to s, where the
total demand collected by each tree Ti is bounded from above by a demand capacity κ > 0.
Let λ > 0 denote a bulk capacity of an edge, and each edge e ∈ E has an installation cost
w(e) ≥ 0 per bulk capacity; each edge e is allowed to have capacity kλ for any integer k,
which installation incurs cost kw(e). To establish a tree routing Ti, each edge e contained in
Ti requires α+βq′ amount of capacity for the total demand q′ that passes through edge e along
Ti and prescribed constants α, β ≥ 0, where α means a fixed amount used to separate the
inside of the routing Ti from the outside while term βq′ means the net capacity proportional
to q′. The objective of GCTR is to find a collection T of trees that minimizes the total
installation cost of edges. Then GCTR is a new generalization of the several known multicast
problems in networks with edge/demand capacities. In this paper, we prove that GCTR is
(2[λ/(α + βκ)]/bλ/(α + βκ)c + ρST)-approximable if λ ≥ α + βκ holds, where ρST is any
approximation ratio achievable for the Steiner tree problem.

Key words: Approximation Algorithm, Graph Algorithm, Routing Problems, Network
Optimization, Tree Cover.

1 Introduction

In this paper, we introduce the generalized capacitated tree-routing problem (GCTR),
which is described as follows. Given a connected graph G = (V, E) with a demand
capacity κ > 0, a bulk edge capacity λ > 0, a sink s ∈ V , and a set M ⊆ V − {s}
of terminals with a nonnegative demand q(v), v ∈ M , we wish to find a collection

? Technical report 2008-001, March 21, 2008

T = {T1, T2, . . . , T`} of trees rooted at s to send all the demands to s, where the total
demand in the set Zi of terminals assigned to tree Ti does not exceed the demand
capacity κ. Each edge e ∈ E has an installation cost w(e) ≥ 0 per bulk capacity; each
edge e is allowed to have capacity kλ for any integer k, which requires installation cost
kw(e). To establish a tree routing Ti through an edge e, we assume that e needs to have
capacity at least

α + β
∑

v∈Zi∩DTi
(ve

i)

q(v)

for prescribed coefficients α, β ≥ 0, where ve
i is the tail of e in Ti and DTi

(ve
i) denotes

the set of descendants of ve
i in Ti including ve

i ; α means a fixed amount used to separate
the inside and outside of the routing Ti while term β

∑
v∈Zi∩DTi

(ve
i) q(v) means the net

capacity proportional to the amount
∑

v∈Zi∩DTi
(ve

i) q(v) of demands that passes through

edge e along Ti. Hence, given a set T = {T1, T2, . . . , T`} of trees, each edge e needs to
have capacity keλ for the least integer ke such that

∑

Ti∈T :Ti contains e

[α + β
∑

v∈Zi∩DTi
(ve

i)

q(v)] ≤ keλ,

and the total installation cost of edges incurred by T is given as
∑

e∈E kew(e), where
ke = 0 if no Ti ∈ T contains e. The objective of GCTR is to find a set T of trees that
minimizes the total installation cost of edges. We formally state GCTR as follows, where
we denote the vertex set and edge set of a graph G by V (G) and E(G), respectively,
and R+ denotes the set of nonnegative reals.

Generalized Capacitated Tree-Routing Problem (GCTR):
Input: A graph G, an edge weight function w : E(G) → R+, a sink s ∈ V (G), a set
M ⊆ V (G) − {s} of terminals, a demand function q : M → R+, a demand capacity
κ > 0, an edge capacity λ > 0, and prescribed constants α, β ≥ 0.
Feasible solution: A partitionM = {Z1, Z2, . . . , Z`} of M and a set T = {T1, T2, . . . , T`}
of trees of G such that Zi ∪ {s} ⊆ V (Ti) and

∑
v∈Zi

q(v) ≤ κ hold for each i.
Goal: Minimize the total installation cost of T , that is,

∑

e∈E(G)

d ∑

Ti:e∈E(Ti)

(α + β
∑

v∈Zi∩DTi
(ve

i)

q(v))/λew(e),

where ve
i is the tail of e in Ti and DTi

(ve
i) denotes the set of descendants of ve

i in Ti

including ve
i .

We have a variant of GCTR if it is allowed to purchase edge capacity in any required
quantity. In this model, for each edge e of the underlying network, we assign capacity of
λe = α|T ′|+ β

∑
Ti∈T ′

∑
v∈Zi∩DTi

(ve
i) q(v) on e, where T ′ is the set of trees containing e.

That is, the total cost of the constructed trees equals
∑

e∈E λew(e). We call this variant
of GCTR, the fractional generalized capacitated tree-routing problem (FGCTR).

We easily see that GCTR and FGCTR contain two classical NP-hard problems, the
Steiner tree problem and the bin packing problem [6]. We see that GCTR with an edge

2

weighted graph G, α = λ = 1, and β = 0 is equivalent to the Steiner tree problem in G
when κ ≥ ∑

v∈M q(v), and is equivalent to the bin packing problem with bin size κ when
G is a complete graph, w(e) = 1 for all edges e incident to s and w(e) = 0 otherwise. We
see that FGCTR also has a similar relationship with the Steiner tree problem and the
bin packing problem. The Steiner tree problem is known to be NP-hard even if it has
Euclidean or rectilinear costs [5]. A series of approximation algorithms for the Steiner
tree problem have been developed over the last two decades [3,8,10,16,17,19,21]. The
best known approximation factor for the Steiner tree problem is 1.55 [17].

The characteristic of GCTR and FGCTR is their routing capacity which is a linear
combination of the number of trees and the total amount of demands that pass through
an edge. Such a general form of capacity constraint can be found in some applications.

Suppose that we wish to find a minimum number of trucks to carry given n items
v1, v2, . . . , vn, where each item vi has size q(vi) and weight βq(vi), where β is a specific
gravity. We also have bins; the weight of a bin is α and the capacity of a bin is κ. Items
are first put into several bins, and then the bins are assigned to trucks under capacity
constraints. That is, we can put items in a bin B so that the total size

∑
vi∈B q(vi) of

the items does not exceed the bin capacity κ, where the weight of the bin B is given
by a linear combination α + β

∑
vi∈B q(vi). We can load packed bins into a truck as

long as the total weight of these packed bins does not exceed the truck capacity λ. The
objective is to find assignments of items to bins and packed bins to trucks such that
the number of required trucks is minimized. This problem can be described as GCTR.

Suppose that a petroleum corporation wishes to construct a network of pipelines to
collect raw oil from several locations to a set of storage stations (to be specified among
all locations), each of which has a specified demand capacity, and then send the oil from
these storage stations to a specified major refinery. Moreover, for the sake of efficiency,
the corporation staff wants to construct a set of trees that spans all locations, each of
which contains a storage station. A single pipe type with a specified bulk capacity is
available. For each edge of the underlying pipe network, it is allowed to install either
zero or an integer number of pipes, where each pipe has a nonnegative construction
cost. A part of pipe capacity is used to protect the internal surface of the pipe, while
the rest of the pipe capacity needs to be proportional to the amount of oil that goes
through the pipe. Therefore, the required amount of capacity of edge is given as a
linear combination of the number of trees that and the total demand pass through the
edge. The goal of the corporation is to construct the cheapest possible set of feasible
tree-routings so that the demands of all locations can be routed simultaneously to the
refinery without violating the capacity constraint.

Another application can be found in a video delivery system in a computer network.
We are given a graph G = (V,E) with a set V of nodes, a set E of links, a cost function
w : E → R+, and a link bandwidth λ > 0. We have a service center s ∈ V and a set
M ⊆ V of clients (terminals) with demands q : M → R+. The service center s actually
consists of a large number of servers, each can serve at most κ demands from clients
that are assigned to it. Notice that, if we use IP multicast (see [22] for the detail),
then for each server and its clients, the routing subgraph connecting them must be a
tree. Suppose we can install as many links as we can. Then the problem is to find an
assignment of clients to servers that minimizes the total link installation cost without
violating the capacity of every server and the bandwidth of every link, where the latter

3

is considered as a linear combination of the traffic due to the routing (the number of
servers using the link) and the data communication (the total data going through the
link).

Similar routing problems in which the objective function is a linear combination of
two or more optimization requirements have been studied before [1,2,20]. For example,
given a lattice graph with an edge capacity and a vertex cost function, the global routing
problem in VLSI design asks to construct a set of trees that spans a given set of nets
(subsets of the vertex set) under an edge capacity constraint. Terlaky et al. [20] have
studied a problem of minimizing an objective function which is defined as a linear
combination of the total edge cost and the total number of bends of all trees, where
a bend at a vertex corresponds a via in VLSI design, which leads to extra cost in
manufacturing.

We here observe that our new problem formulation, GCTR, includes several important
routing problems as its special cases.

Firstly, GCTR is closely related to the capacitated network design problem (CND),
which has received a number of attentions in the recent study [7,13,18]. The problem
is described as follows.

Capacitated Network Design Problem (CND):
Input: A graph G, an edge weight function w : E(G) → R+, a sink s ∈ V (G), a set
M ⊆ V (G) − {s} of sources, a demand function q : M → R+, and an integer edge
capacity λ ≥ 1.
Feasible solution: A set P = {Pv | v ∈ M} of paths of G such that {s, v} ⊆ V (Pv)
holds for each v ∈ M .
Goal: Minimize the sum of weights of edges to be installed, that is,

∑

e∈E(G)

hP(e)w(e),

where hP(e) = d∑v:e∈E(Pv) q(v)/λe, e ∈ E.

Salman et al. [18] designed a 7-approximation algorithm for CND by using approximate
shortest path trees defined in [11] to route demands to the sink. Afterwards Hassin et
al. [7] gave a (2 + ρST)-approximation algorithm, where ρST is any approximation ratio
achievable for the Steiner tree problem. By designing of a slight intricate version of this
algorithm, they improved the approximation ratio to (1 + ρST) when every source has
unit demand. Note that GCTR and CND are equivalent in the case where α = 0, β = 1,
and κ = λ.

The second special case of GCTR is the capacitated multicast tree routing problem
(CMTR) which can be formally stated as follows.

Capacitated Multicast Tree Routing Problem (CMTR):
Input: A graph G, an edge weight function w : E(G) → R+, a source s ∈ V (G), a set
M ⊆ V (G)−{s} of terminals, a demand function q : M → R+, and a demand capacity
κ > 0.
Feasible solution: A partitionM = {Z1, Z2, ..., Z`} of M and a set T = {T1, T2, ..., T`}

4

of trees of G such that Zi ∪ {s} ⊆ V (Ti) and
∑

v∈Zi
q(v) ≤ κ hold for each i.

Goal: Minimize

∑

e∈E(G)

hT (e)w(e) =
∑

Ti∈T
w(Ti),

where hT (e) = |{T ∈ T | e ∈ E(T)}|, e ∈ E, and w(Ti) denotes the sum of weights of
all edges in Ti.

Observe that CMTR is equivalent to GCTR with α = 1, β = 0, and λ = 1. CMTR also
has received a number of attentions in the recent study [4,9,12,14]. For CMTR with a
general demand, a (2 + ρST)-approximation algorithm is known [9]. If q(v) = 1 for all
v ∈ M , and κ is a positive integer in an instance of CMTR, then we call the problem
of such instances the unit demand case of CMTR. For the unit demand case of CMTR,
Cai et al. [4] gave a (2 + ρST)-approximation algorithm, and Morsy and Nagamochi [14]
recently proposed a (3/2 + (4/3)ρST)-approximation algorithm.

Finally, we observe that GCTR generalizes the capacitated tree-routing problem (CTR)
proposed recently in [15]. The problem can be formulated as follows.

Capacitated Tree-Routing Problem (CTR):
Input: A graph G, an edge weight function w : E(G) → R+, a sink s ∈ V (G), a set
M ⊆ V (G) − {s} of terminals, a demand function q : M → R+, a demand capacity
κ > 0, and an integer edge capacity λ ≥ 1.
Feasible solution: A partitionM = {Z1, Z2, . . . , Z`} of M and a set T = {T1, T2, . . . , T`}
of trees of G such that Zi ∪ {s} ⊆ V (Ti) and

∑
v∈Zi

q(v) ≤ κ hold for each i.
Goal: Minimize the sum of weights of edges to be installed under the edge capacity
constraint, that is,

∑

e∈E(G)

hT (e)w(e),

where hT (e) = d|{T ∈ T | e ∈ E(T)}|/λe, e ∈ E.

Note that CMTR (resp., CND) is equivalent to CTR in the case where λ = 1 (resp.,
κ = 1 and q(v) = 1 for every v ∈ M). On the other hand, CTR is equivalent to GCTR
with α = 1 and β = 0. Thus, the integer edge capacity in CTR represents the number
of trees allowed to contain a copy of the edge. Recently, Morsy and Nagamochi [15]
designed a (2 + ρST)-approximation algorithm for CTR.

As observed above, GCTR is a considerably general model for routing problems. In this
paper, we prove that GCTR admits a (2[λ/(α+βκ)]/bλ/(α+βκ)c+ρST)-approximation
algorithm if λ ≥ α + βκ holds. The high-level description of the proposed algorithm
resembles our algorithm for CTR problem [15], but we need to derive a new lower bound
to the problem. Namely, given an instance I = (G,w, s, M, q, α, β, κ, λ) of GCTR, the
main idea of our algorithm is to compute an integer capacity λ′ depending on λ, κ, α, and
β and then find a feasible tree-routings solution to the instance I ′ = (G,w, s, M, q, κ, λ′)
of CTR. Here such capacity λ′ is chosen so that this set of tree-routings is a feasible
solution to the original GCTR instance I.

5

Table 1
Approximation algorithms for CND, CMTR, CTR, and GCTR problems, where θ = [λ/(α +
βκ)]/bλ/(α + βκ)c.

Problem unit demands q ≡ 1 general demands q ≥ 0

CND α = 0, β = 1,
κ = λ ∈ R+ 1 + ρST [7] 2 + ρST [7]

CMTR α = 1, β = 0,
λ = 1, κ ∈ R+

2 + ρST [4],
3/2 + (4/3)ρST [14]

2 + ρST

[9]

CTR
α = 1, β = 0

λ, κ ∈ R+
2 + ρST [15] 2 + ρST [15]

GCTR α, β, κ, λ ∈ R+ with
λ ≥ α + βκ

2θ + ρST

[this paper]
2θ + ρST

[this paper]

We can show that, with a slight modification, the approximation algorithm proposed
for GCTR delivers a (α + βκ)(2 + ρST)-approximate solution to FGCTR (the details is
omitted due to space limitation).

Table 1 shows a summary of the recent approximation algorithms for CND, CMTR,
CTR, and GCTR.

The rest of this paper is organized as follows. Section 2 introduces some notations and
two lower bounds on the optimal value of GCTR. Section 3 describes some results on
tree covers. Section 4 presents our approximation algorithm for GCTR and analyzes its
approximation factor. Section 5 makes concluding remarks.

2 Preliminaries

This section introduces some notations and definitions. Let G be a simple undirected
graph. We denote by V (G) and E(G) the sets of vertices and edges in G, respectively.
For two subgraphs G1 and G2 of a graph G, let G1 + G2 denote the subgraph induced
from G by E(G1) ∪ E(G2). An edge-weighted graph is a pair (G,w) of a graph G and
a nonnegative weight function w : E(G) → R+. The length of a shortest path between
two vertices u and v in (G,w) is denoted by d(G,w)(u, v). Given a vertex weight function
q : V (G) → R+ in G, we denote by q(Z) the sum

∑
v∈Z q(v) of weights of all vertices in

a subset Z ⊆ V (G).

Let T be a tree. A subtree of T is a connected subgraph of T . A set of subtrees in T is
called a tree cover of T if each vertex in T is contained in at least one of the subtrees.
For a subset X ⊆ V (T) of vertices, let T 〈X〉 denote the minimal subtree of T that
contains X (note that T 〈X〉 is uniquely determined).

Now let T be a rooted tree. We denote by L(T) the set of leaves in T . For a vertex v in
T , let Ch(v) and D(v) denote the sets of children and descendants of v, respectively,
where D(v) includes v. A subtree Tv rooted at a vertex v is the subtree induced by D(v),
i.e., Tv = T 〈D(v)〉. For an edge e = (u, v) in a rooted tree T , where u ∈ Ch(v), the
subtree induced by {v} ∪ D(u) is denoted by Te, and is called a branch of Tv. For a

6

rooted tree Tv, the depth of a vertex u in Tv is the length (the number of edges) of the
path from v to u.

The rest of this section introduces two lower bounds on the optimal value to GCTR.
The first lower bound is based on the Steiner tree problem.

Lemma 1 Given a GCTR instance I = (G,w, s, M, q, α, β, κ, λ), the minimum cost
of a Steiner tree to (G,w, M ∪ {s}) is a lower bound on the optimal value to GCTR
instance I.

Proof. Consider an optimal solution (M∗, T ∗) to GCTR instance I. Let E∗ = ∪T ′∈T ∗E(T ′)
(⊆ E(G)), i.e., the set of all edges used in the optimal solution. Then the edge set E∗

contains a tree T that spans M∪{s} in G. We see that the cost w(T) of T in G is at most
that of GCTR solution. Hence the minimum cost of a Steiner tree to (G,w, M ∪ {s})
is no more than the optimal value to GCTR instance I. 2

The second lower bound is derived from an observation on the distance from vertices
to sink s.

Lemma 2 Let I = (G,w, s,M, q, α, β, κ, λ) be an instance of GCTR. Then,

(α + βκ)/(κλ)
∑

v∈M

q(v)d(G,w)(s, v)

is a lower bound on the optimal value to GCTR instance I.

Proof. Consider an optimal solution (M∗ = {Z1, . . . , Zp}, T ∗ = {T1, . . . , Tp}) to GCTR
instance I. For each edge e ∈ E(Ti), i = 1, 2, . . . , p, we assume that e = (ue

i , v
e
i), where

ve
i ∈ ChTi

(ue
i). Let opt(I) denote the optimal value of GCTR instance I. Then we have

opt(I) =
∑

e∈E(G)

⌈
[α|{Ti | e ∈ E(Ti)}|+ β

∑

Ti:e∈E(Ti)

q(Zi ∩DTi
(ve

i))]/λ
⌉
w(e)

≥ ∑

e∈E(G)

w(e)[α|{Ti | e ∈ E(Ti)}|+ β
∑

Ti:e∈E(Ti)

q(Zi ∩DTi
(ve

i))]/λ

= (α/λ)
∑

e∈E(G)

|{Ti | e ∈ E(Ti)}|w(e)

+(β/λ)
∑

e∈E(G)

w(e)
∑

Ti:e∈E(Ti)

q(Zi ∩DTi
(ve

i))

= (α/λ)
∑

Ti∈T ∗
w(Ti) + (β/λ)

∑

Ti∈T ∗

∑

e∈E(Ti)

q(Zi ∩DTi
(ve

i))w(e). (1)

Note that, for each tree Ti ∈ T ∗, we have

κw(Ti) ≥ w(Ti)
∑

v∈Zi

q(v) ≥ ∑

v∈Zi

q(v)d(G,w)(s, v), (2)

since w(Ti) ≥ d(G,w)(s, v) for all v ∈ V (Ti). On the other hand, for each tree Ti ∈ T ∗,

7

we have
∑

e∈E(Ti)

q(Zi ∩DTi
(ve

i))w(e) =
∑

v∈Zi

q(v)d(Ti,w)(s, v) ≥ ∑

v∈Zi

q(v)d(G,w)(s, v). (3)

Hence by summing (2) and (3) overall trees in T ∗ and substituting in (1), we conclude
that

(α + βκ)/(λκ)
∑

v∈M

q(v)d(G,w)(s, v) ≤ opt(I),

which completes the proof. 2

3 Tree Cover

This section is devoted to present some results on the existence of tree covers, based on
which we design our approximation algorithm to GCTR in the next section.

We first review a basic result on tree covers.

Lemma 3 [9] Given a tree T rooted at r, an edge weight function w : E(T) → R+, a
terminal set M ⊆ V (T), a demand function q : M → R+, and a demand capacity κ
with κ ≥ max{q(v) | v ∈ M}, there is a partition Z = Z1 ∪ Z2 of M such that:

(i) For each Z ∈ Z, there is a child u ∈ Ch(r) such that Z ⊆ V (Tu). Moreover,
|{Z ∈ Z1 | Z ⊆ V (Tu)}| ≤ 1 for all u ∈ Ch(r);

(ii) q(Z) < κ/2 for all Z ∈ Z1;
(iii) κ/2 ≤ q(Z) ≤ κ for all Z ∈ Z2; and
(iv) Let T = {T 〈Z ∪ {r}〉 | Z ∈ Z1} ∪ {T 〈Z〉 | Z ∈ Z2}. Then E(T1) ∩ E(T2) = ∅ for

all distinct trees T1, T2 ∈ T .

Furthermore, such a partition Z can be obtained in polynomial time. 2

The following corollary is an immediate consequence of the particular construction of
a partition Z in Lemma 3.

Corollary 4 [15] Let Z = Z1∪Z2 be defined as in Lemma 3 to (T, r, w, M, q, κ). Then:

(i) E(T 〈Z〉) ∩ E(T 〈∪Z∈Z1Z〉) = ∅ for all Z ∈ Z2.
(ii) Let Z0 ∈ Z1 be a subset such that Z0 ⊆ V (Tu) for some u ∈ Ch(r). If Z ′ = {Z ∈

Z2 | Z ⊆ V (Tu)} 6= ∅, then Z ′ contains a subset Z ′ such that E(T 〈Z0 ∪ Z ′〉) ∩
E(T 〈Z〉) = ∅ for all Z ∈ Z − {Z0, Z

′}. 2

We now describe a new result on tree covers. For an edge weighted tree T rooted at s,
a set M ⊆ V (T) of terminals, and a vertex weight function d : M → R+, we wish to
find a partition M of M and to construct a set of induced trees T 〈Z ∪ {tZ}〉, Z ∈ M
by choosing a vertex tZ ∈ V (T) for each subset Z ∈ M, where we call such a vertex

8

tZ the hub vertex of Z. To find a “good” hub vertex tZ for each Z ∈ M, we classify a
partition M of M into disjoint collections C1, C2, . . . , Cf and then choose hub vertices
tZ , Z ∈ M, such that tZ = tj ∈ {argmint∈Z∈Cj

d(t)} for each Z ∈ Cj, j ≤ f − 1, and
tZ = s for each Z ∈ Cf , as shown in the next lemma.

Lemma 5 Given a tree T rooted at s, an edge weight function w : E(T) → R+, a
terminal set M ⊆ V (T), a demand function q : M → R+, a vertex weight function
d : M → R+, a demand capacity κ with κ ≥ max{q(v) | v ∈ M}, an edge capacity
λ > 0, and prescribed constants α, β ≥ 0 with λ ≥ α + βκ, there exist a partition
M = ∪1≤j≤fCj of M , and a set B = {tj ∈ {argmint∈Z∈Cj

d(t)} | j ≤ f − 1} ∪ {tf = s}
of hub vertices such that:

(i) |Cj| ≤ bλ/(α + βκ)c for all j = 1, 2, . . . , f ;
(ii) q(Z) ≤ κ for all Z ∈M;
(iii)

∑
Z∈Cj

q(Z) ≥ bλ/(α + βκ)c(κ/2) for all j = 1, 2, . . . , f − 1;
(iv) E(T 〈Z〉) ∩ E(T 〈Z ′〉) = ∅ for all distinct Z, Z ′ ∈M; and
(v) Let T ′ = {T 〈Z∪{tj}〉 | Z ∈ Cj, 1 ≤ j ≤ f}, and let all edges of each T 〈Z∪{tj}〉 ∈

T ′, Z ∈ Cj, 1 ≤ j ≤ f be directed toward tj. Then for each edge e ∈ E(T), the
number of trees in T ′ passing through e in each direction is at most bλ/(α + βκ)c.

Furthermore, a tuple (M,B, T ′) can be computed in polynomial time. 2

To prove Lemma 5, we can assume without loss of generality that in a given tree T , (i)
all terminals are leaves, i.e., M = L(T), by introducing a new edge of weight zero for
each non-leaf terminal, and (ii) |Ch(v)| = 2 holds for every non-leaf v ∈ V (T), i.e., T
is a binary tree rooted at s, by replicating internal vertices of degree more than 3, so
that copies of the same vertex are connected with zero-weight edges.

We prove Lemma 5 by showing that the next algorithm actually delivers a desired tuple

.
.

.

Fig. 1. Illustration of the case of |Z2| = g+g̃ ≥ λ′ in an iteration of algorithm TreeCover; (a)
Line 10 identifies a terminal tj ∈ V (Tv) with the minimum vertex weight d, where tj ∈ V (Tu)
in this figure; (b) Line 17 or 19 constructs Cj that contains all subsets in {Z0, Z1, . . . , Zg} and
some subsets in {Z̃1, . . . , Z̃g̃} so that |Cj | = λ′, where the gray subtrees indicate the subsets
in Cj . Line 26 then removes all the terminals in ∪Z∈CjZ from the terminal set M , and hence
no vertices of V (Tu) will be chosen as hub vertices in the subsequent iterations.

9

(M,B, T ′). The algorithm constructs collections C1, C2, . . . , by repeating a procedure
that first chooses a certain vertex v in the current tree, computes a partition Z of the
set of terminals in the subtree rooted at v by Lemma 3, and then selects several subsets
in Z to form the next new collection Cj.

Algorithm TreeCover
Input: A binary tree T̂ rooted at s, an edge weight function w : E(T̂) → R+, a
terminal set M = L(T̂), a demand function q : M → R+, a vertex weight function
d : M → R+, a demand capacity κ with κ ≥ max{q(v) | v ∈ M}, an edge capacity
λ > 0, and prescribed constants α, β ≥ 0 with λ ≥ α + βκ.
Output: A tuple (M,B, T ′) that satisfies Conditions (i)-(v) in Lemma 5.
1 T ′ := ∅; T := T̂ ; j := 0; λ′ = bλ/(α + βκ)c;
2 while The current T has a vertex v with q(V (Tv) ∩M) ≥ κλ′/2 do
3 j := j + 1; Choose such v with the maximum depth in T ;
4 if v ∈ L(T) then
5 Z := {v}; Cj := {Z}; tj := tZ := v; T ′ := T ′ ∪ {T 〈Z ∪ {tZ}〉};
6 else /* |ChT (v)| = 2 by the choice of v */
7 Denote ChT (v) = {u, ũ} and Zv = V (Tv) ∩M ;
8 Find a partition Z1 ∪ Z2 of Zv by applying Lemma 3 with (Tv, w, v, Zv, q, κ);

/* |Z1| ≤ |ChT (v)| = 2 from Lemma 3(i) */
9 Denote Z1 = {Z0, Z̃0} (possibly Z0 = ∅ or Z̃0 = ∅) and Z2 = {Z1, . . . , Zg}

∪{Z̃1, . . . , Z̃g̃}, where Z0 ∪ Z1 ∪ · · · ∪ Zg ⊆ V (Tu) and Z̃0 ∪ Z̃1 ∪ · · · ∪ Z̃g̃

⊆ V (Tũ) (see Fig. 1); /* g, g̃ < λ′ since q(V (Tu) ∩M), q(V (Tũ) ∩M) <
κλ′/2 and q(Z) ≥ κ/2 for every Z ∈ Z2 */

10 Choose tj ∈ {argmint∈M∩V (Tv)d(t)}, where we assume tj ∈ V (Tu) w.l.o.g;
11 if g + g̃ < λ′ then
12 Cj := {Z0 ∪ Z̃0, Z1, . . . , Zg, Z̃1, . . . , Z̃g̃} /* |Cj| = g + g̃ + 1 ≤ λ′. */

/* E(T 〈Z〉) ∩ E(T 〈Z0 ∪ Z̃0〉) = ∅ for all Z ∈ Z2, by Corollary 4(i) */
13 else /* g + g̃ ≥ λ′ */
14 Let Zb ∈ {Z1, . . . , Zg} be a subset such that E(T 〈Z〉) ∩ E(T 〈Z0 ∪ Zb〉)

= ∅ for all Z ∈ Z − {Z0, Zb}; /* Such Zb exists by Corollary 4(ii) and
g > 0 (any Zb ∈ {Z1, . . . , Zg} will do if Z0 = ∅) */

15 Let x̃i ∈ V (T 〈Z̃i〉), i = 1, 2, . . . , g̃ be the vertex closest to v in T , where
the distance from x̃i+1 to v in T is not larger than that from x̃i to v,
1 ≤ i ≤ g̃ − 1, w.o.l.g;

16 if q(Z0 ∪ Zb) ≤ κ then
17 Cj := {Z1, . . . , Zb−1, Z0 ∪ Zb, Zb+1, . . . , Zg} ∪ {Z̃1, . . . , Z̃λ′−g} /* |Cj| = λ′ */
18 else /* q(Z0 ∪ Zb) > κ and g < λ′ − 1 since q(V (Tu) ∩M) < κλ′/2 */
19 Cj := {Z0, Z1, Z2, . . . , Zg} ∪ {Z̃1, . . . , Z̃λ′−g−1} /* |Cj| = λ′ */
20 end if
21 end if;
22 for each Z ∈ Cj do
23 tZ := tj; T ′ := T ′ ∪ {T 〈Z ∪ {tZ}〉}
24 end for
25 end if;
26 M := M − ∪Z∈Cj

Z; T := T 〈M ∪ {s}〉
/* tj 6∈ V (T) */

27 end while;

10

/* q(M) < κλ′/2 */
28 f := j + 1; tf := s;
29 if M = ∅ then
30 Cf := ∅
31 else
32 Find a partition Z1 ∪ Z2 of M by applying Lemma 3 with (T, w, s, M,

q, κ), where Z1 = {Z0, Z̃0}; /* |Z2| < λ′ since q(Z) ≥ κ/2, Z ∈ Z2 */
33 Cf := {Z0 ∪ Z̃0} ∪ Z2; /* |Cf | = |Z2|+ 1 ≤ λ′. */
34 for each Z ∈ Cf do
35 tZ := s; T ′ := T ′ ∪ {T 〈Z ∪ {tZ}〉}
36 end for
37 end if;
38 M := ∪1≤j≤fCj; B := {tj | 1 ≤ j ≤ f}.

Now we prove that the tuple (M,B, T ′) output from algorithm TreeCover satisfies
Conditions (i)-(v) in Lemma 5.

(i) Clearly, |Cj| = 1 ≤ λ′ for any collection Cj computed in line 5. Consider a collection
Cj computed in line 12. We have |Cj| = g+ g̃+1 ≤ λ′ since g+ g̃ < λ′. For any collection
Cj computed in line 17 or 19, it is easy to see that |Cj| = λ′ holds. Note that |Z2| < λ′

in a partition Z1 ∪ Z2 of the current M computed in line 32 since q(Z) ≥ κ/2, Z ∈ Z2

and q(M) < κλ′/2. Hence |Cf | = |Z2| + 1 ≤ λ′ for a collection Cf computed in line 33.
This proves (i).

(ii) For a collection Cj computed in line 5, q(Z) ≤ κ, Z ∈ Cj, by the assumption
that q(v) ≤ κ for all v ∈ M . Consider a partition Z1 ∪ Z2 computed in line 8 by

applying Lemma 3 to (Tv, w, v, Zv, q, κ). Lemma 3(ii)-(iii) implies that q(Z0 ∪ Z̃0) < κ
and q(Z) ≤ κ for all Z ∈ Z2. Furthermore, for a collection Cj computed in line 17, we
have q(Z0 ∪Zb) ≤ κ. Hence each subset Z added to Cj in line 12, 17, or 19 has demand
at most κ. Lemma 3(ii)-(iii) implies also that each subset of Cf computed in line 33 has
demand at most κ. This proves (ii).

(iii) This condition holds for a collection Cj computed in line 5 since q(v) = q(V (Tv) ∩
M) ≥ κλ′/2. Consider a collection Cj computed in line 12. We have

∑
Z∈Cj

q(Z) =∑
Z∈Z1∪Z2

q(Z) = q(Zv) ≥ κλ′/2 since Z1 ∪ Z2 computed in line 8 is a partition of Zv

and q(Zv) ≥ κλ′/2 by using the condition in line 2. For a collection Cj computed in
line 17, Lemma 3(iii) implies that

∑
Z∈Cj

q(Z) ≥ λ′(κ/2) since q(Z) ≥ κ/2, Z ∈ Cj. For
a collection Cj computed in line 19, we have

∑
Z∈Cj

q(Z) =
∑

1≤i≤b−1 q(Zi)+q(Z0∪Zb)+
∑

b+1≤i≤g q(Zi)+
∑

1≤i≤λ′−g−1 q(Z̃i) > (b−1)κ/2+κ+((g−b)+(λ′−g−1))κ/2 = κλ′/2
since q(Z0 ∪ Zb) > κ. This completes the proof of property (iii).

(iv) Consider the execution of the jth iteration of the algorithm. By the construction
of Cj and Lemma 3(iv), we have E(T 〈Z1〉) ∩ E(T 〈Z2〉) = ∅ for all distinct Z1, Z2 ∈ Cj,
where T is the current tree during the jth iteration. Moreover, since any collection
computed in line 5, 12, or 33 contains all subsets in a partition Z1∪Z2 of Zv computed
in line 8 and by the assumption in line 15 used in constructing Cj in line 17 or 19, we
conclude that E(T 〈Z〉) ∩E(T 〈(M −∪Z∈Cj

Z) ∪ {s}〉) = ∅ for all Z ∈ Cj. Hence for any

distinct subsets Z1, Z2 ∈M, we have E(T̂ 〈Z1〉)∩E(T̂ 〈Z2〉) = ∅ since a partition M of

11

M output from the algorithm is a union of collections Cj, j = 1, 2, . . . , f . This proves
(iv).

Before proving the property (v), we can show the following lemma.

Lemma 6 Let (M,B, T ′) be a tuple obtained from a binary tree T̂ by algorithm TreeCover.

Then for each edge e = (x, y) ∈ E(T̂), where y ∈ Ch
T̂
(x), we have

(i) For M1(e) = {Z ∈M | e ∈ E(T̂ 〈Z〉)}, it holds |M1(e)| ≤ 1;

(ii) |{Z ∈M | Z ⊆ V (T̂)− V (T̂y), tZ ∈ V (T̂y)}| ≤ λ′ − 1; and

(iii) |{Z ∈M | Z ⊆ V (T̂y), tZ ∈ V (T̂)− V (T̂y)}| ≤ λ′ − |M1(e)|.

Proof. (i) By Lemma 5(iv), we have E(T̂ 〈Z1〉) ∩ E(T̂ 〈Z2〉) = ∅ for all distinct subsets
Z1, Z2 ∈ M. This means that there exists at most one subset Z ∈ M such that
e ∈ E(T̂ 〈Z〉) and consequently |M1(e)| ≤ 1, which proves (i).

Note that throughout processing of any subtree Tv (for a vertex v chosen in line 3),

the algorithm does not assign any subset in {Z ∈ M | Z ⊆ V (T̂) − V (T̂v)} (resp.,

{Z ∈ M | Z ⊆ V (T̂v)}) to a hub vertex in V (T̂v) (resp., V (T̂)− V (T̂v)). This implies

that when y /∈ D
T̂
(v)−{v}, none of the subsets in {Z ∈M | Z ⊆ V (T̂)−V (T̂y)} (resp.,

{Z ∈ M | Z ⊆ V (T̂y)}) is assigned to a hub vertex in V (T̂y) (resp., V (T̂) − V (T̂y)).

Then it is sufficient to prove properties (ii) and (iii) for the subtree T = T̂ 〈(M −
∪i<j(∪Z∈Ci

Z)) ∪ {s}〉, where the vertex v chosen in line 3 of the jth iteration be such
that y ∈ DT (v)− {v}.

(ii) Consider the first moment when a vertex in V (Ty) is assigned to the hub vertex of a
subset inM2(e) = {Z ∈M | Z ⊆ V (T)−V (Ty)} during the execution of TreeCover.
Let v be the vertex such that the tree Tv with y ∈ DT (v)−{v} is being processed in the
jth iteration of the algorithm. The algorithm first chooses a vertex tj ∈ V (Tv) in line 10,
where tj ∈ V (Tu) is assumed without loss of generality, and then constructs a collection
Cj such that all terminals in V (Tu) are contained in Cj (V (Tu) ∩M ⊆ ∪Z∈Cj

Z) and all
subsets of Cj are assigned to a hub vertex tj (see Fig. 1). This implies that y ∈ V (Tu)
and tj ∈ V (Ty). Moreover, once a set of subsets in M2(e) is assigned to a hub vertex
in Ty in an iteration of the algorithm, none of the vertices of Ty will become a hub
vertex in the subsequent iterations since all terminals in Cj (and hence in V (Tu)) will
be removed from the terminal set in the next iterations (see line 26). Therefore, all
subsets in M2(e) assigned to a hub vertex in V (Ty) are assigned to tj. On the other
hand, the number of subsets assigned to tj (which equals |Cj|) is the sum of the number
of subsets in M2(e) which are assigned to tj and subsets in {Z ∈M | Z ∩ V (Ty) 6= ∅}.
There exists at least one subset in the latter set since tj ∈ V (Ty) (V (Ty) ∩ M 6= ∅).
Hence the number of subsets in M2(e) which are assigned to tj is at most λ′ − 1 since
|Cj| ≤ λ′. This proves (ii).

(iii) Consider the first moment when a vertex in V (T) − V (Ty) is assigned to the
hub vertex of a subset in M3(e) = {Z ∈ M | Z ⊆ V (Ty)} during the execution of
TreeCover. Let v be the vertex such that the tree Tv with y ∈ DT (v)− {v} is being
processed in the jth iteration of the algorithm. Note that, for Ch(v) = {u, ũ}, we have
q(V (Tu) ∩M)/(κ/2), q(V (Tũ) ∩M)/(κ/2) < λ′ since otherwise q(V (Tu) ∩M) ≥ κλ′/2

12

or q(V (Tũ)∩M) ≥ κλ′/2 would violate the choice of v. Thus, for a partition Z1 ∪Z2 of
Zv computed and described in lines 8 and 9, the maximum number of possible subsets
in {Z ∈ Z2 | Z ⊆ V (Tu)} (resp., {Z ∈ Z2 | Z ⊆ V (Tũ)}) is less than λ′. Moreover,
we have |{Z ∈ Z1 | Z ⊆ V (Tu)}|, |{Z ∈ Z1 | Z ⊆ V (Tũ)}| ≤ 1, by Lemma 3(i).
Hence, |{Z ∈ M | Z ∩ V (Tu) 6= ∅}|, |{Z ∈ M | Z ∩ V (Tũ) 6= ∅}| ≤ λ′ hold (since
M = ∪1≤j≤fCj). This implies that |{Z ∈M | Z ∩ V (Ty) 6= ∅}| ≤ λ′ since y ∈ DT (u) or
y ∈ DT (ũ). That is, the number of subsets in M1(e) ∪M3(e) is at most λ′ and hence
the number of subsets in M3(e) is at most λ′−|M1(e)| since M1(e)∩M3(e) = ∅. This
proves (iii). 2

We are ready to prove property (v) in Lemma 5. Let e = (x, y) be an arbitrary edge of

T̂ , where y ∈ Ch
T̂
(x). Let all edges of T̂ 〈Z ∪ tZ〉 ∈ T ′, Z ∈ M, be directed toward tZ ,

and let M1(e) be as defined in Lemma 6. The number of trees in T ′ passing through e

toward y is at most the sum of the number of trees in {T̂ 〈Z ∪{tZ}〉 ∈ T ′ | Z ∈M1(e)}
and trees in {T̂ 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M, Z ⊆ V (T̂) − V (T̂y), tZ ∈ V (T̂y)}. Similarly,
the number of trees in T ′ passing through e toward x is at most the sum of the number
of trees in {T̂ 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈ M1(e)} and trees in {T̂ 〈Z ∪ {tZ}〉 ∈ T ′ | Z ∈
M, Z ⊆ V (T̂y), tZ ∈ V (T̂)−V (T̂y)}. Hence Lemma 6(i)-(iii) completes the proof of (v).
2

Before describing the algorithm, we discuss the following lemma.

Lemma 7 Let (M,B, T ′) be a tuple obtained by applying Lemma 5 to (T, w, s, M, q, d, α,
β, κ, λ). Then we can find a new partition C ′1, C ′2, . . . , C ′f of M by swapping subsets
between C1, C2, . . . , Cf , so that each collection C ′j contains at most bλ/(α + βκ)c sub-
sets from M, all of which are assigned to the hub vertex tj, j = 1, 2, . . . , f , and for
T ′′ = {T 〈Z ∪{tZ}〉 | Z ∈M}, it holds |{T ′ ∈ T ′′ | e ∈ E(T ′)}| ≤ bλ/(α + βκ)c for any
edge e ∈ E(T).

Proof. For each edge e = (x, y) ∈ E(T), y ∈ Ch(x), with |{T ′ ∈ T ′ | e ∈ E(T ′)}| >
bλ/(α + βκ)c, we proceed as follows. Define Min(e) := {Z ∈ M | Z ⊆ V (T) −
V (Ty), tZ ∈ V (Ty)} and Mout(e) := {Z ∈ M | Z ⊆ V (Ty), tZ ∈ V (T) − V (Ty)}.
Lemma 6 implies that

|Min(e)|, |Mout(e)| ≤ bλ/(α + βκ)c − |M1(e)|,

where M1(e) = {Z ∈ M | e ∈ E(T 〈Z〉)}. On the other hand, by the construction of
T ′, we conclude that the number of trees in T ′ passing through e in both directions
equals |Min(e)|+ |Mout(e)|+ |M1(e)|. Therefore, Min(e) 6= ∅ and Mout(e) 6= ∅ in the
case where the total number of trees in T ′ passing through e exceeds bλ/(α + βκ)c. In
this case, we swap an arbitrary subset Z ∈ Min(e) with another subset Z ′ ∈ Mout(e),
where we assume that Z and Z ′ belong to collections Cj and Cj′ , respectively, and
then reassign the hub vertices of Z and Z ′ such that tZ = tj′ and tZ′ = tj. As a
result, Min(e), Mout(e), Cj, Cj′ , and T ′ are updated so that Min(e) := Min(e)− {Z},
Mout(e) := Mout(e) − {Z ′}, Cj := (Cj − {Z}) ∪ {Z ′}, Cj′ := (Cj′ − {Z ′}) ∪ {Z},
and T ′ := (T ′ − {T 〈Z ∪ {tj}〉, T 〈Z ′ ∪ {tj′}〉}) ∪ {T 〈Z ∪ {tZ}〉, T 〈Z ′ ∪ {tZ′}〉}. This
swapping operation decreases the number of trees in T ′ passing through each edge in
E(T 〈Z∪{tj}〉)∩E(T 〈Z ′∪{tj′}〉) (which includes e), where tj and tj′ were the previous
hub vertices of Z and Z ′, respectively, and hence |Min(e)|, |Mout(e)| ≤ bλ/(α+βκ)c−

13

|M1(e)| still holds. Note that, the number of trees in T ′ passing through each of the
remaining edges of T never increases. This swapping process is repeated as long as the
number of trees in the current T ′ passing through e exceeds bλ/(α + βκ)c.

Thus C ′j := Cj, j = 1, 2, . . . , f , and T ′′ := T ′ satisfy conditions of the lemma. 2

The idea of the proof of Lemma 7 is originated from a procedure of swapping paths in
the algorithm for CND problem due to Hassin et al. [7].

4 Approximation Algorithm to GCTR

This section presents an approximation algorithm for an instance I = (G,w, s, M, q, α, β,
κ, λ) of GCTR problem based on results on tree covers in the previous section. Our algo-
rithm begins by computing an approximate Steiner tree T in (G,w, M ∪{s}). We then
find a tree cover T ′′ of the tree T such that, for each e ∈ E(T), |{T ′ ∈ T ′′ | e ∈ E(T ′)}| ≤
bλ/(α+βκ)c and hence

∑
T ′∈T ′′:e∈E(T ′)(α+βq(DT ′(v

e)∩M)) ≤ (α+βκ)|{T ′ ∈ T ′′ | e ∈
E(T ′)}| ≤ (α+βκ)bλ/(α+βκ)c ≤ λ, where e = (ue, ve) ∈ E(T ′) with ve ∈ ChT ′(u

e). Fi-
nally, we connect each tree in T ′′ to s in order to get a tree-routings T in the instance I.

Algorithm ApproxGCTR
Input: An instance I = (G,w, s, M, q, α, β, κ, λ) of GCTR.
Output: A solution (M, T) to I.

Step 1. Compute a ρST-approximate solution T to the Steiner tree problem in G that
spans M ∪ {s} and then regard T as a tree rooted at s.
Define a function d : M → R+ by setting

d(t) := d(G,w)(s, t), t ∈ M.

Step 2. Apply Lemma 5 to (T,w, s, M, q, d, α, β, κ, λ) to get a partitionM = ∪1≤j≤fCj

of M , a set B = {t1, t2, . . . , tf} of hub vertices, where tZ = tj for each Z ∈ Cj,
j = 1, 2, . . . , f , and a set T ′ = {T 〈Z ∪ {tZ}〉 | Z ∈ M} of subtrees of T that satisfy
Conditions (i)-(v) of the lemma.

Step 3. Apply Lemma 7 to the tuple (M,B, T ′) output from Step 2 to get a new
partition C ′1, C ′2, . . . , C ′f of M and a set T ′′ = {T 〈Z ∪ {tZ}〉 | Z ∈ M} of subtrees of
T that satisfy the conditions of the lemma.

Step 4. For each j = 1, 2, . . . , f − 1, choose a shortest path SP (s, tj) between s and tj
in (G,w) and join tj to s by installing a copy of each edge in SP (s, tj).
Let T := {TZ = T 〈Z ∪ {tZ}〉+ SP (s, tZ) | Z ∈M} and output (M, T).

Now we show the feasibility and analyze the approximation factor of the approximate
solution (M, T) output by algorithm ApproxGCTR.

Theorem 8 For an instance I = (G,w, s, M, q, α, β, κ, λ) of GCTR, algorithm Ap-
proxGCTR delivers a (2[λ/(α+βκ)]/bλ/(α+βκ)c+ρST)-approximate solution (M, T),
where ρST is the approximation ratio of solution T to the Steiner tree problem.

14

Proof. Lemma 5(ii) implies that (M, T) satisfies the demand capacity constraint on
each tree.

Now we show that T satisfies the edge capacity constraint. Let M = ∪1≤j≤fC ′j and T ′′

be output from Step 3 of algorithm ApproxGCTR. Note that each tree TZ ∈ T is a
tree T 〈Z ∪ {tZ}〉 ∈ T ′′ plus the shortest path SP (s, tZ) between s and tZ in (G,w).
By Lemma 7, |{T ′ ∈ T ′′ | e ∈ E(T ′)}| ≤ bλ/(α + βκ)c for any e ∈ E(T). On the
other hand, each collection C ′j, j ≤ f , contains at most bλ/(α + βκ)c subsets from M,
all of which are assigned to a common hub vertex tj. Thus, by installing one copy of
each edge of the Steiner tree T and each edge in a shortest path SP (s, tj) between
s and tj in (G,w), j ≤ f − 1 (tf = s), we get a set T of tree-routings such that
|{TZ ∈ T | e ∈ E(TZ)}| ≤ kebλ/(α + βκ)c for any e ∈ E(G), where ke is the number of
installed copies of e. Consequently, for any e ∈ E(G), we observe that

∑

TZ∈T :e∈E(TZ)

(α + βq(DTZ
(ve) ∩ Z))≤ ∑

TZ∈T :e∈E(TZ)

(α + βq(Z))

≤ (α + βκ)kebλ/(α + βκ)c ≤ keλ,

where e = (ue, ve) ∈ E(TZ) with ve ∈ ChTZ
(ue). Thereby (M, T) is feasible to I and

the total weight of the installed edges on the network is bounded by

w(T) +
∑

1≤j≤f−1

d(tj).

For a minimum Steiner tree T ∗ that spans M ∪ {s}, we have w(T) ≤ ρST · w(T ∗) and
w(T ∗) ≤ opt(I) by Lemma 1, where opt(I) denotes the weight of an optimal solution to
GCTR. Hence w(T) ≤ ρST · opt(I) holds. To prove the theorem, it suffices to show that

∑

1≤j≤f−1

d(tj) ≤ 2[λ/(α + βκ)]/bλ/(α + βκ)copt(I). (4)

Consider a collection Cj, j ≤ f − 1 obtained by applying Lemma 5 to (T,w, s, M,
q, d, α, β, κ, λ) in Step 2. Note that even if some subsets of Cj are applied by swapping
in Step 3, the hub vertex of the new collection C ′j remains unchanged. That is, the set B
of hub vertices computed in Step 2 remains unchanged throughout the algorithm. The
choice of tj and Lemma 5(iii) imply that

∑

t∈Z∈Cj

q(t)d(t) ≥ d(tj)
∑

t∈Z∈Cj

q(t) ≥ bλ/(α + βκ)c(κ/2)d(tj). (5)

By summing inequality (5) overall Cj’s, j ≤ f − 1, we have

(α + βκ)bλ/(α + βκ)c/(2λ)
∑

1≤j≤f−1

d(tj)≤ (α + βκ)/(κλ)
∑

1≤j≤f−1

∑

t∈Z∈Cj

q(t)d(t)

≤ (α + βκ)/(κλ)
∑

t∈M

q(t)d(t).

15

Hence Lemma 2 completes the proof of (4). 2

5 Conclusion

In this paper, we have studied the generalized capacitated tree-routing problem (GCTR),
a new routing problem formulation under a multi-tree model with a general routing
capacity, which unifies several important routing problems such as the capacitated net-
work design problem (CND), the capacitated multicast tree routing problem (CMTR),
and the capacitated tree-routing problem (CTR). We have proved that GCTR with
λ ≥ α + βκ is (2[λ/(α + βκ)]/bλ/(α + βκ)c+ ρST)-approximable based on a new lower
bound to the problem and some new results on tree covers, where ρST is any approxima-
tion factor achievable for the Steiner tree problem. Future work may include design of
approximation algorithms for GCTR in the case of λ < α+βκ. Also, it will be interested
to obtain a better approximation algorithm for the fractional generalized capacitated
tree-routing problem (FGCTR). We remark that GCTR with a very small λ compared
with α + βκ is closely related with FGCTR.

References

[1] L. Behjat, New modeling and optimization techniques for the global routing problem, Ph.D.
Thesis, University of Waterloo (2002).

[2] L. Behjat, A. Vannelli, W. Rosehart Integer linear programming models for global routing,
Informs Journal on Computing, 18 (2) (2002) 137-150.

[3] P. Berman, V. Ramaiyer, Improved approximations for the Steiner tree problem, J.
Algorithms, 17 (1994) 381-408.

[4] Z. Cai, G.-H Lin, G. Xue, Improved approximation algorithms for the capacitated multicast
routing problem, In Proceedings of COCOON 2005, LNCS 3595 (2005) 136-145.

[5] M. R. Garey, D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM
J. Appl. Math., 32 (1977) 826-843.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of
NP-completeness, Freeman, San Francisco 1978.

[7] R. Hassin, R. Ravi, F. S. Salman, Approximation algorithms for a capacitated network
design problem, Algorithmica, 38 (2004) 417-431.

[8] S. Hougardy, H. J. Prömmel, A 1.598 approximation algorithm for the Steiner problem in
graphs, In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms,
(1999) 448-453.

[9] R. Jothi, B. Raghavachari, Approximation algorithms for the capacitated minimum
spanning tree problem and its variants in network design, In proceedings of ICALP 2004,
LNCS 3142 (2004) 805-818.

[10] M. Karpinsky, A. Zelikovsky, New approximation algorithms for the Steiner tree problem,
J. Combin. Optim., 1 (1997) 47-65.

16

[11] S. Khuller, B. Raghavachari, N. N. Young, Balancing minimum spanning and shortest
path trees, Algorithmica, 14 (1993) 305-322.

[12] G.-H. Lin, An improved approximation algorithm for multicast k-tree routing, Journal of
Combinatorial Optimization, 9 (2004) 349-356.

[13] Y. Mansour, D. Peleg, An approximation algorithm for minimum-cost network design,
Tech. Report Cs94-22, The Weizman Institute of Science, Rehovot, (1994); also presented
at the DIMACS Workshop on Robust Communication Network, (1998).

[14] E. Morsy, H. Nagamochi, An improved approximation algorithm for capacitated multicast
routings in networks, Theoritical Computer Sceince, 390 (2008) 81-91.

[15] E. Morsy, H. Nagamochi, Approximating capacitated tree-routings in networks, In
Proceedings of the 4th Annual Conference on Theory and Applications of Models of
Computation (TAMC07), LNCS 4484 (2007) 342-353.

[16] H. J. Prömmel, A. Steger, RNC-approximation algorithms for the Steiner problem, In
Proceedings of the 14th Annual Symposium on Theoritical Aspects of Computer Science,
(1997) 559-570.

[17] G. Robins, A. Z. Zelikovsky, Improved Steiner tree approximation in graphs, In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (2000)
770-779.

[18] F. S. Salman, J. Cheriyan, R. Ravi, S. Subramanian, Approximating the single-sink link-
installation problem in network design, SIAM J. Optim., 11 (2000) 595-610.

[19] H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem in graphs,
Math. Japon., 24 (1980) 573-577.

[20] T Terlaky, A. Vannelli, H. Zhang, On routing in VLSI design and communication
networks, ISAAC 2005, LNCS 3827 (2005) 1051-1060.

[21] A. Zelikovsky, An 11/6-approximation algorithm for the network Steiner problem,
Algorithmica, 9 (1993) 463-470.

[22] L. Zhao, H. Yamamoto, Multisource receiver-driven layered multicast, In Proceedings of
IEEE TENCON 2005 (2005), 1325-1328.

17

