
Robust Nash equilibria in N -person non-cooperative

games: Uniqueness and reformulation∗

Ryoichi Nishimura, Shunsuke Hayashi and Masao Fukushima†

Abstract. In this paper we propose a general framework of distribution-free models for N -

person non-cooperative games with uncertain information. In the model, we assume that each

player’s cost function and/or the opponents’ strategies belong to some uncertainty sets, and

each player chooses his/her strategy according to the robust optimization policy. Under such

assumptions, we define the robust Nash equilibrium for N -person games by extending some

existing definitions. We present sufficient conditions for existence and uniqueness of a robust

Nash equilibrium. In order to compute robust Nash equilibria, we reformulate certain classes

of robust Nash equilibrium problems to second-order cone complementarity problems. We

finally show some numerical results to discuss the behavior of robust Nash equilibria.

1 Introduction

Game theory is a mathematical methodology to analyze various decisions in economics or

societies [12, 22]. Nash [20, 21] proposed a concept of equilibrium, called Nash equilibrium, for

non-cooperative games. To define the Nash equilibrium, we usually assume that each player

has a complete knowledge about the game, that is, he*1 can estimate the opponents’ strategy

and evaluate his own cost or profit exactly. This premise is called “complete information.”

However, in the real situation, it is not always satisfied, and hence, we need to define an

alternative equilibrium concept.

There have been a large number of studies on games with uncertain data. Harsanyi [17, 18,

19] proposed a stochastic-based formulation for incomplete information games. He assumed

that each player estimates the probability distribution for the uncertain information and max-

imizes his expected profit, or equivalently minimizes his expected cost. These assumptions
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are called “Bayesian hypothesis.” Then, Harsanyi modeled incomplete information games as

“Bayesian games” under some assumptions on probability distributions. Although Bayesian

games are defined from incomplete information games, their elements (e.g., probability param-

eters) are actually the common knowledge, and hence, it is essentially a complete information

game. Incomplete information games and Bayesian games can be considered to be equivalent

from each player’s strategical viewpoint.

On the other hand, distribution-free models based on the worst-case analysis attract much

attention in recent years [1, 15]. In such models, each player makes a decision according to the

idea of robust optimization [5, 6, 7, 9]. Originally, robust optimization is a technique for han-

dling optimization problems with uncertain parameters, in which those uncertain parameters

are assumed to belong to so-called uncertainty sets, and then the objective function is mini-

mized (or maximized) by taking into account the worst possible case. An equilibrium resulting

from the robust optimization by each player is called a robust Nash equilibrium, and the prob-

lem of finding a robust Nash equilibrium is called a robust Nash equilibrium problem. Aghassi

and Bertsimas [1] considered the robust Nash equilibrium for N -person games in which each

player solves a linear programming (LP) problem*2. Moreover, they proposed a method for

solving the robust Nash equilibrium problem with convex polyhedral uncertain sets. Indepen-

dently of their work, Hayashi, Yamashita, and Fukushima [15] defined the concept of robust

Nash equilibria for bimatrix games. Under the assumption that uncertain sets are expressed

by means of the Euclidean or the Frobenius norm, they showed that each player’s problem

reduces to a second-order cone program (SOCP) [2] and the robust Nash equilibrium problem

can be reformulated as a second-order cone complementarity problem (SOCCP) [13, 14]. In

addition, Hayashi et al. [15] studied robust Nash equilibrium problems in which uncertainty

is contained in both opponents’ strategies and each player’s cost parameters, whereas Aghassi

et al. [1] studied only the latter case.

In this paper, we extend the definition of robust Nash equilibria in [1] and [15] to N -person

non-cooperative games with nonlinear cost functions. In particular, we show existence of

robust Nash equilibria under the assumption that each player’s cost function is convex with

respect to his strategy, while [1] and [15] only considered the linear case. Moreover, we give

some sufficient conditions for uniqueness of a robust Nash equilibrium. In order to solve

certain classes of robust Nash equilibrium problems, we reformulate them to second-order

cone complementarity problems.

This paper is organized as follows. In Section 2, we characterize the uncertainty in the

incomplete information non-cooperative game, and define the robust Nash equilibrium. In

Section 3, we give sufficient conditions under which the existence of Nash equilibria is guar-

*2 In [1] a robust Nash equilibrium is called a robust-optimization equilibrium.
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anteed. In Section 4, we discuss the uniqueness of a robust Nash equilibrium by way of the

generalized variational inequality problem. In Section 5, we reformulate certain classes of ro-

bust Nash equilibrium problems as second-order cone complementarity problems, which can

be solved by some modern algorithms. In Section 6, we show some numerical results and

discuss the behavior of robust Nash equilibria.

Throughout the paper, we use the following notations. For a set X, P(X) denotes the

set consisting of all the subsets of X. <n
+ denotes the nonnegative orthant in <n, that is,

<n
+ := {x ∈ <n | xi ≥ 0 (i = 1, . . . , n)}. For a vector x ∈ <n, ‖x‖ denotes the Euclidean norm

defined by ‖x‖ :=
√

x>x. For a matrix M = (Mij) ∈ <n×m, ‖M‖F is the Frobenius norm

defined by ‖M‖F := (
∑n

i=1

∑m
j=1(Mij)2)1/2.

2 Robust Nash equilibrium

In this paper, we consider an N -person non-cooperative game in which each player tries to

minimize his own cost. Let xi ∈ <mi , Si ⊆ <mi , and fi : <m1 × · · · × <mN → < be player i’s

strategy, strategy set, and cost function, respectively. Moreover, we denote

I := {1, . . . , N}, I−i := I \ {i}, m :=
∑

j∈I
mj , m−i :=

∑

j∈I−i

mj ,

x := (xj)j∈I ∈ <m, x−i := (xj)j∈I−i ∈ <m−i ,

S :=
∏

j∈I
Sj ⊆ <m, S−i :=

∏

j∈I−i

Sj ⊆ <m−i .

When the complete information is assumed, each player i decides his own strategy by solving

the following optimization problem with the opponents’ strategy x−i fixed:

minimize
xi

fi(xi, x−i)

subject to xi ∈ Si.
(2.1)

A tuple (x1, x2, . . . , xN ) satisfying xi ∈ argminxi∈Si
fi(xi, x−i) for each player i = 1, . . . , N is

called a Nash equilibrium. In other words, if each player i chooses the strategy xi, then no

player has an incentive to change his own strategy. The Nash equilibrium is well-defined only

when each player can estimate his opponents’ strategies and evaluate his own cost exactly.

In the real situation, however, any information may contain uncertainty such as observation

errors or estimation errors. Thus, in this paper, we focus on games with uncertainty.

To deal with such uncertainty, we introduce uncertainty sets Ui and Xi(x−i), and assume

the following statements for each player i ∈ I:

(A) Player i’s cost function involves a parameter ûi ∈ <νi , i.e., it can be expressed as f ûi

i :

<mi × <m−i → <. Although player i do not know the exact value of ûi itself, he can
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estimate that it belongs to a given nonempty set Ui ⊆ <νi .

(B) Although player i knows his opponents’ strategies x−i, his actual cost is evaluated with

x−i replaced by x̂−i = x−i + δx−i, where δx−i is a certain error or noise. Player i cannot

know the exact value of x̂−i. However, he can estimate that x̂−i belongs to a certain

nonempty set Xi(x−i).

Then, each player is required to address the following family of problems involving uncertain

parameters ûi and x̂−i:

minimize
xi

f ûi

i (xi, x̂−i)

subject to xi ∈ Si,
(2.2)

where ûi ∈ Ui and x̂−i ∈ Xi(x−i). We further assume that each player chooses his strategy

according to the following criterion:

(C) Player i tries to minimize his worst cost under assumptions (A) and (B).

From assumption (C), each player considers the worst cost function f̃i : <mi × <m−i →
(−∞, +∞] defined by

f̃i(xi, x−i) := sup{f ûi

i (xi, x̂−i) | ûi ∈ Ui, x̂
−i ∈ Xi(x−i)}, (2.3)

and solves the following worst cost minimization problem:

minimize
xi

f̃i(xi, x−i)

subject to xi ∈ Si.
(2.4)

Note that (2.4) is regarded as a complete information game with cost functions f̃i. Based on

the above discussions, we define the robust Nash equilibrium.

Definition 2.1. Let f̃i be defined by (2.3) for i = 1, . . . , N . A tuple (xi)i∈I is called a

robust Nash equilibrium of game (2.2), if xi ∈ argminxi∈Si
f̃i(xi, x−i) for all i, i.e., a Nash

equilibrium of game (2.4). The problem of finding a robust Nash equilibrium is called a robust

Nash equilibrium problem.

3 Existence of robust Nash equilibria

In this section, we give sufficient conditions for the existence of a robust Nash equilibria.

Note that Xi(x−i) given in (B) can be regarded as a set-valued mapping Xi(·) with variable

x−i.

In what follows, we suppose that Xi(·), Ui, fui

and Si in (A) and (B) satisfy the following

assumption.
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Assumption 1. For every i ∈ I, the following statements hold.

(a) The function Gi : <mi × <m−i × <νi → < defined by Gi(xi, x−i, ui) := fui

i (xi, x−i) is

continuous.

(b) The set-valued mapping Xi : <m−i → P(<m−i) is continuous, and Xi(x−i) is nonempty

and compact for any x−i ∈ S−i.

(c) The set Ui ⊆ <νi is nonempty and compact.

(d) The set Si is nonempty, compact and convex, and function fui

i (·, x−i) : <mi → < is convex

on Si for any fixed x−i and ui.

Under Assumption 1, the function f̃i(xi, x−i) defined by (2.3) has the following properties:

• f̃i(xi, x−i) is continuous and finite at any (xi, x−i) ∈ Si × S−i.

• For any fixed x−i ∈ S−i, function f̃i(·, x−i) : <mi → < is convex on Si.

The continuity and finiteness of f̃i can be verified from [4, Theorem 1.4.16], while the convexity

of f̃i(·, x−i) follows from [8, Proposition 1.2.4(c)].

The following lemma is a well-known result for N -person non-cooperative games.

Lemma 3.1. [3, Theorem 9.1.1] Suppose that, for every player i ∈ I, (i) the strategy set Si

is nonempty, convex and compact, (ii) the cost function fi : <mi × <m−i → < is continuous,

and (iii) fi(·, x−i) is convex for any x−i ∈ S−i. Then, game (2.1) has at least one Nash

equilibrium.

By this lemma, we obtain the following theorem for the existence of a robust Nash equilibrium

in game (2.2).

Theorem 3.2. Suppose that Assumption 1 holds. Then, game (2.2) has at least one robust

Nash equilibrium．

Proof. Let i be chosen from I arbitrarily. From Assumption 1, f̃i(xi, x−i) is continuous and

finite at any (xi, x−i) ∈ Si × S−i. Moreover, function f̃i(·, x−i) is convex on Si for any

x−i ∈ S−i. Therefore, from Lemma 3.1, game (2.4) has a Nash equilibrium, that is, game

(2.2) has a robust Nash equilibrium.

4 Uniqueness of the robust Nash equilibrium

In the previous section, we have studied sufficient conditions for existence of robust Nash

equilibria. Under such conditions, there exist a number of robust Nash equilibria in general,
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and it is difficult to find them all. In this section, we therefore study conditions for uniqueness

of a robust Nash equilibrium.

For complete information games, Rosen [23] gave some conditions for the uniqueness of a

Nash equilibrium. Those conditions are essentially equivalent to the strict monotonicity of the

vector-valued function involved in the equivalent variational inequality problem (VIP) [10].

Moreover, such a vector-valued function is defined by using the derivatives of all players’ cost

functions. However, since the worst cost function f̃i defined by (2.3) is in general nondiffer-

entiable, the VIP reformulation approach cannot be applied directly. This fact prompts us

to consider the generalized VIP (GVIP), which is defined by means of a set-valued mapping.

Then, by using the uniqueness results for GVIP, we establish sufficient conditions for the

uniqueness of a robust Nash equilibrium.

For a given set-valued mapping F : <n → P(<n) and a nonempty closed convex set Ω,

GVIP(F , Ω) is to find a vector x ∈ Ω such that

GVIP(F , Ω) : ∃ξ ∈ F(x), 〈ξ, y − x〉 ≥ 0 ∀y ∈ Ω. (4.1)

If the set-valued mapping F is given by F(x) = {F (x)} for a vector-valued function F : <n →
<n, then the GVIP reduces to the following VIP:

VIP(F, Ω) : 〈F (x), y − x〉 ≥ 0 ∀y ∈ Ω. (4.2)

It is well known that if the function F is strictly monotone, then VIP (4.2) has at most one

solution [10]. In fact, a similar result holds for GVIP [11]. Recall that the set-valued mapping

F : <n → P(<n) is said to be monotone (strictly monotone) on a nonempty convex set Ω ⊆ <n

if
〈x− y, ξ − η〉 ≥ (>) 0

for all x, y ∈ Ω (x 6= y) and ξ ∈ F(x), η ∈ F(y).

Proposition 4.1. Suppose that the set-valued mapping F : <n → P(<n) is strictly monotone

on Ω. Then, GVIP (4.1) has at most one solution.

Next, we reformulate a robust Nash equilibrium problem as a GVIP. Specifically, the robust

Nash equilibrium problem (2.4) is equivalent to GVIP(F̃ ,Ω) with F̃ : <m → P(<m) and Ω

defined by

F̃(x) :=
(
∂if̃i(xi, x−i)

)
i∈I

(4.3)

and

Ω := S = S1 × · · · × SN ,

respectively. Here, ∂if̃i denotes the subdifferential of f̃i with respect to player i’s strategy xi.

6



If Assumption 1 holds, then there exists at least one robust Nash equilibrium from Theorem

3.2. Moreover, by Proposition 4.1, if the set-valued mapping F̃ defined by (4.3) is strictly

monotone, then game (2.2) has a unique robust Nash equilibrium.

Next, we give sufficient conditions for F̃ to be strictly monotone. To this end, we introduce

the following assumption:

Assumption 2. For each i ∈ I, the following conditions hold:

(a) The set Xi(x−i) is given by Xi(x−i) = x−i + Di for a nonempty compact set Di ⊆ <m−i .

(b) Function fui

i is expressed as fui

i (xi, x−i) := gui

i (xi) +
∑

j∈I−i
(xi)>Aijx

j with a convex

function gui

i : <mi → < and matrices Aij ∈ <mi×mj (j ∈ I−i).

(c) Either of the following statements holds:

(c-i) For any ui ∈ Ui and i ∈ I, the function gui

i is strongly convex with modulus γ >

−λmin(A0), where λmin(A0) denotes the minimum eigenvalue of A0 := (A0+A>0 )/2

with

A0 :=




0 A12 · · · A1N

A21 0 A2N

...
. . .

...
AN1 AN2 · · · 0


 .

(c-ii) Ui is a singleton, i.e., Ui = {ui}, and the set-valued mapping F : <m → P(<m)

defined by

F(x) := (∂if
ui

i (xi, x−i))i∈I (4.4)

is strictly monotone.

Under the above assumption, we have the following lemma.

Lemma 4.2. Suppose that Assumption 2 holds. Then, the set-valued mapping F̃ defined by

(4.3) is strictly monotone.

Proof. For simplicity, we denote A−i := [Ai1 · · ·Ai i−1 Ai i+1 · · ·AiN ] ∈ <mi×m−i . Then, from

Assumption 2(a)(b), we have

f̃i(x) = max
{

gui

i (xi) + (xi)>A−i(x−i + δx−i)
∣∣∣ ui ∈ Ui, δx

−i ∈ Di

}

= g̃i(xi) + (xi)>A−ix
−i + ψi(xi),

where g̃i(xi) := maxui∈Ui
gui

i (xi) and ψi(xi) := maxδx−i∈Di
(xi)>A−iδx

−i. Hence, we obtain

F̃(x) =
(
∂if̃i(xi, x−i)

)
i∈I

=
(
∂g̃i(xi) + A−ix

−i + ∂ψi(xi)
)
i∈I

=
(
∂g̃i(xi)

)
i∈I + A0x +

(
∂ψi(xi)

)
i∈I ,
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where the second equality holds from [8, Proposition 4.2.4].

We first consider the case where (c-i) holds. Since gui

i is strongly convex with modular γ,

so is g̃i, and hence ∂g̃i is strongly monotone with modulus γ [3]. Then, for any x, y ∈ <m with

x 6= y, we have

min
{

(x− y)>(ξ − η)
∣∣ ξ ∈ F̃(x), η ∈ F̃(y)

}

=min

{∑

i∈I
(xi − yi)>(ξi − ηi)

∣∣∣∣∣
ξi ∈ ∂g̃i(xi) + A−ix

−i + ∂ψi(xi), i ∈ I
ηi ∈ ∂g̃i(yi) + A−iy

−i + ∂ψi(yi), i ∈ I

}

=(x− y)>A0(x− y) +
∑

i∈I
min

{
(xi − yi)>(ξi

α − ηi
α)

∣∣ ξi
α ∈ ∂g̃i(xi), ηi

α ∈ ∂g̃i(yi)
}

+
∑

i∈I
min

{
(xi − yi)>(ξi

β − ηi
β)

∣∣ ξi
β ∈ ∂ψi(xi), ηi

β ∈ ∂ψi(yi)
}

≥(x− y)>A0(x− y) +
∑

i∈I
γ‖xi − yi‖2 > 0,

where the first inequality follows from the strong monotonicity of ∂g̃i and the monotonicity

of ∂ψi, and the last inequality is due to γ > −λmin(A0) and x 6= y. Thus, the set-valued

mapping F̃ is strictly monotone.

We next consider the case where (c-ii) holds. Then, we can rewrite F̃(x) as

F̃(x) =
(
∂if

ui

i (xi, x−i) + ∂ψi(xi)
)
i∈I

= F(x) + (∂ψi(xi))i∈I .

From the strict monotonicity of F and the monotonicity of ∂ψi, the set-valued mapping F̃ is

strictly monotone.

By the above lemmas, we obtain the following theorem on the uniqueness of a robust Nash

equilibrium.

Theorem 4.3. Suppose that Assumptions 1 and 2 hold. Then, game (2.2) has a unique robust

Nash equilibrium.

Proof. By Assumption 1 and Theorem 3.2, game (2.2) has at least one robust Nash equilibrium.

On the other hand, by Proposition 4.1 and Lemma 4.2, game (2.2) cannot have multiple robust

Nash equilibria. Hence, game (2.2) has a unique robust Nash equilibrium.

5 SOCCP formulation of robust Nash equilibrium problem

In this section, we focus on the game in which each player takes a mixed strategy and

minimizes a convex quadratic cost function with respect to his own strategy. We show that
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the robust Nash equilibrium problem then reduces to an SOCCP. We also discuss the existence

and uniqueness properties by using the results obtained heretofore.

Recall that SOCCP [13, 14] is a problem to find a triple (ξ, η, ζ) ∈ <l ×<l ×<ν such that

K 3 ξ ⊥ η ∈ K, G(ξ, η, ζ) = 0, (5.1)

where G : <l × <l × <ν → <l × <ν is a given function, ξ ⊥ η means ξ>η = 0, K is a closed

convex cone defined by K = Kl1 × Kl2 × · · · × Klm with lj-dimensional second-order cones

Klj := {(ζ1, ζ2) ∈ < × <lj−1 | ‖ζ2‖ ≤ ζ1}, j = 1, . . . ,m, and l =
∑m

j=1 lj . SOCCP can be

solved by some existing algorithms such as a smoothing and regularization method [14]. Here,

we consider an SOCCP of the form

K 3 Mζ + q ⊥ Nζ + r ∈ K, Cζ = d (5.2)

with variable ζ ∈ <l+τ and constants M, N ∈ <l×(l+τ), q, r ∈ <l, C ∈ <τ×(l+τ) and d ∈ <τ .

Note that, by introducing auxiliary variables ξ, η ∈ <l, SOCCP (5.2) reduces to SOCCP (5.1)

with G : <3l+τ → <2l+τ defined by

G(ξ, η, ζ) :=




ξ −Mζ − q
η −Nζ − r

Cζ − d


 .

Throughout this section, the cost functions and the strategy sets are given as follows.

(i) Player i’s cost function f ûi

i is given by

f ûi

i (xi, x̂−i) =
1
2
(xi)>Âiix

i + (xi)>
( ∑

j∈I−i

Âij x̂
j + ĉi

)
, (5.3)

where Âij ∈ <mi×mj (j ∈ I) and ĉi ∈ <mi are given constants involving uncertainties.

(ii) Player i takes a mixed strategy, i.e.,

Si = {xi | xi ≥ 0, e>mi
xi = 1}, (5.4)

where emi denotes the vector (1, 1, . . . , 1)> ∈ <mi .

We call Âij and ĉi a cost matrix and a cost vector, respectively. Note that these constants

correspond to the cost function parameter ûi, i.e.,

ûi = vec [Âi1 · · · ÂiN ĉi] ∈ <mi(m+1) (5.5)

where vec denotes the vectorization operator that creates an nm-dimensional vector [(pc
1)
>

· · · (pc
m)>]> from a matrix P ∈ <n×m with column vectors pc

1, . . . , p
c
m.
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5.1 Uncertainty in the opponents’ strategy

In this subsection, we consider the case where each player knows the cost matrices and

vectors exactly but the opponents’ strategies uncertainly. More specifically, we suppose the

following assumption holds.

Assumption 3. For each i ∈ I, uncertainty sets Xi(·) and Ui (i ∈ I) are given as follows.

(a) Xi(x−i) =
∏

j∈I−i
Xij(xj), where Xij(xj) := {xj + δxij | ‖δxij‖ ≤ ρij , e>mj

δxij = 0} with

a given constant ρij ≥ 0.

(b) Ui := {ui} =
{
vec [Ai1 · · ·AiN ci]

}
. Moreover, Aii is symmetric and positive semidefinite.

In Assumption 3(a), the condition e>mj
δxij = 0 is provided so that e>mj

(xj + δxij) = 1 holds
for xj ∈ Sj . Under this assumption, the worst cost function f̃i can be expressed explicitly as
follows:

f̃i(x
i, x−i)

= max


1

2
(xi)>Aiix

i + (xi)>
X

j∈I−i

Aij(x
j + δxij) + (ci)>xi

˛̨
˛̨ ‖δxij‖ ≤ ρij , e

>
mj

δxij = 0 (j ∈ I−i)

ff

=
1

2
(xi)>Aiix

i + (xi)>
X

j∈I−i

Aijx
j + (ci)>xi +

X
j∈I−i

max
n

(xi)>Aijδx
ij
˛̨
˛ ‖δxij‖ ≤ ρij , e

>
mj

δxij = 0
o

=
1

2
(xi)>Aiix

i + (xi)>
X

j∈I−i

Aijx
j + (ci)>xi +

X
j∈I−i

ρij‖Ã>ijxi‖, (5.6)

where Ãij := Aij(Imj−m−1
j emj e

>
mj

), and the last equality follows since Ã>ijx
i is the projection

of A>ijx
i onto the hyperplane πj := {xj | e>mj

xj = 0} and hence the maximum is attained when

δxij = ρij(Ã>ijx
i)/‖Ã>ijxi‖.

5.1.1 Reformulation as SOCCP

We first show that the robust Nash equilibrium problem reduces to the SOCCP (5.2). By

using the explicit expression (5.6) of f̃i and auxiliary variables yij ∈ < (j ∈ I−i), player i’s

worst cost minimization problem (2.4) can be reformulated as the following SOCP:

minimize
xi,yij

1
2
(xi)>Aiix

i + (xi)>
∑

j∈I−i

Aijx
j + (ci)>xi +

∑

j∈I−i

ρijyij

subject to ‖Ã>ijxi‖ ≤ yij (j ∈ I−i), xi ≥ 0, e>mi
xi = 1.
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Moreover, the Karush-Kuhn-Tucker (KKT) conditions of this problem can be written as the

following SOCCP:

Kmj+1 3
[
µij

λij

]
⊥

[
1 0
0 Ã>ij

] [
yij

xi

]
∈ Kmj+1 (j ∈ I−i)

<mi
+ 3 xi ⊥ Aiix

i +
∑

j∈I−i

(
Aijx

j − Ãijλ
ij

)
+ ci + emisi ∈ <mi

+ , e>mi
xi = 1,

µij = ρij (j ∈ I−i),

where λij ∈ <mj and si ∈ < are Lagrange multipliers, and µij ∈ < are auxiliary variables.

Noticing that the above KKT conditions hold for all players simultaneously, the robust Nash

equilibrium problem can be reformulated as the SOCCP (5.2) with

l = N(m + N − 1), τ = N(N + 1), K =
∏

i∈I

( ∏

j∈I−i

Kmj+1

)
×

∏

i∈I
<mi

+ ,

ζ =
[

y1 (x1)> · · · yN (xN )> (Λ1)> · · · (ΛN )> s1 · · · sN

]>
,

M =
[

0 M12 0
M21 0 0

]
, q = 0, N =

[
N11 0 0
N21 N22 N23

]
, r =

[
0
r2

]
,

C =
[
C11 0 0
0 C22 0

]
, d =

[
1 · · · 1 ρ1 · · · ρN

]>
,

where

yi = (yij)j∈I−i ∈ <N−1, Λi =
[
µij

λij

]

j∈I−i

∈ <m−i+N−1,

ρi = (ρij)j∈I−i ∈ <N−1, r2 = (ci)i∈I ∈ <m,

for i ∈ I. Moreover, N21 is a block matrix whose (i, j)-block elements are

(N21)ij =
[
0 Aij

] ∈ <mi×(mj+N−1) (i, j ∈ I),

and M12,M21, N11, N22, N23, C11 and C22 are block diagonal matrices whose block diagonal

elements are

(M12)ii = Im−i+N−1, (M21)ii =
[
0 Imi

] ∈ <mi×(mi+N−1),

(N11)ii =




1 0 0 · · · 0 0
0 0 0 · · · 0 Ã>i1
0 1 0 · · · 0 0
0 0 0 · · · 0 Ã>i2
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 Ã>iN




∈ <(m−i+N−1)×(mi+N−1),
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(N22)ii =
[
0 −Ãi1 · · · 0 −ÃiN

] ∈ <mi×(m−i+N−1), (N23)ii = emi ∈ <mi ,

(C11)ii =
[
0 e>mi

] ∈ <1×(mi+1), (C22)ii = Γi ∈ <(N−1)×(m−i+1)

with Γi being the block diagonal matrix whose block diagonal elements are

(Γi)jj =
[
1 0

] ∈ <1×(mj+1) (j ∈ I−i).

5.1.2 Existence and uniqueness of robust Nash equilibrium

Next, we study existence and uniqueness of the robust Nash equilibrium under Assumption 3.

In the following analyses, we make use of the results from Theorems 3.2 and 4.3.

Theorem 5.1. Suppose that the cost functions and the strategy sets are given by (5.3) and

(5.4), respectively. Suppose further that Assumption 3 holds. Then, there exists at least one

robust Nash equilibrium.

Proof. From Theorem 3.2, it suffices to show Assumption 1 holds. Assumption 1(a) holds

since Gi(xi, x−i, ui) = Gi(xi, x−i, (Aij)j∈I , ci) = 1
2 (xi)>Aiix

i + (xi)>(
∑

j∈I−i
Aijx

j + ci). It

is easily seen that Assumption 3 implies Assumption 1(b)(c). Moreover, Assumption 1(d)

holds since Aii º 0 and each player takes a mixed strategy. This completes the proof.

Theorem 5.2. Suppose that the cost functions and the strategy sets are given by (5.3) and

(5.4), respectively. Suppose further that Assumption 3 holds. Then there exists a unique robust

Nash equilibrium, provided that

A :=




A11 A12 · · · A1N

A21 A22

...
...

. . .
...

AN1 · · · · · · ANN



Â 0. (5.7)

Proof. From Theorem 4.3, it suffices to show that Assumptions 1 and 2 hold. We can see that

Assumption 1 holds in a way analogous to the proof of Theorem 5.1. Assumption 2(a)(b)

readily follows from (5.3) and Assumption 3(a) with Di = {δx−i = (δxij)j∈I−i | ‖δxij‖ ≤
ρij , e>mj

δxij = 0, j ∈ I−i}. Assumption 2(c-ii) also holds from (5.7) and ∇F(x)> = A.

5.2 Uncertainty in the cost matrices and vectors

In this subsection, we consider the case where each player can estimate the opponents’

strategies exactly, but estimates his cost matrices and vectors uncertainly. We first make the

following assumption.

12



Assumption 4. For each i ∈ I, uncertainty sets Xi(·) and Ui (i ∈ I) are given as follows.

(a) Xi(x−i) := {x−i}.
(b) Ui := (

∏
j∈I DAij ) × Dci with DAij := {Aij + δAij | ‖δAij‖F ≤ ρij} ⊆ <mi×mj and

Dci := {ci + δci | ‖δci‖ ≤ γi} ⊆ <mi for some nonnegative scalars ρij and γi. Moreover,

Aii + ρiiI is symmetric and positive semidefinite.

Under this assumption, the worst cost function f̃i in (2.4) can be rewritten as follows:

f̃i(xi, x−i) = max
{

1
2
(xi)>Âiix

i +
∑

j∈I−i

(xi)>Âijx
j + (ĉi)>xi

∣∣∣∣ Âij ∈ DAij , ĉ
i ∈ Dci (j ∈ I)

}

=
1
2
(xi)>Aiix

i +
∑

j∈I−i

(xi)>Aijx
j + (ci)>xi

+ max
‖δAij‖F ≤ ρij

j∈I

{
1
2
(xi)>δAiix

i +
∑

j∈I−i

(xi)>δAijx
j

}
+ max
‖δci‖≤γi

{(δci)>xi}

=
1
2
(xi)>(Aii + ρiiI)xi + (ci)>xi +

∑

j∈I−i

(
(xi)>Aijx

j + ρij‖xi‖‖xj‖) + γi‖xi‖.

(5.8)

The last equality follows from

max
‖M‖F≤ρ

y>Mz = max
‖M‖F≤ρ

(z ⊗ y)>vec (M) = ‖z ⊗ y‖ρ = ρ‖y‖‖z‖,

for any y ∈ <n, z ∈ <m and ρ ≥ 0, where ⊗ denotes the Kronecker product [16, Sections 4.2

and 4.3].

5.2.1 Reformulation as SOCCP

We first reformulate the robust Nash equilibrium problem as SOCCP (5.2) under Assump-

tion 4. By using (5.8) and an auxiliary variable yi ∈ <, the minimization problem (2.4) can

be rewritten as the following SOCP:

minimize
xi,yi

1
2
(xi)>(Aii + ρiiI)xi +

∑

j∈I−i

(
(xi)>Aijx

j + ρij‖xj‖yi

)
+ γiyi

subject to ‖xi‖ ≤ yi, xi ≥ 0, e>mi
xi = 1,

(5.9)

and its KKT conditions are given by

Kmi+1 3
[
yi

xi

]
⊥

[ ∑
j∈I−i

ρij‖xj‖+ γi

(Aii + ρiiI)xi +
∑

j∈I−i
Aijx

j + emisi − λi + ci

]
∈ Kmi+1

<mi
+ 3 λi ⊥ xi ∈ <mi

+ , e>mi
xi = 1,

(5.10)
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where λi ∈ <mi and si ∈ < are Lagrange multipliers. It is not straightforward to reformulate

the robust Nash equilibrium problem as SOCCP (5.2), since the KKT conditions (5.10) con-

tains the nonlinear term ‖xj‖. However, by introducing auxiliary variables zj ∈ <, uj ∈ <mj ,

we can rewrite (5.10) as follows:

Kmi+1 3
[
yi

xi

]
⊥

[ ∑
j∈I−i

ρijzj + γi

(Aii + ρiiI)xi +
∑

j∈I−i
Aijx

j + emi
si − λi + ci

]
∈ Kmi+1, e>mi

xi = 1,

<mi
+ 3 λi ⊥ xi ∈ <mi

+ , Kmj+1 3
[
zj

xj

]
⊥

[
yj

uj

]
∈ Kmj+1 (j ∈ I−i).

(5.11)

In fact, the equivalence between (5.10) and (5.11) can be verified as follows. If SOCCP (5.10)

holds, then we readily obtain (5.10) by letting

zj := ‖xj‖, uj := −xjyj

‖xj‖ .

Conversely, suppose that (5.11) holds for any i ∈ I. Then, by the complementarity condition

Kmj+1 3
[
zj

xj

]
⊥

[
yj

uj

]
∈ Kmj+1 (5.12)

in (5.11), we have

0 = zjyj + (xj)>uj ≥ zjyj − ‖xj‖‖uj‖ ≥ zjyj − ‖xj‖yj , (5.13)

where the inequalities follow from the Cauchy-Schwarz inequality and
[ yj

uj

] ∈ Kmj+1. More-

over, we must have yj > 0 since e>mj
xj = 1 and

[ yj

xj

] ∈ Kmj+1 from (5.11) with i replaced by

j. Dividing (5.13) by yj > 0, we obtain ‖xj‖ ≥ zj . However, since ‖xj‖ ≤ zj from (5.12), we

obtain ‖xj‖ = zj . This implies (5.10) holds.

Now, we can reformulate the robust Nash equilibrium problem as SOCCP (5.2) with

l = 3m + 2N, τ = N, K =
∏

i∈I
Kmi+1 ×

∏

i∈I
<mi

+ ×
∏

i∈I
Kmi+1,

ζ =
[
y1 (x1)> z1 (u1)> · · · yN (xN )> zN (uN )> (λ1)> · · · (λN )> s1 · · · sN

]>
,

M =




M11 0 0
0 M22 0

M31 0 0


 , q = 0, N =




N11 N12 N13

N21 0 0
N31 0 0


 , r =




r1

0
0


 ,

C =




0 e>m1
0 0

· · ·
0 e>mN

0 0


 , d =




1
...
1


 ,
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where N11 is a block matrix whose (i, j)-block elements are given by

(N11)ij =





[
0 0 0 0
0 Aii + ρiiI 0 0

]
(i = j)

[
0 0 ρij 0
0 Aij 0 0

]
(i 6= j)

(i, j ∈ I),

M11,M22,M31, N12, N13, N21 and N31 are block diagonal matrices whose block diagonal ele-

ments are

(M11)ii =
[
1 0 0 0
0 Imi 0 0

]
∈ <(mi+1)×2(mi+1), (M22)ii = Imi ,

(M31)ii =
[
0 0 1 0
0 Imi

0 0

]
∈ <(mi+1)×2(mi+1),

(N12)ii =
[

0
−Imi

]
, (N13)ii =

[
0

emi

]
,

(N21)ii =
[
0 Imi 0 0

]
, (N31)ii =

[
1 0 0 0
0 0 0 Imi

]
,

and r1 =
[
γi

ci

]

i∈I
∈ <m+N .

5.2.2 Existence and uniqueness of robust Nash equilibrium

Next, we study existence and uniqueness of the robust Nash equilibrium under Assumption 4.

Unlike the analyses in Subsection 5.1.2, we do not use the results from Theorems 3.2 and 4.3.

Instead of them, we exploit the concrete structure (5.8) of the worst cost function f̃i.

Theorem 5.3. Suppose that the cost functions and the strategy sets are given by (5.3) and

(5.4), respectively. Suppose further that Assumption 4 holds. Then, there exists at least one

robust Nash equilibrium.

Proof. From (5.8), for arbitrarily fixed x−i ∈ S−i, the function f̃i can be expressed as

f̃i(xi, x−i) = 1
2 (xi)>(Aii + ρiiI)xi + α‖xi‖ + ξ>xi with some α ∈ < and ξ ∈ <mi not de-

pending on xi. Since Aii + ρiiI º 0 and α ≥ 0, f̃i(·, x−i) is convex for any fixed x−i ∈ S−i.

Hence, letting θi(xi, x−i) := f̃i(xi, x−i) in Lemma 3.1 yields the desired result.

Note that Theorem 3.2 cannot be applied to the proof, since Assumption 4 does not imply

Assumption 1(d). In fact, Aii + δAii is not necessarily positive semidefinite even if Aii is

positive semidefinite, that is, fui

i (·, x−i) may be nonconvex for some δAii and x−i ∈ S−i.

We next give sufficient conditions for the uniqueness of a robust Nash equilibrium. To
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simplify the notations, we define the following vector and matrices:

A := (Aij)i∈I, j∈I , P := (ρij)i∈I, j∈I

Q(x) := diag

[(
1

‖xi‖
N∑

j=1

ρij‖xj‖
)(

I − vi(vi)>
)]

,

V (x) := diag
(
v1, . . . , vN

)
, where vi := xi/‖xi‖.

Then, we have the following lemma.

Lemma 5.4. For each i ∈ I, let f̃i : <mi → < and Si ⊂ <m be given by (5.8) and (5.4),

respectively. Then, for any x ∈ S, the set-valued mapping F̃ given by (4.3) satisfies F̃(x) =

{F̃ (x)} with F̃ (x) :=
(∇if̃i(xi, x−i)

)
i∈I . Moreover, the following statements hold.

(a) Function F̃ is differentiable at any x ∈ S with the Jacobian

∇F̃ (x)> = A + V (x)P V (x)> + Q(x).

(b) Q(x) º 0 for any x ∈ S.

(c) If P Â 0, then V (x)PV (x)> + Q(x) Â 0 for any x ∈ S.

Proof. In what follows, we write V = V (x) and Q = Q(x) for convenience.

First, we show (a). Since 0 6∈ Si for all i ∈ I, the derivative of f̃i with respect to xi is given

by

∇if̃i(xi, x−i) = (Aii + ρiiI)xi +
∑

j∈I−i

(
Aijx

j + ρij‖xj‖ xi

‖xi‖
)

+ ci.

Moreover, for each i ∈ I, the partial derivative of ∇if̃i(xi, x−i) with respect to xk is given by

∇kif̃i(xi, x−i) =





Aii + ρiiI +
1

‖xi‖
( ∑

j∈I−i

ρij‖xj‖
)

(I − vi(vi)>) (k = i)

A>ik + ρikvk(vi)> (k 6= i).
(5.14)

Arraying (5.14) for (k, i) = (1, 1), (1, 2), . . . , (N, N), we obtain (a).

Next, we show (b). Let w = (w1, . . . , wN ) ∈ <m1 ×· · ·×<mN be an arbitrary vector. Then,

we have

w>Qw =
N∑

i=1

(
1

‖xi‖
N∑

j=1

ρij‖xj‖
)

(‖wi‖2 − ((wi)>vi)2
) ≥ 0, (5.15)

where the inequality is due to ‖vi‖ = 1 and the Cauchy-Schwarz inequality. Hence, Q is

positive semidefinite.

Finally, we show (c). Let w = (w1, . . . , wN ) ∈ <m1 × · · · × <mN be an arbitrary nonzero

vector. Since V PV > º 0 from P Â 0, we have w>(V PV >)w ≥ 0, where the equality holds
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only when w ∈ kerV >, i.e., w lies in the orthogonal complement of the subspace generated

by v1, . . . , vN . In addition, from (5.15) we have w>Qw ≥ 0, where the equality holds only

when wi = λiv
i for some λi ∈ < (i ∈ I). Therefore, we have w>(V PV > + Q)w ≥ 0, and the

equality holds only if w ∈ kerV > and wi = λiv
i (i ∈ I). However, there is no vector satisfying

these two conditions except zero. Hence, we have w>(V PV > + Q)w > 0.

We now obtain the following theorem.

Theorem 5.5. Suppose that the cost functions and the strategy sets are given by (5.3) and

(5.4), respectively. Suppose further that Assumption 4 holds. Then, there exists a unique

robust Nash equilibrium, if either (i) A Â 0 and P º 0 or (ii) A º 0 and P Â 0 holds.

Proof. If (i) holds, then we have A + V PV > + Q Â 0, since V PV > º 0 and Q º 0 from

Lemma 5.4(b). If (ii) holds, then we also have A + V PV > + Q Â 0, since V PV > + Q Â 0

from Lemma 5.4(c). Hence, by Lemma 5.4(a), we have ∇F̃ (x) Â 0 for any x ∈ S, i.e., F is

strictly monotone on S. Thus, from Proposition 4.1 and Theorem 5.3, the game has a unique

robust Nash equilibrium.

6 Numerical experiments

In this section, we solve some robust Nash equilibrium problems with various sizes of uncer-

tainty sets, by using the SOCCP reformulation approaches discussed in the previous section.

Then, we observe some properties of obtained equilibria and values of the cost functions.

For solving the reformulated SOCCPs, we apply the Newton-type method combined with a

smoothing regularization technique [14]. All programs are coded in MATLAB 7 and run on a

computer with 3.06GHz CPU and 1GB memories.

6.1 Relationship between actual costs and size of uncertain sets

In the first experiment, we consider a three-person game where the cost functions are given

by (5.3) with cost matrices and vectors:

Aii =




8 2 −4
2 7 −2
−4 −2 13


 , Aij =




2 −1 0
−4 0 −2
−3 1 2


 , ci =



−3
2
−3


 (j ∈ I−i)

for each i = 1, 2, 3. We note that each player has the same cost function.

We first consider the case where Assumption 3 holds and each player i ∈ I chooses param-
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eters ρij as

(ρij) =



∗ 0.0001 0.0001

0.02 ∗ 0.02
0.05 0.05 ∗


 . (6.1)

This implies that player 1 hardly takes the uncertainty into consideration, whereas player 3 is

more careful in choosing his strategy. Under such assumptions, the game has a unique robust

Nash equilibrium x̃ = (x̃1, x̃2, x̃3) given by

x̃1 = (0.310, 0.318, 0.372), x̃2 = (0.353, 0.284, 0.363), x̃3 = (0.410, 0.240, 0.350).

As assumed in (B) of Section 2, each player’s actual cost is evaluated with x̃−i replaced by

x̃−i + δx−i with a certain noise vector δx−i ∈ <6. In our experiment, we generate δx−i :=

(δxij)j∈I−i ∈ <6 as follows: we first generate random vectors δyij ∈ <2 for each j ∈ I−i so

that each component follows the normal distribution N(0, 0.01), and then, map them onto the

hyperplane {x ∈ <3 | x1 + x2 + x3 = 0} by using an appropriate orthonormal transformation.

For each i = 1, 2, 3, we generate 10000 different samples of noise vector δx−i, and observe

the distribution of the actual cost fi(x̃i, x̃−i + δx−i). Moreover, we compare the actual cost

fi(x̃i, x̃−i + δx−i) with the presumed worst cost f̃i(x̃). The results are shown in Table 1 and

Figures 1 – 3.

Table 1 Uncertainty in the opponents’ strategy

player 1 player 2 player 3

f̃i(x̃i, x̃−i) −1.5105 −1.2782 −0.9680

E(fi(x̃i, x̃−i + δx−i)) −1.5087 −1.4316 −1.3346

Percentage of worse cases 50.98% 20.90% 0.63%
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Figure 3 Player 3’s cost

In each row of Table 1, we give the values of f̃i(x̃), the mean values of 10000 samples of

fi(x̃i, x̃−i + δx−i), and the percentage of which the value of fi(x̃i, x̃−i + δx−i) is greater than
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f̃i(x̃i, x̃−i) among 10000 samples. From Table 1, we can see that the mean value of player

1’s cost is smaller than that of player 3, though player 3 take the uncertainty into account

more than player 1. In fact, such a result does not always hold, and we can see an opposite

result in another game. However, the last row of the table shows that, as a player considers

the region of uncertainty larger, the possibility of avoiding the presumed worst case becomes

higher. Figures 1 – 3 are histograms which show each player’s actual costs for 10000 cases.

The width of each bar is 0.1 and a vertical line represents the value of f̃i(x̃). Indeed, the

histograms show that player 1’s actual cost exceeds the presumed worst cost for almost a half

of 10000 samples, whereas player 3’s actual cost seldom exceeds the presumed one. Moreover,

even if it becomes worse, its difference is very small.

Next, we consider the case where Assumption 4 holds with the following parameters:



ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


 =




0.0001 0.0001 0.0001
0.50 0.50 0.50
1.50 1.50 1.50


 ,




γ1

γ2

γ3


 =




0.0001
0.50
1.50


 (6.2)

Then the robust Nash equilibrium x̃ = (x̃1, x̃2, x̃3) is uniquely given by

x̃1 = (0.364, 0.272, 0.365), x̃2 = (0.344, 0.294, 0.362), x̃3 = (0.334, 0.309, 0.358).

Similarly to the previous experiment, we generate 10000 samples of noise matrix δA =

(δAij)(i,j)∈I×I and vector δc = (δci)i∈I so that each element follows the standard normal

distribution. The results are shown in Table 2 and Figures 4 – 6, where the width of each bar

is 0.2.

Table 2 Uncertainty in the cost matrices and vectors

player 1 player 2 player 3

f̃i(x̃i, x̃−i) −1.3713 −0.9512 −0.0692

E
(
fui+δui

i (x̃i, x̃−i)
) −1.3690 −1.3838 −1.4038

Percentage of worse cases 50.50% 28.54% 3.65%

The table and figures show, like in the previous experiment, that the actual cost of player

3 is rarely worse than the presumed worst cost. However, the mean of player 3’s actual cost

is smaller than player 1’s mean cost.

6.2 Relationship between size of uncertain sets and robust Nash equilibria

In this subsection, we change the size of uncertain sets variously, and see the trajectory of

the robust Nash equilibria.
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First, we consider the three-person game where the cost functions are defined by (5.3) with

the following cost matrices and vectors:

A11 =




27 −4 9
−4 18 0
9 0 19


 , A12 =




6 2 13
−3 −10 0
−4 −4 3


 , A13 =



−10 6 10
−19 0 −7
12 −10 −1




A21 =




5 −3 −2
0 −12 −2
13 2 3


 , A22 =




18 −7 2
−7 41 0
2 0 18


 , A23 =



−4 −9 1
0 5 12
1 5 −3




A31 =



−7 17 10
7 −4 −13
−10 −10 0


 , A32 =



−3 4 0
−13 3 4
3 9 1


 , A33 =




24 9 −17
9 28 −5
−17 −5 31




c1 = c2 = c3 =
[
0 0 0

]>
.

Then, the game has a unique Nash equilibrium x = (x1, x2, x3) given by

x1 = (0.0000, 0.4967, 0.5033), x2 = (0.7036, 0.0000, 0.2964), x3 = (0.0831, 0.4304, 0.4866).

We also consider the robust Nash equilibrium problem under Assumption 3 with ρij = ρ for all

i, j = 1, 2, 3(j 6= i), where ρ is chosen as 0.05, 0.1 and 0.2. Table 3 and Figure 7 show the change

of the robust Nash equilibria with the choice of ρ. In Figure 7, the horizontal and vertical

axes denote the first and second components of each player’s strategy, respectively*3. This

figure intimates that the robust Nash equilibria move continuously as the sizes of uncertainty

sets change continuously.

Next, we consider another game where the cost functions are defined by (5.3) with cost

matrices and vectors:

A11 =

[
12.486 1.249 5.650
1.249 2.516 4.361
5.650 4.361 13.980

]
, A12 =

[−5.095 −7.403 −4.152
−1.459 −8.215 −2.511
−6.228 −3.783 −5.306

]
, A13 =

[−8.250 −8.514 −7.015
−8.178 −2.222 −1.091
−2.004 −5.367 −4.486

]

*3 Since each player takes the mixed strategy, the third component is uniquely determined.
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Table 3 Sizes of uncertainty sets and robust Nash equilibria

ρ robust Nash equilibrium (x̃1, x̃2, x̃3)

0.05
(
(0.0000,0.5230,0.4770), (0.6978,0.0283,0.2738), (0.0394,0.4938,0.4668)

)

0.10
(
(0.0000,0.5348,0.4652), (0.6659,0.0244,0.3097), (0.0677,0.4521,0.4802)

)

0.20
(
(0.0000,0.5396,0.4604), (0.6100,0.0228,0.3673), (0.1162,0.3812,0.5026)

)
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Figure 7 Trajectory of each player’s strategy at the robust Nash equilibria

A21 =

[−7.236 −2.175 −5.223
−1.980 −7.579 −3.141
−3.180 −4.678 −1.155

]
, A22 =

[
2.064 3.041 3.228
3.041 6.563 2.341
3.228 2.341 14.720

]
, A23 =

[−5.420 −1.153 −1.514
−4.874 −6.610 −3.609
−7.741 −7.763 −5.577

]

A31 =

[−2.338 −2.981 −6.197
−7.629 −4.076 −4.096
−5.475 −6.967 −6.298

]
, A32 =

[−3.912 −3.988 −1.043
−4.867 −1.407 −1.981
−4.844 −7.212 −3.992

]
, A33 =

[
34.478 −13.084 −1.478
−13.084 17.336 −1.243
−1.478 −1.243 20.047

]

c1 = c2 = c3 =
[
0 0 0

]>
.

This game has the following three Nash equilibria*4:

1: (x1, x2, x3) =
(
(0.490, 0.510, 0.000), (0.000, 0.688, 0.312), (0.195, 0.360, 0.443)

)
.

2: (x1, x2, x3) =
(
(0.715, 0.011, 0.274), (1.000, 0.000, 0.000), (0.234, 0.501, 0.266)

)
,

3: (x1, x2, x3) =
(
(0.671, 0.304, 0.025), (0.596, 0.208, 0.196), (0.208, 0.456, 0.335)

)
,

Moreover, we consider the robust Nash equilibrium problems under Assumption 4 with pa-

rameters



ρ11 ρ12 ρ13

ρ21 ρ22 ρ21

ρ31 ρ32 ρ33


 =




0.01 + k 0.01 0.01
0.01 0.01 + k 0.01
0.01 0.01 0.01 + k


 , γ1 = γ2 = γ3 = 0,

*4 We can find all Nash equilibria by using a branch and bound based approach.
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where k is chosen as k = 0.1, 0.5, 1.0, 1.1485, 1.5. In order to obtain as many equilibria as
possible, we solve the equivalent SOCCP with randomly generated 100 starting points*5. Table
4 shows the concrete values of obtained robust Nash equilibria. For k = 0.1, 0.5, 1.0, 1.1485,
we obtain three robust Nash equilibria. However, for k = 1.5, we obtain only one robust
Nash equilibrium. Figure 8 shows the trajectory of player 1’s strategies at the robust Nash
equilibria for each k*6, in which the vertical and horizontal axes denote the first and second
components of the robust Nash equilibria, respectively. Figure 8 indicates that two of the
three equilibria are getting closer to each other as k increases, and they almost coincide at
k = 1.1485. Furthermore, at k = 1.5, the two equilibria disappear and only one equilibrium is
obtained.

Table 4 Sizes of uncertainty sets and obtained robust Nash equilibria

k robust Nash equilibria

0.1

1:
`
(0.490, 0.510, 0.000), (0.000, 0.685, 0.315), (0.198, 0.360, 0.442)

´

2:
`
(0.708, 0.020, 0.272), (1.000, 0.000, 0.000), (0.234, 0.499, 0.267)

´

3:
`
(0.667, 0.294, 0.039), (0.608, 0.200, 0.193), (0.210, 0.457, 0.333)

´

0.5

1:
`
(0.492, 0.508, 0.000), (0.000, 0.676, 0.324), (0.199, 0.363, 0.439)

´

2:
`
(0.684, 0.057, 0.259), (0.949, 0.000, 0.051), (0.232, 0.491, 0.277)

´

3:
`
(0.657, 0.252, 0.091), (0.660, 0.161, 0.179), (0.216, 0.460, 0.325)

´

1.0

1:
`
(0.493, 0.507, 0.000), (0.000, 0.666, 0.334), (0.201, 0.363, 0.436)

´

2:
`
(0.658, 0.094, 0.249), (0.895, 0.000, 0.105), (0.231, 0.483, 0.286)

´

3:
`
(0.650, 0.155, 0.195), (0.800, 0.059, 0.141), (0.226, 0.473, 0.301)

´

1.1485

1:
`
(0.494, 0.506, 0.000), (0.000, 0.664, 0.336), (0.202, 0.364, 0.435)

´

2:
`
(0.6507, 0.1026, 0.2467), (0.8810, 0.0000, 0.1190), (0.2312, 0.4807, 0.2881)

´

3:
`
(0.6507, 0.1027, 0.2466), (0.8809, 0.0001, 0.1190), (0.2312, 0.4807, 0.2881)

´

1.5 1:
`
(0.507, 0.493, 0.000), (0.052, 0.619, 0.329), (0.204, 0.372, 0.425)

´

*5 Since we employ an iterative method, we can choose an arbitrary starting point. Indeed, it is expected

that a different starting point can lead to a different solution when the SOCCP has multiple solutions.
*6 We omit the other players’ trajectories since they are similar to player 1’s.
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Figure 8 Trajectory of player 1’s strategies at the robust Nash equilibria

7 Concluding remarks

In this paper, we have extended the concept of robust Nash equilibrium to N -person non-

cooperative games with nonlinear cost functions, and derived sufficient conditions for existence

and uniqueness of the robust Nash equilibria by means of the GVIP or VIP reformulation tech-

niques. In addition, we have shown that the robust Nash equilibrium problems with quadratic

cost functions and uncertainty sets can be reformulated as SOCCPs. We also solved some

examples of the robust Nash equilibrium problem, and observed some numerical properties.

We still have some future issues to be addressed. One important issue is to weaken the

sufficient conditions for uniqueness of the robust Nash equilibrium. In fact, the uniqueness

conditions shown in the paper is rather restrictive, and there seems to remain much room

for the improvement. Another issue is to consider the SOCCP reformulation for the robust

Nash equilibrium problem in which both the cost function parameters and the opponents’

strategies are uncertain. In this paper, we have only considered the case where either of them

is uncertain. However, in the real situation, it would be natural to assume that both of them

involve uncertainties.

References

[1] M. Aghassi and D. Bertsimas, Robust game theory, Mathematical Programming, 107

23



(2006), pp. 231–273.

[2] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Pro-

gramming, 95 (2003), pp. 3–51.

[3] J.-P. Aubin, Mathematical Methods of Game and Economic Theory, North-Holland Pub-

lishing Company, Amsterdam, 1979.

[4] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, 1990.

[5] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathematics of Opera-

tions Research, 23 (1998), pp. 769–805.

[6] , Robust solutions of uncertain linear programs, Operations Research Letters, 25

(1999), pp. 1–13.

[7] , Selected topics in robust convex optimization, Mathematical Programming, 112

(2008), pp. 125–158.
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