
Removing Overlaps in Label Layouts Using
Multi-sphere Scheme?

Takashi Imamichi1, Yohei Arahori1, Jaeseong Gim1,
Seok-Hee Hong2, and Hiroshi Nagamochi1

1 Department of Applied Mathematics and Physics,
Kyoto University,

{ima, arahori, jaeseong, nag}@amp.i.kyoto-u.ac.jp
2 School of Information Technologies, University of Sydney

shhong@it.usyd.edu.au

Technical report 2008-006, June 4, 2008.

Abstract. In this paper, we consider the problem of removing over-
laps of labels in a given layout by changing locations of some of the
overlapping labels, and present a new method for the problem based on
a packing approach, called multi-sphere scheme. Based on this scheme,
each label in a given layout is approximated by a set of circles, and a cost
function that penalizes the overlap between two objects is introduced.
By minimizing the penalty function using a quasi-Newton method, we
compute a layout of the set of circles as an approximate solution to the
original problem.
We consider two new variations of the label overlap problem, inspired
by real world applications, and provide a solution to each problem. Our
new approach is very flexible to support various operations such as trans-
lation, translation with direction constraints, and rotation. Further, our
method can support labels with arbitrary shapes in both 2D and 3D
layout settings. Our extensive experimental results show that our new
approach is very effective for removing label overlaps.

Keywords: Graph Drawing, Node Overlap Removal, Map Labeling,
Road Map Layout, Multivariate Network.

1 Introduction

1.1 Motivation and Background

Graph Drawing has been extensively studied over the last twenty years due
to its popular application for visualisation in VLSI layout and visualization of
computer networks, software engineering, social networks and bioinformatics. As
a result, many algorithms and method are available [4].
? This research was partially supported by Research Fellowships of the Japan Society

for the Promotion of Science for Young Scientists and a Scientific Grant in Aid from
the Ministry of Education, Science, Sports and Culture of Japan.

2

Note that most algorithms and methods in Graph Drawing deal with abstract
graph layout, where each node is represented as a point. However, in many real
world applications, nodes may have labels with different size and shape. For
example, some nodes have very long text labels or large images, and they can
be represented as boxes or circles as in UML diagrams. Consequently, direct use
of layout algorithm for abstract graph often leads to overlapping of nodes (i.e.
labels) in the resulting visualization.

In order to visualize graphs with different node sizes, the following three steps
approach is used in general. First, a reasonably good initial layout is created
using a graph layout algorithm without considering node size. Second, labels of
nodes are added in the layout. Finally, the post processing step to remove node
(i.e. label) overlapping is performed.

1.2 Related Work

The problem of removing node overlaps has been well studied for the last ten
years by the Graph Drawing community. These can be classified into three dif-
ferent approaches: methods based on force-directed algorithm [6–8, 10, 12, 14],
methods based on the use of Voronoi Diagram [6, 12], and methods using con-
strained optimization techniques [5, 13].

Further, they differ in their optimization criteria considered. The variations of
Force Scan algorithm based on the force-directed method [7, 8, 10, 14] preserves
orthogonal ordering, the top-down and left-right relationship between nodes.
Note that the problem of transforming a given layout of a graph with overlapping
rectangular nodes into a minimum area layout without node overlapping which
preserves the orthogonal order is proved as NP-complete [7]. The constrained
optimization techniques using a quadratic programming approach minimizes the
total change of node positions while satisfying non-overlap constraints [5, 13].

The time complexity is O(n2) for force-directed methods [6–8, 10, 12, 14],
however for some special cases, it can be reduced to O(n log n) [5, 12].

Note that most of the methods solve the problem of overlap removal of rect-
angular labels with translation only.

1.3 Our Contribution

We present a new method for removing overlap of labels based on multi-sphere
scheme [9], a general algorithmic framework for solving the problem of packing
objects both in two and three dimensions.

Based on this scheme, each label in a given layout is approximated by a set
of circles, and a cost function that penalizes the overlap between two circles is
introduced so that the cost function takes value 0 if the current layout of sets of
circles has no overlap. By minimizing the penalty function using a quasi-Newton
method, we compute a layout of the set of circles as an approximate solution to
the original problem.

Our new approach is very flexible, and has the following three advantages
over previous work.

3

1. First, our approach can handle labels with arbitrary shapes. Note that previ-
ous methods can deal with only rectangular labels. However, in our approach,
we can treat any non-rectangular-shaped labels by approximating each of
them as a set of circles. We can also place given labels inside a specified area
with a non-rectangular boundary.

2. Second, our algorithm can use three types of operation: translation, transla-
tion with direction constraints (i.e. move along the specified line), and rota-
tion. Note that the previous methods deal with only translation.

3. Finally, our method can be used for both 2D and 3D layouts. Note that
previous study can only deal with 2D layout.

In order to demonstrate our three advantages, we consider two new variations
of the label overlap problem, each inspired by real world applications, and design
an algorithm for each problem setting. More specifically, we present an algorithm
for removing label overlaps with two different variations:

– Problem 1: rectangular labels with direction constrained translation (in-
spired from road map layout [1]), and

– Problem 2: 3D labels of arbitrary shape with both translation and rotation
(inspired from 3D visualization with multiple attributes of nodes [2]).

We implemented our algorithm and evaluated with two different types of
data sets. Our extensive experimental results show that our new approach is
very fast and effective for removing label overlaps.

The remainder of the paper is organized as follows. In Section 2, we for-
mally define two new variations of label overlapping problem. Section 3 presents
an algorithm for the label layout problem based on multi-sphere scheme. Sec-
tion 4 presents experimental results for two different real world applications. We
conclude with future work in Section 5.

2 Problem Definition

The label overlap removal problem is to remove a set of overlapping labels in
the given layout by modifying the positions of the labels, so that no two labels
overlap each other.

We design an algorithm for label overlap removal problem based on the multi-
sphere scheme [9], a flexible framework for general packing problem, where one
can choose arbitrary shapes of objects, and restrict the movement of each object
with translation and rotation.

We now formally define two types of label overlap removal problem.

Problem 1: Rectangular Label with Direction-Constrained Trans-
lation
Input: A set of overlapping rectangles, where each rectangle is located on
its initial position with a specified direction constraints (i.e. a line segment)
in the plane.

4

Output: A set of new positions of rectangles such that no two rectangles
overlap and the change of new positions from the initial positions is small,
where the new position of each rectangle is obtained by restricted translation
along the specified direction only (i.e. on the line segment where the label
initially lies).

Problem 1 appears in applications such as placing labels of street names in
a road map layout [1].

Problem 2: 3D Multi-attribute Label with Translation and Rota-
tion
Input: A set of overlapping spiked sphere (i.e. a sphere with several small
cones on its surface), where each spiked sphere is located on its initial position
in the 3D space.
Output: A set of new positions of spiked spheres in 3D such that no two
spiked spheres overlap and the change of new positions from the initial po-
sitions is small, where the new position of each spiked sphere is obtained by
both translation and rotation in 3D.

Problem 2 appears in applications such as visualization of network data with
multiple attributes in three dimensions. For example, a spiked sphere was used
to represent an author of the Information Visualization community, where each
sphere represents an author, the size of sphere represents the number of research
papers published by the author in the conference proceedings, and the length
of each spike attached to the sphere represents special attributes such as the
number of papers in specific research area [2].

Based on each type of label overlap removal problem, we design algorithms
for two different problem settings. More specifically, we formulate each problem
as an optimization problem by introducing an objective function in order to
remove the overlap in a given layout (the formal description will be given in the
next Section).

Although we do not use an explicit criteria to minimize the total change
between the initial and final layouts, our algorithm repeatedly modifies the initial
layout by finding the best direction of translation of each object until a new
layout with no overlap is obtained as a local optimal solution to our optimization
problem. Thus in most cases, the final positions of labels are close to the initial
positions.

3 Algorithm based on Multi-sphere Scheme

The multi-sphere scheme is an approach to design efficient algorithms that com-
pute compact layouts of given objects for the packing problem in 2D and 3D
space [9]. In the multi-sphere scheme, we first approximate each object by a set
of spheres, and then search for positions of all the spheres that minimize an
appropriate penalty function.

5

For this, we formulate the problem of finding a layout of sets of spheres as
an unconstrained optimization problem. This optimization problem can provide
us an efficient procedure for modifying a given layout into a new layout with
no overlap, where such a layout is obtained as a locally optimal solution to the
optimization problem. Approximating objects by spheres makes it easy to check
collisions of objects and handle rotations of objects by arbitrary angles.

Note that the multi-sphere scheme is very general and can handle both rigid
and deformable objects. In this paper, we only use the rigid case of the multi-
sphere scheme.

We first briefly review a local search algorithm, called RigidQN designed for
the rigid case [9]. Given an initial layout of objects and a container for packing,
RigidQN searches for a layout with no overlap and no protrusion by translating
and rotating the objects.

We first formulate the penalized rigid sphere set packing problem for Rd,
which asks to move a collection O = {O1, . . . , Om} of m objects so that no two
objects overlap each other. Each object Oi consists of ni spheres {Si1, . . . , Sini}.
Let cij be the vector that represents the center of spheres Sij , rij be the radius of
Sij and N =

∑m
i=1 ni be the total number of spheres. We let ri =

∑ni

j=1 cij/ni,
which represents the center of Oi. For a set S of points, let ∂S be the boundary
of S, and int(S) = S \ ∂S be the interior of S.

After translating object O by translation vector v ∈ Rd, the resulting object
is described as O⊕v = {x+v | x ∈ O}. The penetration depth [3] of two shapes
S and T is defined by δ(S, T) = min{‖x‖ | int(S)∩ (T ⊕x) = ∅, x ∈ Rd}, where
‖ · ‖ denotes the Euclidean norm. For spheres Sij and Skl, the penetration depth
of them is δ(Sij , Skl) = max{rij + rkl − ‖cij − ckl‖, 0}.

Let Λi(x, v) : Rd×λi → Rd (i = 1, . . . ,m) be a motion function that moves
a point x ∈ Rd by λi variables v ∈ Rλi . For a set of points S ⊆ Rd, let
Λi(S, v) = {Λi(x, v) | x ∈ S}. For simplicity, we let cij(v) = Λi(cij ,v) and
Sij(v) = Λi(Sij , v).

The penalized rigid sphere set packing problem is defined by

minimize Fpen(v) =
∑

1≤i<k≤m

ni∑
j=1

nk∑
l=1

fpen
ijkl(v),

subject to v = (v1, . . . , vm) ∈ R
Pm

i=1 λi ,

vi ∈ Rλi , i = 1, . . . ,m,

(1)

where

fpen
ijkl(v) = [δ(Sij(vi), Skl(vk)]2

= [max{rij + rkl − ‖cij(vi) − ckl(vk)‖, 0}]2

denotes the penetration penalty of two sphere Sij and Skl.
The penalized rigid sphere set packing problem is an unconstrained nonlinear

program and the objective function Fpen is chosen to be differentiable [9]. If

6

Sij(vi) and Skl(vk) intersect each other, then it holds that

∂fpen
ijkl(v)
∂vi

= −2δ(Sij(vi), Skl(vk)) · ∂cij(vi)T

∂vi
· cij(vi) − ckl(vk)
‖cij(vi) − ckl(vk)‖

,

where T denotes the transpose of a vector/matrix. Otherwise, it holds that
∂fpen

ijkl(v)/∂vi = 0.
In the multi-sphere scheme, we can impose a restriction on the motion of

each object Oi by defining its motion function Λi appropriately. In this paper,
we consider two different motions of objects to solve the problems listed in the
previous section.

We now describe specific details more formally.

3.1 Translations with a Fixed Direction in 2D for Problem 1

We first consider the case where object Oi is allowed to translate only in a
prescribed direction in R2, but not allowed to rotate. Assume that the reference
point ri of object Oi lies on a line di + tiei, where di,ei ∈ R2 are given and ti
is a variable. Then

Λi(x, ti) = x − ri + di + tiei,
∂cij(ti)

∂ti
=

∂Λi(cij , ti)
∂ti

= ei.

This formulation can handle Problem 1 by approximating each rectangular
label by a set of circles, because Problem 1 allows translation of each label in a
fixed direction.

3.2 Translations and Rotations in 3D for Problem 2

We next consider the case where each object Oi in R3 is allowed to translate and
rotate around its reference point ri. Let (xi, yi, zi)T be the translation vector,
(φi, θi, ψi) be the z-x-z Euler angles, and R3(φi, θi, ψi) be the rotation matrix.
Given variables vi = (xi, yi, zi, φi, θi, ψi)T, we define the resulting position of a
point x ∈ R3 after the motion by

Λi(x,vi) = R3(αrotφi, αrotθi, αrotψi)(x − ri) + (xi, yi, zi)T + ri,

where a positive parameter αrot denotes sensitivity of rotations (we set αrot =
10−1 in our experiments). Then,

∂cij(vi)
∂xi

= (1, 0, 0)T,

∂cij(vi)
∂φi

=
∂R3(αrotφi, αrotθi, αrotψi)

∂φi
(cij − ri).

The other derivatives of cij(vi) with respective to yi, zi, θi, and ψi can be
calculated analogously.

This formulation can handle Problem 2 by approximating each “spiked sphere”
by a set of spheres, because Problem 2 allows translation and rotations of 3D
objects.

7

3.3 Local Search Algorithm

The local search algorithm RigidQN applied to the label layout problem re-
peatedly modifies the positions of labels as follows.

Given an initial layout O of labels, where the labels are approximated by
sphere sets, RigidQN(O) returns a locally optimal layout computed by applying
the quasi-Newton method to the penalized rigid sphere set packing problem (1).

RigidQN moves the labels simultaneously and modifies the entire layout
gradually until the value of the penalty function becomes 0 (i.e. the overlap
of labels is removed), where the motions of objects are followed by the motion
functions {Λ1, . . . , Λm}. In practice, RigidQN is implemented so that the com-
putation halts if the value of the penalty function becomes sufficiently small.

To apply the multi-sphere scheme to Problems 1 and 2, we treat the problem
as a packing problem which asks to move given labels in a sufficiently large con-
tainer. We then approximate each label in a given layout as a set of spheres that
covers the interior of the label, and apply the local search algorithm RigidQN .

4 Experimental Results

We conducted computational experiments of RigidQN by generating instances
of both Problems 1 and 2 randomly. In this section, we report the results.

We implemented RigidQN in C++, compiled it by GCC 4.1 and conducted
experiments on a PC with an AMD Sempron 3000+ 1.8 GHz processor and
450 MB memory. We adopted a quasi-Newton method package L-BFGS [11].
L-BFGS has a parameter mBFGS, which is the number of BFGS corrections in
L-BFGS. We set mBFGS = 6 as it is recommended to choose from the range
3 ≤ mBFGS ≤ 7 in the L-BFGS package.

4.1 Results of Problem 1

In Problem 1, the movement of rectangular labels is limited to translation in
specified directions, as appeared in the road maps. Thus, we generated instances
which represent the road map label layout, where the labels (i.e. names of the
streets) are constrained to be placed along the corresponding streets.

More specifically, we are given a set of edges embedded in the plane, where
each edge is drawn as a straight-line segment that represents a street in the road
map, and required to remove overlaps of rectangular labels by moving each label
along each edge. Note that two edges (i.e. two streets) may have an intersection
in the plane, in general.

The data set was generated as follows. We first start with a square with size
`map × `map which consists of four lines as a drawing area, where we set `map =
10000, and place a square grid on the square, where the minimum distance
between two grid lines is `grid.

Next we draw horizontal and vertical line segments one after another on the
grid lines. To draw a horizontal line segment, we choose two arbitrary vertical

8

line segments whose distance is more than or equal to `map/3 and connect them
with an arbitrary horizontal line segment on the grid (we draw a vertical line
segment analogously).

We repeat drawing line segments until we cannot choose any pair of line
segments.

Then, we draw some slanted line segments by choosing two arbitrary points
in the drawing.

Finally, we place a rectangle in the middle of each line segment in the drawing,
where the height of a rectangle is `label and the length of a rectangle varies over
a range [5`label, 10`label].

For example, Figures 1(a), 2(a) and 3(a) show instances with initial positions
of labels for `label = 100, where a line segment represents an edge (i.e. street)
and a rectangle represents a label (i.e. street name). Figure 1(a) is generated for
`grid = 200, which has 112 labels and 3601 circles. Figure 2(a) is generated for
`grid = 150, which has 147 labels and 4818 circles. Figure 3(a) is generated for
`grid = 100, which has 222 labels and 6773 circles.

(a) (b)

Fig. 1. An example of a road map layout with 112 labels (`label = 100, `grid = 200) :
(a) an initial layout, (b) a final layout.

Here we consider the problem of removing the overlap between all pairs of
rectangles in the initial layout by moving each rectangle along the corresponding
line segment. Again, we apply our algorithm RigidQN after approximating each
rectangle by a set of circles.

Note that for this approximation, we add more circles around the center of
a rectangle. This is because we observed form our preliminary experiment that
it was better than approximating a rectangle by placing circles equally. Thus,
we place circles by increasing the number of circles from both ends of label as
follows.

9

(a) (b)

Fig. 2. An example of a road map layout with 147 labels (`label = 100, `grid = 150) :
(a) an initial layout, (b) a final layout.

(a) (b)

Fig. 3. An example of a road map layout with 222 labels (`label = 100, `grid = 100) :
(a) an initial layout, (b) a final layout.

Fig. 4. Approximation of a rectangle for road map instances.

10

Assume that we are given a rectangle whose width w is longer than the height
h and that the bottom left point of the rectangle lies at the origin. We place
circles with a radius h/2 at

{((i − 1/2)h, h/2), (w − (i − 1/2)h, h/2) | i = 1, . . . , b(w/h + 1)/2c}
∪ {(w/2, h/2)}.

The numbers of circles to place at ((i − 1/2)h, h/2) and (w − (i − 1/2)h, h/2)
are both i and the number of circles to place at (w/2, h/2) is d(w/h+1)/2e. See
Figure 4 for an example. In the figure, the number under a circle represents the
number of circles on the position.

See Figures 1(b), 2(b) and 3(b) for the final layouts of the instances of Fig-
ures 1(a), 2(a) and 3(a) after removing overlaps of labels by our method, re-
spectively. It took 0.24 seconds for Figure 1(b), 0.43 seconds for Figure 2(b) and
1.5 seconds for Figure 3(b). Note that our method successfully removed all the
overlaps for the sparse instance. However, for some dense instances, it left a few
overlaps.

To observe the influence of the density of the road map layout and the number
of labels on the efficiency of our algorithm, we varied two parameters `label and
`grid from 100 to 1000 with a step size 50 and from 50 to 1000 with a step size
50, respectively, and conducted experiments. For each setting, we generate 100
instances and apply RigidQN to them.

Table 1 shows details of some of the the selected results. The column “time,”
“decrease,” “#label,” and “#circles” denote the average computation time, the
average ratio of the decrease of the object function (1), the average number of
labels, and the average number of circles, respectively. Figures 5 and 6 show
the average computation time and the average ratio of the penalty decrease for
`label = 200, respectively. We observed that our algorithm removed almost all
overlaps in less than one second for the instances for `grid ≥ 2`label.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

lgrid

Fig. 5. Average computation time for `label = 200.

11

`label `grid time decrease (%) #labels #circles

100 250 0.12 99.9 9.0 × 101 2.8 × 103

200 0.22 99.6 1.1 × 102 3.4 × 103

150 0.65 98.8 1.4 × 102 4.5 × 103

100 1.57 98.3 2.2 × 102 6.9 × 103

200 400 0.20 98.6 5.7 × 101 1.7 × 103

350 0.30 98.3 6.3 × 101 1.9 × 103

300 0.50 97.0 7.4 × 101 2.3 × 103

250 0.72 95.5 9.0 × 101 2.8 × 103

300 600 0.16 97.4 3.7 × 101 1.1 × 103

500 0.28 96.4 4.6 × 101 1.4 × 103

400 0.48 92.4 5.7 × 101 1.7 × 103

300 0.79 83.5 7.4 × 101 2.3 × 103

400 1000 0.07 98.0 2.4 × 101 7.5 × 102

800 0.12 94.6 2.8 × 101 8.8 × 102

600 0.29 89.9 3.7 × 101 1.1 × 103

400 0.66 74.6 5.7 × 101 1.7 × 103

500 1000 0.12 89.4 2.4 × 101 7.5 × 102

800 0.19 87.4 2.8 × 101 8.7 × 102

600 0.32 81.1 3.7 × 101 1.1 × 103

400 0.71 65.5 5.7 × 101 1.8 × 103

Table 1. Details of the selected results of road map instances.

 70

 75

 80

 85

 90

 95

 100

 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ra
tio

 o
f p

en
al

ty
 d

ec
re

as
e

(%
)

lgrid

Fig. 6. Average ratio of penalty decrease for `label = 200.

12

4.2 Results of Problem 2

For the data set of Problem 2 (i.e. 3D objects of various shapes with rotation
and translation), we create an instance which resembles the spiked spheres used
in [2]. More specifically, given a layout of a set of spiked spheres with some
overlaps, we remove the overlaps by translation and rotation.

We generate an instance as follows. A spiked sphere has a sphere of radius
10 together with attached 10 spikes. Each spike consists of 20 spheres and the
length varies on a range [10, 70]. Thus a spiked sphere has 201 spheres in total.
To create an instance, we place the spiked spheres randomly in a cube with edge
length 300, where the number of spiked spheres is a parameter.

See Figures 7(a), 8(a) and 9(a) for instances with 50, 100 and 200 spiked
spheres, respectively. See Figures 7(b), 8(b) and 9(b) for the resulting layouts.
Our algorithm RigidQN run in 0.47 seconds for Figure 7(b), 1.7 seconds for
Figure 8(b) and 8.8 seconds for Figure 9(b), and obtained layouts with no overlap
of spiked spheres by translating and rotating them slightly. Figures 10(a) and (b)
are magnified pictures of Figures 8(a) and (b), respectively. We can see a spiked
sphere in Figure 10(a) penetrating another spiked sphere, and the removal of
overlap in Figure 10(b).

(a) (b)

Fig. 7. An example instance with 50 labels of Problem 2: (a) an initial layout, (b) a
final layout.

To observe the influence of the number of spiked spheres on the efficiency of
our algorithm, we varied the number of spiked spheres from 50 to 250 with a
step size 50, generated 10 instances for each setting, and measured the compu-
tation time. See Figure 11 for the average computation time. In this experiment,
RigidQN found a layout with an objective function value less than 10−9 for all
instances. We observed that our algorithm removed almost all overlaps in less

13

(a) (b)

Fig. 8. An example instance with 100 labels of Problem 2: (a) an initial layout, (b) a
final layout.

(a) (b)

Fig. 9. An example instance with 200 labels of Problem 2: (a) an initial layout, (b) a
final layout.

14

(a) (b)

Fig. 10. Magnified figures of Figure 8: (a) an initial layout, (b) a final layout.

than 10 seconds for the instances with the number of spikes spheres less than or
equal to 200.

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200 250

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

number of spiked spheres

Fig. 11. Average computation time for instances of Problem 2.

5 Conclusion

We presented a new approach for two new variations of label overlap removal
problem based on multi-sphere scheme. Our approach is flexible to support var-
ious operations such as translation, translation with direction constraints, and
rotation. Further, our method can support labels with arbitrary shapes in both
2D and 3D layout settings.

We applied our algorithm to two new label overlap problems: two dimensional
rectangular label with directed-constrained translation (Problem 1) and three
dimensional multi-attribute label with translation and rotation (Problem 2). The

15

experimental results showed that our algorithm based on local search algorithm
RigidQN was very efficient for label overlap removal. For Problem 1, RigidQN
removed almost all overlaps of the labels if the density of labels in the initial
layout was not so high, and found a layout in less than one second for the
instances with a few thousand circles. For Problem 2, it also removed almost all
overlaps of the labels in less than 10 seconds for the instances with less than or
equal to 20000 spheres.

Our future work includes more extensive experiments with real world ap-
plications. For example, we will consider label overlap removal problem with
domain-specific layout constraints including software engineering (such as UML
diagram), biology (such as biochemical pathways), and social networks visual-
ization.

References

1. M. Agrawala, Visualizing route maps, Ph.D. thesis, Stanford University, 2002.
2. A. Ahmed, T. Dywer, S. Hong, C. Murray, S. Le and Y. Wu, Visualisation and

analysis of large and complex scale-free networks, Proc. of EuroVis 2005, 239-246,
2005.

3. P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch and M. Sharir, Penetra-
tion depth of two convex polytopes in 3D, Nordic Journal of Computing, 7, 2000,
227-240.

4. G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice Hall, 1999.

5. T. Dwyer, K. Marriott and P. J. Stuckey, Fast node overlap removal, Proc. of
Graph Drawing 2005, LNCS 3843, 153-164, 2006.

6. E. R. Gansner and S. C. North, Improved force-directed layouts, Proc. of Graph
Drawing 1998, LNCS 1547, 364-373, 1999.

7. K. Hayashi, M. Inoue, T. Masuzawa and H. Fujiwara, A layout adjustment problem
for disjoint rectangles preserving orthogonal order, Proc. of Graph Drawing 1998,
LNCS 1547, 183-197, 1999.

8. X. Huang and W. Lai, Force-transfer: a new approach to removing overlapping
nodes in graph layout, Proc. of ACSC 2003, CRPIT 16, 349-358, 2003.

9. T. Imamichi and H. Nagamochi, A multi-sphere scheme for 2D and 3D packing
problems, Proc. of Stochastic Local search (SLS) algorithms, LNCS 4638, 207-211,
2007.

10. W. Li, P. Eades and N. Nikolov, Using spring algorithms to remove node overlap-
ping, Proc. of APVIS 2005, CRPIT 45, 131-140, 2005.

11. D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale
optimization, Mathematical Programming, 45, 503-528, 1989.

12. K. A. Lyons, H. Meijer and D. Rappaport, Algorithms for cluster busting in an-
chored graph drawing, Journal of Graph Algorithms and Applications, 2, 1-24,
1998.

13. K. Marriott, P. Stuckey, V. Tam and W. He, Removing node overlapping in graph
layout using constrained optimization, Constraints, 8, 143-171, 2003.

14. K. Misue, P. Eades, W. Lai and K. Sugiyama, Layout adjustment and the mental
map, Journal of Visual Language and Computing, 6(2), 183-210, 1995.

