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Abstract

OnN x N (N > 2) non-singular upper bidiagonal matriand its transpose
BT, matrix products BT B) and BB™) are symmetric positive definite tridiagonal
matrices. LetM denote an arbitrary positive integer. We present a formula to com-
pute diagonals of inverse powers of these matrix products such BaB){')*
and (BB")M)™! in the form of recurrence relations and their initial values. All
diagonals of the inverse oB{ B)M or (BBT)™ are computed withirO(N) flops
according to the presented formula. Traces of the inverseB'@)" and 8BT)M
can be used to compute lower bounds of the minimal singular valBe of

1 Introduction

To compute a lower bound of the minimal singular value of a bidiagonal matrix, traces
of the inverses of particular matrix products can be utilized. Fernando and Parlett [1]
considered a positive upper bidiagonal matixhere all diagonals and upper subdi-
agonals ofA are positivel . They showed that diagonals of the inverse of the symmetric
positive definite tridiagonal matriRAT are computed from auxiliary quantities which
appear in the oqd (orthogonal quotienffdience) algorithm and then a lower bound

of the minimal singular value oA can be computed from the trace of the inverse of
AAT. Through this paper, let the ix T of a matrix denote its transpose. von Matt
[2] considered a non-singular upper bidiagonal mdtriwhere all diagonals and upper
subdiagonals df) are nonzero. He presented a method for computing diagonals of the
inverses of the symmetric positive definite matdix)™ and (JUT)? and then proposed

two different shift strategies for the orthogonal gd-algorithm. Note that this algorithm
is different from the algorithm in [1] having the same name. One of the shift strategies
requires the trace of the inversedfJT and the other one requires the traces both of
the inverses oJUT and (UUT)? to compute the shifts. The shifts are determined as
lower bounds of the minimal singular value df WhenA or U is anN x N matrix,
diagonals of the inverses #&AT or UUT or (UUT)? can be computed withi®(N)

flops.

In this paper, letM denote an arbitrary positive integer. On a non-singular upper
bidiagonal matrixB where all diagonals and upper subdiagonalB afre nonzero, we
prove a theorem on a®(N) formula for diagonals of inverse oB8( B)M or (BBT)M
in a form of recurrence relations and their initial values. If an upper subdiagomal of

aGraduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501
Japan (kkimur@amp.i.kyoto-u.ac.jp, takumi@amp.i.kyoto-u.ac.jp, ynaka@amp.i.kyoto-u.ac.jp)

bSORST, Japan Science and Technology Agency

$corresponding author, E-mail : takumi@amp.i.kyoto-u.ac.jp, Tel81-75-753-5511, Fax. +81-75-
753-5497

1In [1], the matrixA is expressed with a symbBl



is zero, it is readily shown that we can divide the problem to compute these diagonals
into the same type of two smaller problems. Then, we can set an additional assumption
that all the upper subdiagonals Bfare nonzero without losing generality.

Here we fix the notations used in the theorem. Bet= (B;;) denote anN x
N (N > 2) non-singular upper bidiagonal matrix. Let the diagonal element and the
upper subdiagonal element in theth row of B be denoted by andc;, respectively.
That is,

b = Bij (l <i< N),
G=Bj;1 (I<i<N-1).

Let N x N matricesv®™ = (V{), W = (W™), X@ = (x@) andY©@ = (Y?) denote

v = ((BTB)™,

w™ = ((BBT)™™,

X@ = (B(B"B)9)* = ((BBT)'B) %,

Y@ = (BT(BBT)%)! = (BTB)IBT)?!
for integersm (0 < m < M) andqg (0 < g £ M - 1), respectively. Next, we simply
write diagonals of the matriceg™, W™, X@ andY@ asv{™ = v, w™ = w,
X = X9 andy® = Y for 1 < i < N, respectively.

LetZ? denote

;_(Q) = bi(X,-(Q) + yi(Q)). (2)

forl<i<NandO<g<M-1

Then, under the assumptions that all diagonals and subdiagoralarefnonzero,
the following theorem holds.
Theorem

Let M be an arbitrary positive integer. All the diagonal eleme¥8 andw™
of inverse matrices §"B)M)~! and (BB")M)™1, respectively, are computed by the
following simple recurrence relations with the initial values. The recurrence relations
are

1)

49 = L@+ asisn-n @
1
1 _ _ .

W = S+ 47 ) (2<i<N), )
1

;(q) - 4@1 + 2(Vi(q) — Wl(ﬂ)l) (2<i<N), (5)
1

dp = el ®
N
1 (p1

W(lp) _ E\/(lp ), )
1

ZSLQ) — ZVSLq)’ (8)

for integersp andq such that 1< p < M and 0< g < M — 1. The initial values are
0
VO =1, )
WO = 1, (10)

forl<i<N. O



2 Proof of Theorem

Let N > 2 unless we specify the range Nf Throughout this sectiorp is an integer
such that 1< p < M andq is an integer such that 8 q < M — 1, respectively. For
convenience, let us represent the invers@afith the notationS = (S; ;). Since the
matrix productD = BS = (D; ;) is the identity matrix

N .

BiSij+CSi;1j=08; (1<i<N-1),

Dij = Z BixSkj =4, o o T (. ) (11)
p bnSh,j = Onj (i=N),

whered is Kronecker’s delta. From Eq. (11), we obtain

1 (12)

0 (N>2andl1<j<N-1),
s
N (N > 2 andj = N),

bn

Di;j=bSij+¢Si,,j=0 (N>3and1<j<i<N-1) (13)
Then, it is derived inductively from Egs. (12) and (13) that

Sij=0 (N>3and1< j<i<N-1) (14)

From Egs. (12) and (14), we see that strictly lower triangular elemerfisaoé zero
for N > 2. SinceSis an upper triangle matrix, we have

Dii=bSij=1 (1<i<N)
from Eqg. (11). Thus the diagonaB; of Sare the inverses df, respectively,

1 :
SU:H (I<i<N).

SinceD;j = bBS;j + ¢Si+1; = 0 (i < j) from Eq. (11), we have
o] .
Siv1j = —Esi,j (I<i<j<N).
1
Summarizing these results, we have

bi L
Sis1j = _Elsi,j (I<i<j<N),
|

Sj=p  GsizisN), (15)
|
Sij=0 (L<j<i<N).

On the other hand, since the matrix prod8&is | and its {, j) elementisS; ;_1Cj_1+
S;jb; =0 ( < j), we have

Cj-1 . .
Sij= —TSLH (1<i<j<N). (16)
J

Letus seS = (BT)™%. SinceSTB = (B"S)" = 1T = I, we have

(BT)—l =9 = (SIT)T — (B—l)T — ST.



Since 8"B)! = ST and BB")! = S'S, the matrices/(P andW are expressed
by the matrlceS/(p‘l) andw(-D as follows

{V(p) — (SST)p — S(sTs)p—lsT - SVV(D—l)ST, (17)

W® = (STS)P = ST(ST)P1s = STV(P-Us,

Next, from the definition (1), the matrice€? andY@ are expressed by the matrices
V@ andw®@ as follows

X@ = yEs = W,

y@ — W@ST = STy@ (18)
From Egs. (17) and (18), we obtain

v = x(P-1gT = gy(P-1)

WP = y(r-1)g = gT x(p-1), (19)

Let P = (Pij) andQ = (Q; ;) be N x N matrices having some special relationship
to Sor S'. In the cases tha® andQ hold a relationship such th& = SQ P = QS',
P = STQ or P = QS the following four lemmas can be proved.

Lemma 1
WhenP, Q andS hold P = SQ, then the elements ¢t andQ satisfy
b; 1 . .
Pi+l’j+api'j = EQLJ‘ (I<i<N-1landi1l<j<N). (20)
i i
Proof.

In this proof,j is an integer such that4 j < N. The elemenP, ; is expressed with
aj,j as

N N
Pij = Z SikQkj = Z SikQkj = SiiQij + Sij+1QirLj + i
P P

l 3
= aQi,j + (—bisi,i)Qm,j + 0l j

1Qi,j

=5 ——Qipj+aij (N>2and1<i<N-1), (21)
i

bI+ by
whereq, ; is defined by

N
Z SikQkj (N23, 1<i<N-2),
k=i+2

0 (N>2 i=N-1).

0jj =

The elemenP;, 4 j is also expressed wiifs ;. If N > 3and 1< i < N -2, it holds

P|+lj Z S|+l ka] = S|+l|+lQ|+lJ + Z (__SI k) ij
k= |+1 k=i+2

b

le Ql+lj ai,j- (22)



If N>2andi =N -1, itholds

1 b
PH—lJ Z S|+l ka] = S|+1|+1Q|+11 Qi+l,j - _Iai,j~ (23)
bi1 Ci
k=i+1

From Egs. (21), (22) and (23), we obtain
by by 1 1 bi
P, oPu= Gt o Qi Qg
|+1J i,j = + Ql+lj i, C QI,] bi+1 QHl,j C i,j
=€Qi,j (I<i<N-landl1<j<N). m]
i
Lemma 2
WhenP, Q andS' hold P = QS', then the elements ¢? andQ satisfy

b;

Piji+ = P.J:—Q., (l<i<Nandl<j<N-1) (24)

Proof.
In this proof,i is an integer such that £ i < N. The elemen®,; ; is expressed
with 0jj as

N N
Pij = Z QuiSj = Z QuiSji = QijSjj + Qij+1Sjje1 + i
= =]

1
EQi,j +Qi,j+1( S]j)+alj
J J
1
- b_in’] b1+ b

whereq,; j is defined by

——Qijr1+a; (N>2and1< j<N-1), (25)

N

Z QuSj) (N=23 1<j<N-2),
15j+2
0 (N>2 j=N-1).

The elemenP, j,, is also expressed wiifs j. If N > 3 and 1< j < N -2, it holds

Oti!j =

bj
Pijr1 = Z QiiSjs1r = Qij+1Sj41j1 + Z Qi (__SJ|)
1= ]+l I=j+2
2 (26)
bJ+1 Q| j+1 — C] Qj,j-

If N>2andj=N-1,itholds

b'
PI j+1 = Z QI IS]+1I QI j+1SJ+1]+1 = _QI j+1— A, j. (27)
I=j+1 J
From Egs. (25), (26) and (27) we obtain
b; bj 1 1 b
P . dp . = ~0 .
ij+1 T ¢ ij = QI j+1— alj G QI,J bJ+ —Q; 1t — o Qi j
:c_Qi’j (I<i<Nandl<j<N-1) O
]



Lemma 3
WhenP, Q andS'" hold P = STQ, then the elements d? andQ satisfy

Py + 2P, = —1Q, (2<i<Nandi<|<N) (28)
Gi-1 Ci-1

Proof.
In this proof, j is an integer such thatg j < N. The elemenP, j is expressed with
ajj as

N i
Pij = Z SkiQkj = Z SkiQj = SiiQij + Si—1iQi-1j + 0l j
] )

1 Ci_
==Qj+ (—I_lsi—l,i—l) Qi—yj + 0ij

b b
1 Ci_1 .

= —Qi!j - _Qi—l,j + Q| (N >2and 2<i < N), (29)
bi bibi_1

whereo; j is defined by

i-2
Zsk,iQk,j (N>3,3<i<N),
k=1

0 (N>2 i=2).

o) =

The elemenP;_y j is also expressed wiifs ;. If N > 3 and 3<i < N, it holds

i-1 i-2
b.
Piiyj = Z Ski-1Qkj = Si—1,i-1Qi-1,j + (_._Isk,i) Qx,j
k=1 P
1 b;
= EQi—l,j - Ci_llai,j- (30)
If N> 2andi = 2, it holds
i1 1 b
P, = Sy =S 1 10 = — O i — —q i 31
i-1,j ; K,i 1Qk,] i—-1i 1QI 1,j bi—lQI 1,j C1 i,j ( )
From Egs. (29), (30) and (31), we obtain
b; 1 b; 1 1 b;
P.i+— P =—0O1ime—i+—O0im—O 1i+—qp
i-1,j + cs i bi—lQI 1 Ci—lal’] + Ci—lQI’J bi_1Q| 1jt Ci—lal’J
=iQi,j (2<i<Nand1l< j<N). o

Ci-1
Lemma 4
WhenP, Q andS hold P = QS then the elements ¢t andQ satisfy
bj 1 . .
Pi,j—l + —Pi’j = _Qi,j (1 <i<Nand2< ] < N). (32)
Cj-1 Cj-1

Proof.



In this proof,i is an integer such that £ i < N. The elemen®, ; is expressed
with 0jjas

N j
Pij = Z QS = Z QuiSij = QijSij + Qij-1Sj-1j + 0,

bQI]+QIj 1( b: SJ -1,j- 1)+(1|]

J
1 CJ1

B b_in’j bjbj_1

whereo; j is defined by

o ZQ.@, (N23.3<j<N).
ij =
O (N>2 j=2).
The elemenP; j_; is also expressed wiilg ;. If N > 3and 3< j < N, it holds

j-1 j-2 b:
Pij-1 = Z Qi)S1j-1 = Qi j-1Sj-1j-1 + Z Qi (—O—JSL]‘)
=) =

-1

1 bj
= —Qij-1— —dij. 34
bjfl Ql,] 1 ijl i, ( )
If N> 2andj=2,itholds
= 1 b;
Pij-1= ; QiiSij-1 = Qj-1Sj-1j-1 = in,j—l - aai,j- (35)
From Egs. (33), (34) and (35), we obtain
b b, P 1y bj 1 o --ta bJ
+oPii= +—Qij + —
ij-1 ij = bJ_ ij-1— cr 1CL|] Ci1 (N b]_ i,j-1 cie i, j
=C—Q.J (<i<Nand2<j<N). |
-1

Now we derive recurrence relations dﬁ’),vxi(jp) andZ? for1 <i < N-1or
2 < j < N by applying appropriate lemmas among Lemma 1, 2, 3 and 4 to Egs. (18)
and (19).

Let us derive the recurrence relation (3)@R. In the following derivation] is
an integer such that ¥ i < N-1. The elemenv(p)1 is expressed in two ways by
applying Lemmas 1 and 2 to Eq. (19). Using the lemmas, we obtain

™ __G. (p-1)

VI |p+1 b \AHF-)l _Y| |p+1 > (36)
® _ _bi 1 (p-1)

VI |p+l a\flp + axlp : (37)

Since the right hand sides of Egs. (36) and (37) are equal to each other, we have

(0 _ ) 1(—1) Gi /(p-1)
Vi P bI2 Vl(fl P bZYI F+l (38)



on the diagonalst”. On Y(p Y in the right hand side of Eq. (38), we obtain

v-D _ bl oD 1W<p 1) (39)

ii+1
by applying Lemma 2 to Eq. (18). Substituting Eq. (39) into Eq. (38), finally we derive

(p) _ 2, (P) P-1) _ (P
Vi - CI V|+1 + 4( i )

on the diagonalsq(p) of the inverse matrix @' B)P)~%. Thisis Eq. (3) in Theorem.

Next, let us derive recurrence relationS\dﬂ) and;@ in a similar way tovi(p). In
the following derivationj is an integer such that2 i < N. Applying Lemmas 3 and
4to Eq. (19), we have

we - G- 1V\/p) —x(” 1)

ii-1 7 iji-1°

WP — _iwi(p) . —Yi(p_l)-
Ci—1 Ci-1

ii—-1

These equations lead to

W(p)_ W y(p ) _ 0.1 pl)
2 i
I

Applying Lemma 4 to Eq. (18), we have

o1 _ B ey, 1 o
Xiqg =——X ~+—V .
Ci-1

C-1'
Then, we obtain a recurrence relation

Wi(p) - bz(C|2 1W(p) ;(p 1 _ (p—l))

on the diagonala” of the inverse matrix BT)P)"L. This is Eq. (4) in Theorem.
Applying Lemmas 1 and 4 to Eqg. (18), we have

@ _ b1 @ 1 we,
ii—-1 Ci1 |—1 C 1

@ _ b @, 1 @
X =——X +—vi(.

R Ci-1
These equations lead to

0 = b + 2 -, (o)
Applying Lemmas 2 and 3 to Eq. (18), we have

vo _ b1 1 @
J i-1 i-1°
i—1 Ci-1
@ __ b o, 1 @
Yi—l,i - C yl P



These equations lead to
by = b1y @ + v - w9, (41)

Summing both hand sides of Egs. (40) and (41) with the definition (2), we obtain a
recurrence relation

27 =29 + 2047 - )

(a)
onz™. Thisis Eq. (5) in Theorem.
Next, let us consider the valueswif) vv(”) andz‘f” which are the end points of the

sequence!®, w® andZ? for 1 < i < N on eachp or g, respectively. From Eq. (17),
we derive

N N
_ _ 1

V(P) Z Z S kWIE,FI) l)SI-I:N — (SN,N)Z\N,(\EN:L) b2 (P 1)

=N |='\]l_ 1 (42)

Z Z S V(P l)SI 1= (Sl 1)2v(i*1) — _ZVflP*l)_

k=1 I=1 bl

This is because the matri&is an upper triangular matrix. These are Eqgs. (6) and (7)
in Theorem. By a way which is similar to Eq. (42), we obtain

1
Z V(Q)S K1 = V(q)sl,l — b_\éQ)’
1
1
(q) Z STkV(q) Sy 1V(q) V(1Q)’
by

from Eq. (18). Summing both hand sides, we have
Z(l bl(X(q) + yQ)) 2\}1@_

This is Eq. (8) in Theorem. Now the recurrence relations in Theorem have been de-
rived.

Finally, let us consider the initial values. The values/i‘BT andvvi(o) take the fol-
lowing simple values. It follows from the definition @ andwW®© that

VO O g |
{W(O) vv<°)—|-1—|,|_1 (1<i<N).

They are the initial values (9) and (10) in Theorem.

As a corollary of Theorem, we estimate the computational cost to get all the diag-
onals.
Corollary

All the diagonals of the inverse matrixg{ B)M)~* or (BB")M)~! are computed
within O(N) flops through the recurrence relations and the initial values presented in
Theorem.
Proof.

To compute values of™ orw™ on alli (1 < i < N), values of'”, w{” andz”
forall j (1 < j<N)andr (0 <r < M —1) are necessary in addition to themselves.
Therefore, (31 + 1)N quantities are necessary to determine all the diagonals of the



inverse matrix (B"B)™) or (BBT)M)~L. The initial values/? andw(® (1 < i < N)
are given as 1 directly. From the initial values and the recurrence relations (5) and (8)
in Theorem, we have

202 49+ 200 w0 = £+ 20- 1) = &% == A 20 212

for2 < i < N. Then,z” (1 < i < N) are given as 2. Next, let us discuss on the
remaining (3 -2)N quantities. Regarding/b? for 1 <i < Nandcj for1 < j < N-1

in the recurrence relations (3), (4), (6) and (7) as new quantiti¢isnes multiplication

and division are necessary to compute albizland N — 1 times multiplication are
necessary to compute &l. Then, each quantity of the remained{3- 2)N quantities

can be computed within at most four times of the four basic operations of arithmetic by
using one of the recurrence relations as shown in Theorem with the above-mentioned
new quantities and known quantities. Then, the total cost of operations to compute all
the diagonals of the inverse matrixB{B)™)~* or (BBT)M)* is O(N) flops. o

3 Concluding Remarks

On theN x N (N > 2) non-singular upper bidiagonal matiiwhere all the diagonals

and the upper subdiagonals Bfare nonzero, the matrix produd®s B andBB' are
symmetric positive definite tridiagonal matrices. We present a theorem on a simple
formula in the form of the recurrence relations with the initial values for computing
all the diagonals of the inverse powers of these symmetric positive definite tridiagonal
matrices such that B"B))! and (BB"))~1. Total cost of operations is within
O(N) flops. In Section 1, we referred to the preceding works by Fernando and Parlett
[1] and von Matt [2] to compute such diagonals witl@(N) flops. Here we discuss a
relationship to the methods in [1, 2].

The method by Fernando and Parlett is for computing the diagonalsAJf)(*
whereAis anN x N upper bidiagonal matrix whose diagonals and upper subdiagonals
are positive™*. The method by von Matt is for computing the diagonalst)()~*
and (UUT)?)~! whereU is anN x N upper bidiagonal matrix whose diagonals and
upper subdiagonals are nonzero. In their methods, the quantities which are necessary
to compute the diagonals are obtained by applying sequential Givens rotatidhsto
UoruT,

On the other hand, the approach in this paper is somewkatetit from those
in [1, 2]. Namely, we derived the recurrence relations and the initial values for the
desired diagonatg™ andw{™ (1 < i < N) based on an idea of utilizing the following
inherent properties of the inverSof B. IndeedSis an upper triangular matrix whose
diagonals are directly determined from the diagonalB.ofMoreover, the neighboring
elements among the diagonals and tltediagonal elements in the upper triangular
part of S are mutually related in a simple formula. These properties are shown in Egs.
(15) and (16).

As an important application of Theorem, lower bounds of the minimal singular
value of B can be computed. When all the diagonals and the upper subdiagonals of
B are nonzero, then the singular valuesBfare simple. Let singular values &
be 01,---,0n such thato; > --- > oy > 0. Let us consider applications of the
well-known Newton method and the Laguerre method [2] to the characteristic equation
f(,) = det(B"B)M — Al) = 0. Note that BTB)M is positive definite. Leky and

**In [1], the matrixA is expressed with a symbBl

10



Ay denote the minimal eigenvalues d@'(B)™ and BT B, respectively. It holds that
An =M = oM. The following quantityoy which gives a lower bound of the minimal
singular valuesy can be readily derived by applying the Newton method @) = 0
starting fromi = 0. Namely,

2M

O = (Tr(((BTB)M)™))"27 = (Tr((BBT)M)™)) "2 = (% bg ] < on.
o3 o2

Itis to be noted thahy, increases monotonically and convergesovhenM goes to
infinity, that is,0; < 6, < --- < on. WhenM =1, e§ corresponds to the well-known
Newton shift discussed in [1, 2]. ThefZ, for M > 2 can be used as a better shift
of origin in algorithms proposed in [1, 3] which compute singular valueB.ofThe
following quantity @y which gives a lower bound of the minimal singular value

can be derived through the Laguerre method for the characteristic equation. Namely,

1
2M
1 N

Tr((FM)_l) ' Tr((FZM)—l)
t \/(N - ”(N (Tr(FYy D)2 1)

Pm = < ON,

whereF is the matrix producB'B or BBT. WhenM = 1, ¢? corresponds to the
Laguerre shift presented in [2]. Theorem presented in this paper helps us to compute
the quantitie®y andgy within O(N) flops.
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