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Abstract
The core of artificial intelligence and machine learning is to get computers to solve problems

automatically. One of the great tools that attempt to achieve that goal is Genetic Programming
(GP). GP is a generalization procedure of the well-known meta-heuristic of Genetic Algorithms
(GAs). Meta-heuristics have shown successful performance in solving many combinatorial search
problems. In this paper, we introduce a more general framework of meta-heuristics called Meta-
Heuristics Programming (MHP) as general machine learning tools. As an alternative to GP, Tabu
Programming (TP) is proposed as a special procedure of MHP frameworks. One of the main fea-
tures of MHP is to exploit local search in order to overcome some drawbacks of GP, especially high
disruption of its main operations; crossover and mutation. We show the efficiency of the proposed
TP method through numerical experiments.

1 Introduction

The core of artificial intelligence and machine learning is to get computers to solve problems automat-
ically. One of the great tools that attempt to achieve that goal is Genetic Programming (GP). GP is a
generalization procedure of the well-known meta-heuristic of Genetic Algorithms (GAs). Specifically,
GP can be regarded as a method of machine learning, while GAs are search paradigms that seek opti-
mal solution candidates. GP was first introduced by Koza [20], and subsequently, the feasibility of this
approach in well-known application areas has been demonstrated [21, 22, 23].

Genetic algorithms, the ancestor of GP, belong to the upper class of heuristics called meta-heuristics.
Meta-heuristics have shown successful performance in solving many combinatorial search problems.
Although there are many alternative heuristics to GAs, the latter are almost the only ones that have been
generalized as machine learning tools. To the best of the authors’ knowledge, there have been just a few
attempts to generalize other meta-heuristics. Specifically, ant colony programming [2, 3] is a generalized
meta-heuristic of the ant colony optimization algorithm. This work along with the future planned works
attempt to develop many machine learning tools alternative to GP by generalizing other meta-heuristics.

Crossover and mutation, the main operations in GP, have been extensively studied. Many effective
settings of these operations have been proposed to fit a wide variety of problems. However, it has been
addressed that crossover and mutation are highly disruptive with a risk of convergence to a non-optimal
structure [19, 27, 28]. Altering a node high in the tree may result in serious disruption of the subtree
below. There have been many attempts to edit GP operations to make changes in small scales, for
example by using natural language processing [19, 23]. This motivates us to use more local searches
with gradual changes of scales within a general framework.

In this paper, new treatments are introduced to overcome the disruption of crossover and mutation by
composing new alternatives for GP. GP searches in a solution space of computer programs. These pro-
grams can be represented by using tree data structures. We introduce some local search procedures over
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a tree space as alternative operations to crossover and mutation. These procedures aim to generate trial
moves from a current tree in its neighborhood. Using these search procedures, various meta-heuristics
can be generalized to deal with tree data structures in a unified framework which we call Meta-Heuristics
Programming (MHP).

The paper is organized as follows. In the next section, we give a classification of meta-heuristics
along with their brief description. In Section 3, we highlight the main structure of GP to give motivation
of Meta-Heuristics Programming (MHP). The basic procedures for stochastic local search over a tree
space is presented in Section 4. Then, we show the main framework of MHP in Section 5, with an
example of Tabu Programming (TP). In Section 6, we report numerical results for two types of bench-
mark problems; symbolic regression problems and the 6-Bit multiplexer problem. Finally, concluding
remarks and some future work make up Section 7.

2 Meta-heuristics

The term meta-heuristics, first used by Glover [9], contains all heuristics methods that show evidence
of achieving good quality solutions for a problem of interest within an acceptable time. Usually, meta-
heuristics offer no guarantee of obtaining the global best solutions [10].

In terms of the process of updating solutions, meta-heuristics can be classified into two classes;
population-based methods and point-to-point methods. In the latter methods, the search keeps only one
solution at the end of each iteration, from which the search will start in the next iteration. On the other
hand, the population-based methods keep a set of many solutions at the end of each iteration.

In terms of search methodologies and trial solutions generation, meta-heuristics can be categorized
into several groups of methods, as shown in Figure 1 and described as follows.

• Evolutionary Algorithms (EAs).
EAs try to mimic the evolution of a species. Specifically, EAs simulate the biological processes
that allow the consecutive generations in a population to adapt to their environment. The adapta-
tion process is mainly applied through genetic inheritance from parents to children and through
survival of the fittest.
The main EAs are Genetic Algorithms, Evolution Strategies, Evolutionary Programming, and
Scatter Search. In contrast to other EAs, Scatter Search invokes more artificial elements, like
using memory elements to update populations.

• Memory-Based Heuristics
The main feature of memory-based heuristics is their use of an adaptive memory and responsive
exploration. The role of the adaptive memory is to prevent the search from getting trapped in local
optimal solutions, and to direct the search to more effective diversification and intensification
processes.
Tabu Search and Scatter Search are the most well-known memory-based heuristics.

• Neighborhood Search Heuristics
A neighborhood search heuristics starts from a candidate solution and then iteratively moves to
a neighbor solution. Therefore, a neighborhood relation and structure should be defined on the
search space.
Neighborhood search heuristics contains Variable Neighborhood Search and Tabu Search.

• Swarm Intelligence
Swarm intelligence consists of artificial intelligence techniques that study and simulate the col-
lective behaviors and self-organized systems of animal swarms.
The most well-studied swarm intelligence methods are Ant Colony Optimization and Particle
Swarm Optimization.

• Probabilistic-Based Heuristics
Probabilistic-based heuristics determine whether or not the current solution is replaced by a new

2



Figure 1: Classifications of Meta-heuristics

trial point based on a probability depending on the difference between their function values.
Simulated Annealing is the most well-known probabilistic-based heuristics.

• Hybrid Methods
There are many different scenarios to compose hybrid meta-heuristics. Using local search meth-
ods inside meta-heuristics is the most effective way to overcome the slowness of meta-heuristics.
In addition, a multi-start local search method is another scheme for composing hybrid meta-
heuristics.
Memetic Algorithm is an example of hybrid meta-heuristics and Greedy Randomized Adaptive
Search Procedure (GRASP) is an example of multi-start methods.

The most commonly used data structure types in the above-mentioned meta-heuristics are bit-strings and
real-valued vectors. Moreover, meta-heuristics are typically applied to problems that can be modeled or
transformed to optimization problems [29]. On the other hand, GP is a general machine learning tool
that can deal with more general data structure. In this paper, Meta-Heuristics Programming (MHP) is
introduced as a competitor to GP. Specifically, MHP is a general machine learning tool that deals with
tree structure data.

3 Local Search over Tree Space

MHP searches a solution space of computer programs like GP. These programs can be represented as a
parse tree1, in which leaf nodes are called terminals and internal nodes are called functions. Depending
on the problem at hand, users can define the domains of terminals and functions. In the coding pro-
cess, tree structures of solutions should be transformed to executable codes. Usually, these codes are

1Parse tree is a data structure representation in a language, and each element in a parse tree is called a node. In addition,
the start node represents the root of the structure, the interior nodes represent non-terminals (functions) symbols and the leafs
nodes represent terminals symbols.
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expressed to closely match the Polish notation of logic expressions [5]. Figure 2 shows three examples
of tree representation of individuals and their executable codes below these trees. These codes are ge-
ometrically executed in Figure 3 as solid lines or curves. Then, a fitness function should be defined to
measure the quality of the individuals represented by these codes. If the target is to obtain the dotted
curve as a fitting curve of some given dataset (i.e., a symbolic regression problem), then the fitness
function may be defined as an error function measured on the given dataset.

Figure 2: Example of GP Representation

Figure 3: Example of GP Representation

In this section, some local search procedures over a tree space are introduced. These procedures
aim to generate trial moves from a current tree to another tree in its neighborhood. The proposed local
searches have two aspects; intensive and diverse. Intensive local search aims to explore the neighbor-
hood of a tree by altering its nodes without changing its structure. Diverse local search changes the
structure of a tree by expanding its terminal nodes or cutting its subtrees2. We introduce Shaking as an
intensive local search procedure, and Grafting and Pruning as diverse local search procedures.

For a parse tree X , we define its order, size and depth as follows.

• Tree Order |X| is the number of all nodes in tree X .

• Tree Size s(X) is the number of leaf nodes in tree X .

• Tree Depth d(X) is the number of links in the path from the root of tree X to its farthest node.

2Throughout the paper, the term “branch” is used to refer to a subtree, see [4, 25].
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Figure 4: An Example of Shaking Search (ν = 2)

3.1 Shaking Search

Shaking search is an intensification search procedure that alters a tree X to a new one X̃ . Both X and
X̃ have the same tree structure since the altered nodes are replaced by alternative values, i.e., an altered
terminal node is updated by a new terminal value and an altered node containing a binary function is
replaced by a new binary function, and so on. Procedure 3.1 states the formal description of shaking
search, while Figure 4 shows an example of shaking search that alters two nodes of X . In Procedure
3.1, ν is a positive integer.

Procedure 3.1 X̃ = Shaking(X, ν)

Step 1. If ν > |X|, return.

Step 2. Set X̃ := X and choose ν nodes of X̃ randomly.

Step 3. Update the chosen nodes by new randomly chosen alternatives.

Step 4. Return.

A neighborhood NS(X) of a tree X based on shaking search can be defined by

NS(X) = {X̃|X̃ = Shaking(X, ν), ν = 1, . . . , |X|}. (1)

It is worthwhile to note that the random choices of Steps 2 and 3 of Procedure 3.1 make Shaking
Procedure behave as stochastic search. Therefore, for a tree X , one may get a different X̃ in each
run of the procedure.

3.2 Grafting Search

In order to increase the variability of the search process, grafting search is invoked as a diverse local
search procedure. Grafting search generates an altered tree X̃ from a tree X by expanding some of its
leaf nodes to branches. As a result, X and X̃ have different tree structures since |X̃| > |X|, s(X̃) ≥
s(X), and d(X̃) ≥ d(X). Procedure 3.2 states the formal description of grafting search where λ refers
to the number of leaf nodes which are updated to be branches. Figure 5 shows an example of grafting
search that alters two nodes of X by two branches in X̃ .

Procedure 3.2 X̃ = Grafting(X, λ)

Step 1. If λ > s(X), return.

Step 2. Set X̃ := X .
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Figure 5: An Example of Grafting Search (λ = 2)

Step 3. Generate λ branches B1, . . . , Bλ randomly. Choose terminal nodes t1, . . . , tλ of X̃
randomly.

Step 4. Update X̃ by replacing the nodes t1, . . . , tλ by the branchs B1, . . . , Bλ.

Step 5. Return.

A neighborhood NG(X) of a tree X based on grafting search can be defined by

NG(X) = {X̃|X̃ = Grafting(X,λ), λ = 1, . . . , s(X)}. (2)

It is worthwhile to note that the random choices of Step 3 of Procedure 3.2 also make Grafting Procedure
behave as stochastic search. Therefore, for a tree X , one may get a different X̃ in each run of the
procedure.

3.3 Pruning Search

Pruning search is another diverse local search procedure. Contrary to grafting search, pruning search
generates an altered tree X̃ from a tree X by cutting some of its branches. Therefore, X and X̃ have
different tree structures since |X̃| < |X|, s(X̃) ≤ s(X), and d(X̃) ≤ d(X). In the coding process, it
is more convenient to express the tree X in a special code and use it to distinguish all possible branches
which may be selected for pruning. Specifically, we introduce the branch coding (Procedure 3.3) to
assist pruning search, which expresses X as a parse tree containing meta-terminal-nodes. These meta-
terminal-nodes are the branches of X that have the same depth ζ. If X has ξ branches B1, . . . , Bξ of
depth ζ, then the branch coding expresses X in a form that distinguishes these branches. In other words,
Procedure 3.3 extracts all branches in X with depth ζ, which can be written as [B1, . . . , Bξ] = BCζ(X),
where d(B1) = · · · = d(Bξ) = ζ. For instance, if pruning search is applied to cut a branch of depth
1 in tree X , then the branch coding procedure is called to express each branch of depth 1 in X as a
one meta-terminal-node as shown in Figure 6. Hence, pruning search can easily choose one of these
branches and replace it by a randomly generated leaf node.

Procedure 3.3 [B1, . . . , Bξ] = BCζ(X)

Step 1. If ζ ≥ d(X), return.

Step 2. Select all branches B1, . . . , Bξ in X with depth ζ.

Step 3. Return.

The formal description of pruning search is given below in Procedure 3.4, while Figure 7 shows an
example of pruning search that cuts two branches of X . In Procedure 3.4, η is a positive integer that
represents the number of times a branch is replaced by a leaf node during pruning search.
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Figure 6: An Example of Branch Coding (ξ = 2, ζ = 1)

Figure 7: An Example of Pruning Search (η = 2, ζ1 = 1, ζ2 = 2)
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Procedure 3.4 X̃ = Pruning(X, η)

Step 1. Set X̃ := X .

Step 2. Repeat the following Steps (2.1)-(2.4) for j = 1, . . . , η.

2.1 Generate a natural number ζj randomly such that ζj < d(X).

2.2 Use Procedure 3.3 to get [B1, . . . , Bξj ] := BCζj (X̃).

2.3 Generate a random terminal node tj .

2.4 Update X̃ by replacing a randomly chosen branch from {B1, . . . , Bξj}, by tj .

Step 3. Return.

A neighborhood NP (X) of a tree X based on pruning search can be defined by

NP (X) = {X̃|X̃ = Pruning(X, η), η = 1, . . . , |X| − s(X)}. (3)

It is worthwhile to note that the random choices of Steps 2.1 and 2.3 of Procedure 3.1 make Pruning
Procedure behave as stochastic search. Therefore, for a tree X , one may get a different X̃ in each run
of the procedure.

4 Meta-Heuristics Programming

Most of the search methodologies in meta-heuristics depend on local search. Therefore, by using the
local search procedures defined in Section 3, various meta-heuristics can be generalized to deal with
tree data structures, which we call Meta-Heuristics Programming (MHP). This section shows the main
procedures of MHP and describes how they can be implemented. Then, Tabu Programming is presented
in Section 5 in order to give a practical example of how a meta-heuristic of Tabu Search is modified to
yield a meta-heuristic of Tabu Programming.

The MHP framework tries to cover many of the well-known meta-heuristics as special cases. In ad-
dition, the MHP framework generalizes the data structures used in most of the ordinary meta-heuristics,
by introducing tree data structures instead of bit strings or vectors of numbers. In the MHP framework,
initial computer programs (or an initial computer program) represented as parse trees can be adapted
through the following five procedures to obtain acceptable target solutions of the problem.

• TRIALPROGRAM: Generate trial program(s) from the current ones.

• UPDATEPROGRAM: Choose one program or more from the generated ones for the next iteration.

• ENHANCEMENT: Enhance the search process to be accelerated if a promising solution is detected,
or escape from local information if an improvement cannot be achieved.

• DIVERSIFICATION: Drive the search to new unexplored regions in the search space by generating
new structures of programs.

• REFINEMENT: Improve the best programs obtained so far.

TRIALPROGRAM and UPDATEPROGRAM procedures are the essential ones in MHP. The other three
procedures are recommended to achieve better and faster performance of MHP. Actually, these proce-
dures make MHP behave like an intelligent hybrid framework. Table 1 summarizes the MHP procedures
and shows some examples of each procedure.

The search procedures defined in Section 3 are used in TRIALPROGRAM procedure, while UP-
DATEPROGRAM procedure depends on the invoked type of meta-heuristics.

The main structure of the MHP framework is shown below in Algorithm 4.1. In its initialization
step, MHP algorithm generates an initial set of trial programs which may be a singleton set in the case
of point-to-point meta-heuristics. The main loop in MHP algorithm starts by calling TRIALPROGRAM
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Table 1: MHP Procedures
Procedure Function Example
TRIALPROGRAM generates trial program(s) GP & GA: Crossover and Mutation

UPDATEPROGRAM chooses one program or more GP & GA[14]: Selection
for the next iteration

ENHANCEMENT refines some characteristic programs MA[26]: Local Search
SS: Improvement Method

DIVERSIFICATION drives the search to new unexplored TS & SS[24]: Diversification
structures of programs

REFINEMENT improves the best programs Hybrid SA [15, 16, 18]:
Final Intensification

MA = Memetic Algorithm, SS = Scatter Search, SA = Simulated Annealing

procedure to generate a set of trial programs from the current iterate program or from the current pop-
ulation. Then, MHP algorithm detects characteristic states in the recent search process and applies
ENHANCEMENT procedure to generate new promising trial programs using the following tactics.

• Intensive Enhancement. Apply a faster local search whenever a promising improvement has been
detected.

• Diverse Enhancement. Apply an accelerated escape strategy whenever a non-improvement has
been detected.

To proceed to the next iteration, UPDATEPROGRAM procedure is used to invoke the next iterate program
or the next population from the current ones. Consequently, the control parameters are also updated to
fit the next iteration. It is noteworthy that MHP uses an adaptive memory to check the progress of the
search process. Two types of memories are defined as follows.

• Assembly Memory. Start with empty memory and collect useful search information hierarchically.

• Global Memory. Start with a full memory that samples the whole search space, and remove
memory elements whenever new data structures have been visited.

Having a full assembly memory or having an empty global memory can be used to terminate the MHP
algorithm. If the termination criteria are met, then the REFINEMENT procedure is applied to improve
the elite solutions obtained so far. Otherwise, the search proceeds to the next iteration but the need of
diversity is checked first. DIVERSIFICATION procedure may be applied to generate new diverse solutions
by guidance of the adaptive memory.

Algorithm 4.1 Meta-Heuristics Programming

• Step 1. Initialization.

• Step 2. Apply TRIALPROGRAM procedure.

• Step 3. Apply ENHANCEMENT procedure.

• Step 4. Apply UPDATEPROGRAM procedure.

• Step 5. Update Parameters.

• Step 6. If Termination Conditions are satisfied, go to Step 8.
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Figure 8: Point-to-Point MHP

• Step 7. If diverse solutions are needed, apply DIVERSIFICATION procedure. Go to Step 2.

• Step 8. Apply REFINEMENT procedure.

Algorithm 4.1 can be implemented in different ways depending on the type of the invoked meta-
heuristics; point-to-point or population-based. Figure 8 shows a flowchart of the point-to-point MHP,
while Figure 9 shows the population-based MHP.

5 Tabu Programming

The main feature of Tabu Search is to use an adaptive memory to direct the search process. The sim-
plest form of this adaptive memory, called short-term memory, uses the recency only, i.e., it saves the
recently visited solutions to avoid cycling. Using long-term memories make the search process behave
more intelligently. Long-term memories may save the elite solutions, the frequency of visiting different
solution structures, and so on [11, 12, 13, 17].

This section generalizes Tabu Search by introducing Tabu Programming as a special case of the
MHP framework. Therefore, as in Tabu Search, TP invokes three basic search stages; local search,
diversification and intensification. In the local search stage, TP uses local searches over the tree space,
as described in Section 3, to explore the solution space around the current iterate program Xk. On the
other hand, TP follows MHP by using two types of local searches; intensive local search by TRIALPRO-
GRAM procedure, and diverse local search by ENHANCEMENT procedure. Intensive local search aims
to explore the neighborhood of Xk by altering its nodes without changing its structure through shaking
search. In addition, diverse local search tries to locally change the tree structure of Xk through grafting
and pruning searches. Then, the DIVERSIFICATION procedure is applied in order to diversify the search
to new tree structures. Finally, in order to explore the close tree structures around the best programs
visited so far, the REFINEMENT procedure is applied to improve these best programs further. Figure 10
shows the main structure of TP, and its formal description is given below.

Algorithm 5.1 Tabu Programming
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Figure 9: Population-Based MHP

1. Initialization.

Choose an initial program X0, set tabu list (TL) and other memory elements to be empty, and
set a counter k := 0. Ask the user for the values of nT , n′T and n∗.

2. Main Loop.

2.1 Intensive Local Search. Repeat the following Steps (2.1.1)-(2.1.3) until non-improvement
conditions are satisfied.

2.1.1 Generate a set of nT trial programs Sk ⊆ NS(Xk), as defined in Equation (1), based
on tabu restrictions by applying Shaking procedure successively.

2.1.2 Set the next iterate program Xk+1 to be the best program in Sk.
2.1.3 Update TL and other memory elements, and set k =: k + 1.

2.2 Diverse Local Search.
2.2.1 If a growing tree structure is needed, then go to Step 2.2.2. Otherwise, go to Step 2.2.3
2.2.2 Generate a set of n′T trial programs S′k ⊆ NG(Xk), as defined in Equation (2), based

on tabu restrictions by applying Grafting procedure successively.
2.2.3 Generate a set of n′T trial programs S′k ⊆ NP (Xk), as defined in Equation (3), based

on tabu restrictions by applying Pruning procedure successively.
2.2.4 Set the next iterate program Xk+1 to be the best program in S′k.
2.2.5 Update TL and other memory elements, and set k =: k + 1.

3. Termination. If the termination conditions are satisfied, then go to Step 5. Otherwise, go to Step
4.

4. Diversification. If diversification is needed, choose a new diverse structure program Xk+1, set
k =: k + 1, and go to Step 2.

5. Refinement. Try to improve the n∗ best obtained programs.
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Figure 10: Tabu Programming Structure

5.1 Diversification and Intensification Searches and Long-Term Memory

Different types of long-term memories can be invoked to enhance the search process. Memory may
save visited elite solutions for further use in intensification mechanism. Moreover, historical search in-
formation may also be saved to assist the diversification mechanism. For instance, visited tree structures
can be saved to generate a new diverse tree structure as shown in Figure 11. Moreover, frequencies of
choosing a node to be a terminal or a function can be saved in order to use it in generating a new tree
structure which may have been overlooked in the previous search process.

5.1.1 Representations of TP Individuals

One of the most important objects in our method is the definition of the gene. The gene in TP is the
smallest structure in the representation of the suggested solution, where every gene consists of a linear
symbolic string composed of terminals and functions. In addition, every gene contains two parts, head
(functions and terminals) and tail (terminals only).

The length of the gene depends on the length h of its head, and the maximum number n of arguments
of the function. In addition, we compute the length of the tail by the formula t = h(n− 1) + 1. Indeed,
it is clear that the length of the gene depends on the problem itself. To construct a gene in TP, we first
construct a temporary random gene of temporary length h + t, and then depending on the shape of the
gene and the functions and terminals that allowed, we reduce the length of the gene by deleting the
unnecessary elements at the end of the gene. For example, when h = 5, F = {+,−, ∗, /} and T = {a},
we have t = h(n − 1) + 1 = 6 since n = 2. In addition, suppose that we construct this temporary
random gene of length 11 as in Figure 12a.

Now, if we try to convert this gene to a tree representation (Figure 12b), we will find that the tree
representation needs only the first 7 elements of the previous gene. Consequently, we will consider these
7 elements only and delete the remaining elements as in Figure 12c to get the final form of the gene.

In TP, every individual solution has a coding representation called genome or chromosome [6],
which is composed of one or more genes. In addition, for each problem, the number of genes and
the length of the heads must be chosen. Then, we link these genes in every chromosome by using a
suitable linking function depending on the problem itself. For example, in algebraic expressions, any
mathematical function with more than one arguments (like + or *) can be used to link these genes to get
a final chromosome.
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Figure 11: An Example of a Visited Tree Structure for Full Tree with Depth 4

Adapting the chromosome to contain more than one genes increases the probability of finding suit-
able solutions and enables the algorithm to deal with more complex problems [6].

5.1.2 Set of Parameters in TP

As described in the previous subsections, TP makes use of a set of parameters. We list these parameters
in the following:

• hLen: The maximum length of the head for every gene in the initial solution.

• nGene: The number of genes in every chromosome.

• nTL: The number of elements in the set of tabu list, which represents the short-term memory in
the program to avoid cycling in the solutions.

• nTrs: The number of suggested trial solutions in the neighborhood of the current solution. We
set nT and n′T in Algorithm 5.1 equal to nTrs.

• ILNonImp: The maximum number of consecutive non-improvements in the intensive local
search (termination condition of the intensive local search).

• DLNonImp: The maximum number of consecutive non-improvements in the diverse local search
(termination condition of the diverse local search).

• IntNonImp: The maximum number of consecutive non-improvements in the intensification step
(termination condition of the intensification step).

• FunCnt: The maximum number of function evaluations (fitness evaluations).
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Figure 12: Constructing new gene.

6 Numerical Experiments

In this section, we discuss the performance of the TP method through two types of benchmark problems;
the symbolic regression problem and the 6-Bit multiplexer problem. Several preliminary experiments
were carried out first to study the effect of TP parameters behavior, and to study the efficiency of local
search over the tree space. Then, we conduct extensive experiments to analyze the main components of
the TP method. Finally, we make some comparisons between the TP method and the Gene Expression
Programming (GEP) method [6, 7, 8].

6.1 Symbolic Regression Problem

The terminology symbolic regression represents the process of fitting a measured data set by a suitable
mathematical formula. Thus, for a given dataset {(xj , yj)}N

j=1, we search for a function g such that the
mean-absolute error, chosen as an instance of an error function,

1
N

N∑

j=1

|yj − g(xj)|, (4)

is minimized, where not only the form but also the coefficients in the expression of g are unknown.

6.1.1 Test Problems

Suppose that we are given a sample dataset over N randomly chosen points. Now, we want to find
a function g to fit those values with a minimum error. In fact, one of the most important factors in
evolutionary algorithms is the choice of a suitable fitness function, specially for symbolic regression
problems.

Here we will use the following fitness function, which has been employed in the literature [6, 7]:

F =
N∑

j=1

(100− |g(xj)− yj |), (5)

where M = 100. We will adapt the precision of 0.01, that is, |g(xj) − yj | is regarded as zero if
|g(xj) − yj | ≤ 0.01. Clearly, maximizing the fitness function (5) is equivalent to minimizing the error
function (4), and the maximum value of the fitness function is Fmax = 100N .
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Test Problem 1. Consider the polynomial

f(x) = 3x2 + 2x + 1. (6)

We generate a dataset by computing the function values at 10 points randomly chosen from the real
interval [−10, 10]. The dataset thus obtained is shown in Table 2.

Test Problem 2. Consider the polynomial

f(x) = x4 + x3 + x2 + x. (7)

We generate a dataset by computing the function values at 10 points arbitrary chosen from the real
interval [0, 20], and these points are also shown in Table 2.

Test Problem 1 Test Problem 2
x f(x)

–4.2605 46.9346
–2.0437 9.4427
–9.8317 271.3236
2.7429 29.0563
0.7326 4.0753
–8.6491 208.1226
–3.6101 32.8783
–1.8999 8.0291
–4.8852 62.8251
7.3998 180.0707

x f(x)
2.81 95.2425

6 1554
7.043 2866.5486

8 4680
10 11110

11.38 18386.0341
12 22620
14 41370
15 54240
20 168420

Table 2: Datasets for Test Problems 1 and 2

6.1.2 Effect of Parameters

Here, we study the effect of the choice of parameters on the behavior of the TP method and discuss how
we can choose their best values for each problem. For every parameter, we chose several values, and for
each value, we performed 50 runs to compute the rate of success for this value, while letting the other
parameters be fixed at its standard values given in Table 3.

The computational results are displayed in Figures 13–20. As we can see from these figures, for
Test Problem 1, the results are not very sensitive to the changes of parameter values except nGene and
nTrs and all tested values affect the success rate only slightly. On the other hand, for Test Problem 2,
the results are sensitive to the changes of all parameters except nTL and IntNonImp and the success rate
is significantly affected by changing their values. But, the two parameters nGene and nTrs are still most
influential on the results.

Parameter Value
Test Problem 1 Test Problem 2

hLen 3 5
nGene 4 4
nTL 3 3
nTrs 5 5

ILNonImp 5 4
DLNonImp 5 5
IntNonImp 5 5
FunCnt 1000 1500

Table 3: Standard values of the parameters for Test Problems 1 and 2.
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As a result, the most important parameters for the TP method are the number of genes (nGene) and
the number of trials (nTrs). In particular, the number of genes must be chosen carefully, because if it
is very small or very large, we will get bad results. In fact, when the parameter nGene is very large,
the amount of computations will increase and the maximum number of computations allowed will be
reached before getting the best solution.

Figure 13: Rate of Success for 50 runs with different values of hLen for Test Problems 1 and 2.

6.1.3 Efficiency of Local Search in Tree Space

In this subsection we study the efficiency of the local search Procedures 3.1, 3.2 and 3.4. Here, we
consider four cases to illustrate the importance and the effect of each procedure. First we consider the
TP method with the intensive local search only. Second, we consider the TP method with the shaking
procedure as an intensive local search and the grafting procedure as a diverse local search. Third,
we consider the TP method with the shaking procedure as an intensive local search and the pruning
procedure as a diverse local search. Lastly, we consider the standard method as described in Algorithm
5.1. We performed 50 runs for every case to compute the rate of success, and the results are displayed in
Figure 21. Finally, one of these runs is shown in Figure 22 to illustrate the influence of the procedures
on the performance of the method.

Figure 14: Rate of Success for 50 runs with different values of nGene for Test Problems 1 and 2.
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Figure 15: Rate of Success for 50 runs with different values of nTL for Test Problems 1 and 2.

Figure 16: Rate of Success for 50 runs with different values of nTrs for Test Problems 1 and 2.

Figure 17: Rate of Success for 50 runs with different values of ILNonImp for Test Problems 1 and 2.
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Figure 18: Rate of Success for 50 runs with different values of DLNonImp for Test Problems 1 and 2.

Figure 19: Rate of Success for 50 runs with different values of IntNonImp for Test Problems 1 and 2.

Figure 20: Rate of Success for 50 runs with different values of FunCnt for Test Problems 1 and 2.
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Figure 21: Rate of Success for 50 runs with different versions of TP method.

Figure 22: Comparison of four versions of TP method.

6.1.4 TP Method with Perturbed Data

To illustrate the stability of the TP method, we apply it to test problems with some perturbation in the
function data. In fact, we simply modify the formula (5) for computing the fitness function as

F =
N∑

j=1

(100− |g(xj)− (1 + ε rand )yj |), (8)

where rand ∈ [0, 1] is a random number and ε is a small positive number.
For each ε = 0, 10−5, 10−4, 10−3 and 10−2, we performed 50 runs and we chose the best value from

these runs. The results are displayed in Figure 23.
For Test Problem 2, when we apply the perturbations with ε = 10−3 and 10−2, we got new solutions,

which means that the data change due to perturbation yielded another problems. In spite of that, the TP
method is still successful to get correct formulas for the new data.

6.1.5 TP Method vs GEP Method

Here, we compare the proposed TP method with Gene Expression Programming (GEP) method, which
is known as one of the most efficient modifications of the genetic programming method. For more
details about GEP method, see [6, 7, 8]. In the comparison, the values of parameters are set as in Table
4 and the results are shown in Figure 24. It is clear from the figures that the TP method outperforms the
GEP method, especially for the more complicated Test Problem 2.
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Figure 23: Results for some perturbed data.

Parameter Value
Test Problem 1 Test Problem 2

hLen 3 7
nGene 3 4
nTL 3 3
nTrs 5 5

ILNonImp 5 5
DLNonImp 5 5
IntNonImp 5 5
FunCnt 1000 1500

Table 4: Values of the TP parameters used in the comparison with GEP method.

6.2 6-Bit Multiplexer Problem

The input to the Boolean N -bit multiplexer function consists of k “address” bits ai and 2k “data” bits
di, and is a string of length N = k + 2k of the form ak−1, ..., a1, a0, d2k−1, ..., d1, d0. In addition, the
value of the N -multiplexer function is the value (0 or 1) of the particular data bit that is singled out by
the k address bits of the multiplexer. For example, for the 6-bit multiplexer problem (where k = 2), if
the two address bits a1 and a0 are 1 and 0, respectively then the multiplexer singles out the data bit 2
(i.e., d2) to be its output.

In this subsection we will study the performance of the TP method applied to the 6-bit multiplexer
problem with k = 2. Therefore, the Boolean 6-bit multiplexer is a function of 6 activities; two activities
a1, a0 determine the address, and four activities d3, d2, d1, d0 determine the answer.

To apply the TP method to this problem, we use the following arguments.

1. The 6 activities {a1, a0, d3, d2, d1, d0} as the set of terminals.

2. The Boolean function {IF} as the set of functions. IF(x, y, z) will return the value y if x is true,
and it will return the value z otherwise.

3. The fitness measure for the problem. There are 26 = 64 possible combinations of the 6 activities
a1, a0, d3, d2, d1, d0 along with the associated correct values of the 6-bit multiplexer function.
Therefore, we will use the entire set of 64 combinations of activities as the fitness cases for
evaluating the fitness [20]. The fitness value in this case will be the number of fitness cases where
the Boolean value returned by the TP solution for a given combination of arguments is the correct
Boolean value. Thus, the fitness value for this problem ranges between 0 and 64, where the fitness
value of 64 means a 100%-correct solution.

4. The set of parameters have the values given in Table 5.
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Figure 24: Comparison between TP method and GEP method for Test Problems 1 and 2.

For this test problem, we examine the parameter setting. Fortunately, we find that the TP method
gets a 100%-correct solution for all values of the parameters given in Table 5.

Parameter Value
Set of Parameters 100%-correct Solution

hLen 3 ≥ 3
nGene 3 3, 5 Or 7
nTL 3 ≥ 3
nTrs 5 ≥ 5

ILNonImp 15 ≥ 15
DLNonImp 15 ≥ 15
IntNonImp 15 ≥ 15
FunCnt 15000 ≥ 15000

Table 5: Set of parameters for our results and the 100%-correct solution parameters.

We apply the TP method to the 6-bit multiplexer problem and make 50 runs. In Figure 25, we
show the results of two runs as sample results. In addition, the final solutions for these two samples are
shown in Figures 26. Note that, these are the final formulas, and we get them by applying some editing
operations to the original ones, so that the original formulas and the previous formulas are logically
equivalent.

By comparing our results with those of GP [1] and GEP [6] for this problem, we may conclude that
the TP method is promising since it converges to a 100% correct solution rapidly and saves a lot of
computational time.

7 Concluding Remarks and Future Work

Genetic Programming is one of the powerful tools of the artificial intelligence methods. It searches a
solution space of computer programs which can be represented as a parse tree. However, it has been
addressed that crossover and mutation in GP are highly disruptive with the risk of non-convergence to
an optimal structure. Therefore, this work has introduced some local search procedures over a tree space
as alternative operations to crossover and mutation.

The proposed local searches have two aspects; intensive and diverse. Intensive local search aims to
explore the neighborhood of a tree by altering its nodes without changing its structure. Diverse local
search changes the structure of a tree by expanding its terminal nodes or cutting its subtrees. Using
these search procedures, various meta-heuristics can be generalized to deal with tree data structures in a
unified framework which we call Meta-Heuristics Programming (MHP).
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Figure 25: Sample results for 6-bit multiplexer problem.

Figure 26: Final solution for TP method for 6-bit multiplexer problem.

As a special case of MHP framework, we have introduced the Tabu Programming (TP) method
as a modification to the Tabu Search method which belongs to point-to-point methods. Finally, we
have tested the performance of the TP method for two types of benchmark problems and made some
experiments to analyze the main components of TP method. From these numerical experiments, we
have shown that TP method is effective and stable, compare with the GEP method.

As a future work, we may introduce more specific classes of the MHP framework. For example, we
may modify the GP method to get a new method called the Memetic Programming method that belongs
to population-based methods. Also, we may develop the Annealing Programming method by applying
our local search procedures over a tree space to the classical Simulated Annealing method which belongs
to point-to-point methods.

References

[1] R.M.A. Azad and C. Ryan, An Examination of Simultaneous Evolution of Grammars and Solu-
tions, in: Genetic Programming: Theory and Practice III, T. Yu, R.L. Riolo and B. Worzel (Eds.),
Springer-Verlag, 9, 141–158, 2006.

[2] M. Boryczka, Eliminating Introns in Ant Colony Programming, Fundamenta Informaticae, 68,
1–19, 2005.

[3] M. Boryczka, Z.J. Czech, and W. Wieczorek, Ant Colony Programming for Approximation Prob-
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