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Abstract

On N × N (N ≥ 2) non-singular upper bidiagonal matrixB and its transpose
BT , matrix products (BT B) and (BBT) are symmetric positive definite tridiagonal
matrices. LetM denote an arbitrary positive integer. We present a formula to com-
pute diagonals of inverse powers of these matrix products such that ((BT B)M)−1

and ((BBT)M)−1 in the form of recurrence relations and their initial values. All
diagonals of the inverse of (BT B)M or (BBT)M are computed withinO(N) flops
according to the presented formula. Traces of the inverses of (BT B)M and (BBT)M

can be used to compute lower bounds of the minimal singular value ofB.

1 Introduction

To compute a lower bound of the minimal singular value of a bidiagonal matrix, traces
of the inverses of particular matrix products can be utilized. Fernando and Parlett [1]
considered a positive upper bidiagonal matrixA where all diagonals and upper subdi-
agonals ofA are positive¶ . They showed that diagonals of the inverse of the symmetric
positive definite tridiagonal matrixAAT are computed from auxiliary quantities which
appear in the oqd (orthogonal quotient difference) algorithm and then a lower bound
of the minimal singular value ofA can be computed from the trace of the inverse of
AAT . Through this paper, let the suffix T of a matrix denote its transpose. von Matt
[2] considered a non-singular upper bidiagonal matrixU where all diagonals and upper
subdiagonals ofU are nonzero. He presented a method for computing diagonals of the
inverses of the symmetric positive definite matrixUUT and (UUT)2 and then proposed
two different shift strategies for the orthogonal qd-algorithm. Note that this algorithm
is different from the algorithm in [1] having the same name. One of the shift strategies
requires the trace of the inverse ofUUT and the other one requires the traces both of
the inverses ofUUT and (UUT)2 to compute the shifts. The shifts are determined as
lower bounds of the minimal singular value ofU. WhenA or U is anN × N matrix,
diagonals of the inverses ofAAT or UUT or (UUT)2 can be computed withinO(N)
flops.

In this paper, letM denote an arbitrary positive integer. On a non-singular upper
bidiagonal matrixB where all diagonals and upper subdiagonals ofB are nonzero, we
prove a theorem on anO(N) formula for diagonals of inverse of (BT B)M or (BBT)M

in a form of recurrence relations and their initial values. If an upper subdiagonal ofB
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is zero, it is readily shown that we can divide the problem to compute these diagonals
into the same type of two smaller problems. Then, we can set an additional assumption
that all the upper subdiagonals ofB are nonzero without losing generality.

Here we fix the notations used in the theorem. LetB = (Bi, j) denote anN ×
N (N ≥ 2) non-singular upper bidiagonal matrix. Let the diagonal element and the
upper subdiagonal element in thei−th row of B be denoted bybi andci , respectively.
That is,bi = Bi,i (1 ≤ i ≤ N),

ci = Bi,i+1 (1 ≤ i ≤ N − 1).

Let N×N matricesV(m) = (V(m)
i, j ), W(m) = (W(m)

i, j ), X(q) = (X(q)
i, j ) andY(q) = (Y(q)

i, j ) denote
V(m) ≡ ((BT B)m)−1,

W(m) ≡ ((BBT)m)−1,

X(q) ≡ (B(BT B)q)−1 = ((BBT)qB)−1,

Y(q) ≡ (BT(BBT)q)−1 = ((BT B)qBT)−1

(1)

for integersm (0 ≤ m ≤ M) andq (0 ≤ q ≤ M − 1), respectively. Next, we simply
write diagonals of the matricesV(m), W(m), X(q) andY(q) asv(m)

i ≡ V(m)
i,i , w(m)

i ≡ W(m)
i,i ,

x(q)
i ≡ X(q)

i,i andy(q)
i ≡ Y(q)

i,i for 1 ≤ i ≤ N, respectively.

Let z(q)
i denote

z(q)
i ≡ bi(x

(q)
i + y(q)

i ). (2)

for 1 ≤ i ≤ N and 0≤ q ≤ M − 1.
Then, under the assumptions that all diagonals and subdiagonals ofB are nonzero,

the following theorem holds.
Theorem

Let M be an arbitrary positive integer. All the diagonal elementsv(M)
i andw(M)

i
of inverse matrices ((BT B)M)−1 and ((BBT)M)−1, respectively, are computed by the
following simple recurrence relations with the initial values. The recurrence relations
are

v(p)
i =

1

b2
i

(c2
i v(p)

i+1 + z(p−1)
i − w(p−1)

i ) (1 ≤ i ≤ N − 1), (3)

w(p)
i =

1

b2
i

(c2
i−1w(p)

i−1 + z(p−1)
i − v(p−1)

i ) (2 ≤ i ≤ N), (4)

z(q)
i = z(q)

i−1 + 2(v(q)
i − w(q)

i−1) (2 ≤ i ≤ N), (5)

v(p)
N =

1

b2
N

w(p−1)
N , (6)

w(p)
1 =

1

b2
1

v(p−1)
1 , (7)

z(q)
1 = 2v(q)

1 , (8)

for integersp andq such that 1≤ p ≤ M and 0≤ q ≤ M − 1. The initial values are

v(0)
i = 1, (9)

w(0)
i = 1, (10)

for 1 ≤ i ≤ N. �
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2 Proof of Theorem

Let N ≥ 2 unless we specify the range ofN. Throughout this section,p is an integer
such that 1≤ p ≤ M andq is an integer such that 0≤ q ≤ M − 1, respectively. For
convenience, let us represent the inverse ofB with the notationS = (Si, j). Since the
matrix productD ≡ BS= (Di, j) is the identity matrixI ,

Di, j =

N∑
k=1

Bi,kSk, j =

biSi, j + ciSi+1, j = δi, j (1 ≤ i ≤ N − 1),

bNSN, j = δN, j (i = N),
(11)

whereδ is Kronecker’s delta. From Eq. (11), we obtain

SN, j =


0 (N ≥ 2 and 1≤ j ≤ N − 1),
1

bN
(N ≥ 2 and j = N),

(12)

Di, j = biSi, j + ciSi+1, j = 0 (N ≥ 3 and 1≤ j < i ≤ N − 1). (13)

Then, it is derived inductively from Eqs. (12) and (13) that

Si, j = 0 (N ≥ 3 and 1≤ j < i ≤ N − 1). (14)

From Eqs. (12) and (14), we see that strictly lower triangular elements ofS are zero
for N ≥ 2. SinceS is an upper triangle matrix, we have

Di,i = biSi,i = 1 (1≤ i ≤ N)

from Eq. (11). Thus the diagonalsSi,i of S are the inverses ofbi , respectively,

Si,i =
1
bi

(1 ≤ i ≤ N).

SinceDi, j = biSi, j + ciSi+1, j = 0 (i < j) from Eq. (11), we have

Si+1, j = −
bi

ci
Si, j (1 ≤ i < j ≤ N).

Summarizing these results, we have
Si+1, j = −

bi

ci
Si, j (1 ≤ i < j ≤ N),

Si, j =
1
bi

(1 ≤ i = j ≤ N),

Si, j = 0 (1 ≤ j < i ≤ N).

(15)

On the other hand, since the matrix productSB is I and its (i, j) element isSi, j−1c j−1+

Si, jb j = 0 (i < j), we have

Si, j = −
c j−1

b j
Si, j−1 (1 ≤ i < j ≤ N). (16)

Let us setS′ ≡ (BT)−1. SinceS′T B = (BTS′)T = I T = I , we have

(BT)−1 = S′ = (S′T)T = (B−1)T = ST .
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Since (BT B)−1 = SST and (BBT)−1 = STS, the matricesV(p) andW(p) are expressed
by the matricesV(p−1) andW(p−1) as followsV(p) = (SST)p = S(STS)p−1ST = SW(p−1)ST ,

W(p) = (STS)p = ST(SST)p−1S= STV(p−1)S.
(17)

Next, from the definition (1), the matricesX(q) andY(q) are expressed by the matrices
V(q) andW(q) as followsX(q) = V(q)S= SW(q),

Y(q) =W(q)ST = STV(q).
(18)

From Eqs. (17) and (18), we obtainV(p) = X(p−1)ST = SY(p−1),

W(p) = Y(p−1)S= ST X(p−1).
(19)

Let P = (Pi, j) andQ = (Qi, j) beN × N matrices having some special relationship
to S or ST . In the cases thatP andQ hold a relationship such thatP = SQ, P = QST ,
P = STQ or P = QS, the following four lemmas can be proved.
Lemma 1

WhenP, Q andS hold P = SQ, then the elements ofP andQ satisfy

Pi+1, j +
bi

ci
Pi, j =

1
ci

Qi, j (1 ≤ i ≤ N − 1 and 1≤ j ≤ N). (20)

Proof.
In this proof, j is an integer such that 1≤ j ≤ N. The elementPi, j is expressed with

αi, j as

Pi, j =

N∑
k=1

Si,kQk, j =

N∑
k=i

Si,kQk, j = Si,iQi, j + Si,i+1Qi+1, j + αi, j

=
1
bi

Qi, j +

(
− ci

bi+1
Si,i

)
Qi+1, j + αi, j

=
1
bi

Qi, j −
ci

bi+1bi
Qi+1, j + αi, j (N ≥ 2 and 1≤ i ≤ N − 1), (21)

whereαi, j is defined by

αi, j ≡


N∑

k=i+2

Si,kQk, j (N ≥ 3, 1 ≤ i ≤ N − 2),

0 (N ≥ 2, i = N − 1).

The elementPi+1, j is also expressed withαi, j . If N ≥ 3 and 1≤ i ≤ N − 2, it holds

Pi+1, j =

N∑
k=i+1

Si+1,kQk, j = Si+1,i+1Qi+1, j +

N∑
k=i+2

(
−bi

ci
Si,k

)
Qk, j

=
1

bi+1
Qi+1, j −

bi

ci
αi, j . (22)
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If N ≥ 2 andi = N − 1, it holds

Pi+1, j =

N∑
k=i+1

Si+1,kQk, j = Si+1,i+1Qi+1, j =
1

bi+1
Qi+1, j −

bi

ci
αi, j . (23)

From Eqs. (21), (22) and (23), we obtain

Pi+1, j +
bi

ci
Pi, j =

1
bi+1

Qi+1, j −
bi

ci
αi, j +

1
ci

Qi, j −
1

bi+1
Qi+1, j +

bi

ci
αi, j

=
1
ci

Qi, j (1 ≤ i ≤ N − 1 and 1≤ j ≤ N). �

Lemma 2
WhenP, Q andST hold P = QST , then the elements ofP andQ satisfy

Pi, j+1 +
b j

c j
Pi, j =

1
c j

Qi, j (1 ≤ i ≤ N and 1≤ j ≤ N − 1). (24)

Proof.
In this proof, i is an integer such that 1≤ i ≤ N. The elementPi, j is expressed

with αi, j as

Pi, j =

N∑
l=1

Qi,lS j,l =

N∑
l= j

Qi,lS j,l = Qi, jS j, j + Qi, j+1S j, j+1 + αi, j

=
1
b j

Qi, j + Qi, j+1

(
−

c j

b j+1
S j, j

)
+ αi, j

=
1
b j

Qi, j −
c j

b j+1b j
Qi, j+1 + αi, j (N ≥ 2 and 1≤ j ≤ N − 1), (25)

whereαi, j is defined by

αi, j ≡


N∑

l= j+2

Qi,lS j,l (N ≥ 3, 1 ≤ j ≤ N − 2),

0 (N ≥ 2, j = N − 1).

The elementPi, j+1 is also expressed withαi, j . If N ≥ 3 and 1≤ j ≤ N − 2, it holds

Pi, j+1 =

N∑
l= j+1

Qi,lS j+1,l = Qi, j+1S j+1, j+1 +

N∑
l= j+2

Qi,l

(
−

b j

c j
S j,l

)
=

1
b j+1

Qi, j+1 −
b j

c j
αi, j . (26)

If N ≥ 2 and j = N − 1, it holds

Pi, j+1 =

N∑
l= j+1

Qi,lS j+1,l = Qi, j+1S j+1, j+1 =
1

b j+1
Qi, j+1 −

b j

c j
αi, j . (27)

From Eqs. (25), (26) and (27), we obtain

Pi, j+1 +
b j

c j
Pi, j =

1
b j+1

Qi, j+1 −
b j

c j
αi, j +

1
c j

Qi, j −
1

b j+1
Qi, j+1 +

b j

c j
αi, j

=
1
c j

Qi, j (1 ≤ i ≤ N and 1≤ j ≤ N − 1). �
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Lemma 3
WhenP, Q andST hold P = STQ, then the elements ofP andQ satisfy

Pi−1, j +
bi

ci−1
Pi, j =

1
ci−1

Qi, j (2 ≤ i ≤ N and 1≤ j ≤ N). (28)

Proof.
In this proof, j is an integer such that 1≤ j ≤ N. The elementPi, j is expressed with

αi, j as

Pi, j =

N∑
k=1

Sk,iQk, j =

i∑
k=1

Sk,iQk, j = Si,iQi, j + Si−1,iQi−1, j + αi, j

=
1
bi

Qi, j +

(
−ci−1

bi
Si−1,i−1

)
Qi−1, j + αi, j

=
1
bi

Qi, j −
ci−1

bibi−1
Qi−1, j + αi, j (N ≥ 2 and 2≤ i ≤ N), (29)

whereαi, j is defined by

αi, j ≡


i−2∑
k=1

Sk,iQk, j (N ≥ 3, 3 ≤ i ≤ N),

0 (N ≥ 2, i = 2).

The elementPi−1, j is also expressed withαi, j . If N ≥ 3 and 3≤ i ≤ N, it holds

Pi−1, j =

i−1∑
k=1

Sk,i−1Qk, j = Si−1,i−1Qi−1, j +

i−2∑
k=1

(
− bi

ci−1
Sk,i

)
Qk, j

=
1

bi−1
Qi−1, j −

bi

ci−1
αi, j . (30)

If N ≥ 2 andi = 2, it holds

Pi−1, j =

i−1∑
k=1

Sk,i−1Qk, j = Si−1,i−1Qi−1, j =
1

bi−1
Qi−1, j −

bi

ci−1
αi, j . (31)

From Eqs. (29), (30) and (31), we obtain

Pi−1, j +
bi

ci−1
Pi, j =

1
bi−1

Qi−1, j −
bi

ci−1
αi, j +

1
ci−1

Qi, j −
1

bi−1
Qi−1, j +

bi

ci−1
αi, j

=
1

ci−1
Qi, j (2 ≤ i ≤ N and 1≤ j ≤ N). �

Lemma 4
WhenP, Q andS hold P = QS, then the elements ofP andQ satisfy

Pi, j−1 +
b j

c j−1
Pi, j =

1
c j−1

Qi, j (1 ≤ i ≤ N and 2≤ j ≤ N). (32)

Proof.
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In this proof, i is an integer such that 1≤ i ≤ N. The elementPi, j is expressed
with αi, j as

Pi, j =

N∑
l=1

Qi,lSl, j =

j∑
l=1

Qi,lSl, j = Qi, jS j, j + Qi, j−1S j−1, j + αi, j

=
1
b j

Qi, j + Qi, j−1

(
−

c j−1

b j
S j−1, j−1

)
+ αi, j

=
1
b j

Qi, j −
c j−1

b jb j−1
Qi, j−1 + αi, j (N ≥ 2 and 2≤ j ≤ N), (33)

whereαi, j is defined by

αi, j ≡


j−2∑
l=1

Qi,lSl, j (N ≥ 3, 3 ≤ j ≤ N),

0 (N ≥ 2, j = 2).

The elementPi, j−1 is also expressed withαi, j . If N ≥ 3 and 3≤ j ≤ N, it holds

Pi, j−1 =

j−1∑
l=1

Qi,lSl, j−1 = Qi, j−1S j−1, j−1 +

j−2∑
l=1

Qi,l

(
−

b j

c j−1
Sl, j

)
=

1
b j−1

Qi, j−1 −
b j

c j−1
αi, j . (34)

If N ≥ 2 and j = 2, it holds

Pi, j−1 =

j−1∑
l=1

Qi,lSl, j−1 = Qi, j−1S j−1, j−1 =
1

b j−1
Qi, j−1 −

b j

c j−1
αi, j . (35)

From Eqs. (33), (34) and (35), we obtain

Pi, j−1 +
b j

c j−1
Pi, j =

1
b j−1

Qi, j−1 −
b j

c j−1
αi, j +

1
c j−1

Qi, j −
1

b j−1
Qi, j−1 +

b j

c j−1
αi, j

=
1

c j−1
Qi, j (1 ≤ i ≤ N and 2≤ j ≤ N). �

Now we derive recurrence relations onv(p)
i ,w

(p)
j and z(q)

j for 1 ≤ i ≤ N − 1 or
2 ≤ j ≤ N by applying appropriate lemmas among Lemma 1, 2, 3 and 4 to Eqs. (18)
and (19).

Let us derive the recurrence relation (3) onv(p)
i . In the following derivation,i is

an integer such that 1≤ i ≤ N − 1. The elementV(p)
i,i+1 is expressed in two ways by

applying Lemmas 1 and 2 to Eq. (19). Using the lemmas, we obtain

V(p)
i,i+1 = −

ci

bi
v(p)

i+1 +
1
bi

Y(p−1)
i,i+1 , (36)

V(p)
i,i+1 = −

bi

ci
v(p)

i +
1
ci

x(p−1)
i . (37)

Since the right hand sides of Eqs. (36) and (37) are equal to each other, we have

v(p)
i =

c2
i

b2
i

v(p)
i+1 +

1
bi

x(p−1)
i − ci

b2
i

Y(p−1)
i,i+1 (38)
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on the diagonalsv(p)
i . OnY(p−1)

i,i+1 in the right hand side of Eq. (38), we obtain

Y(p−1)
i,i+1 = −

bi

ci
y(p−1)

i +
1
ci

w(p−1)
i (39)

by applying Lemma 2 to Eq. (18). Substituting Eq. (39) into Eq. (38), finally we derive

v(p)
i =

1

b2
i

(c2
i v(p)

i+1 + z(p−1)
i − w(p−1)

i )

on the diagonalsv(p)
i of the inverse matrix ((BT B)p)−1. This is Eq. (3) in Theorem.

Next, let us derive recurrence relations onw(p)
i andz(q)

i in a similar way tov(p)
i . In

the following derivation,i is an integer such that 2≤ i ≤ N. Applying Lemmas 3 and
4 to Eq. (19), we have

W(p)
i,i−1 = −

ci−1

bi
w(p)

i−1 +
1
bi

X(p−1)
i,i−1 ,

W(p)
i,i−1 = −

bi

ci−1
w(p)

i +
1

ci−1
y(p−1)

i .

These equations lead to

w(p)
i =

c2
i−1

b2
i

w(p)
i−1 +

1
bi

y(p−1)
i − ci−1

b2
i

X(p−1)
i,i−1 .

Applying Lemma 4 to Eq. (18), we have

X(p−1)
i,i−1 = −

bi

ci−1
x(p−1)

i +
1

ci−1
v(p−1)

i .

Then, we obtain a recurrence relation

w(p)
i =

1

b2
i

(c2
i−1w(p)

i−1 + z(p−1)
i − v(p−1)

i )

on the diagonalsw(p)
i of the inverse matrix ((BBT)p)−1. This is Eq. (4) in Theorem.

Applying Lemmas 1 and 4 to Eq. (18), we have

X(q)
i,i−1 = −

bi−1

ci−1
x(q)

i−1 +
1

ci−1
w(q)

i−1,

X(q)
i,i−1 = −

bi

ci−1
x(q)

i +
1

ci−1
v(q)

i .

These equations lead to

bi x
(q)
i = bi−1x(q)

i−1 + v(q)
i − w(q)

i−1. (40)

Applying Lemmas 2 and 3 to Eq. (18), we have

Y(q)
i−1,i = −

bi−1

ci−1
y(q)

i−1 +
1

ci−1
w(q)

i−1,

Y(q)
i−1,i = −

bi

ci−1
y(q)

i +
1

ci−1
v(q)

i .
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These equations lead to

biy
(q)
i = bi−1y(q)

i−1 + v(q)
i − w(q)

i−1. (41)

Summing both hand sides of Eqs. (40) and (41) with the definition (2), we obtain a
recurrence relation

z(q)
i = z(q)

i−1 + 2(v(q)
i − w(q)

i−1)

onz(q)
i . This is Eq. (5) in Theorem.

Next, let us consider the values ofv(p)
N ,w

(p)
1 andz(q)

1 which are the end points of the

sequencev(p)
i ,w

(p)
i andz(q)

i for 1 ≤ i ≤ N on eachp or q, respectively. From Eq. (17),
we derive

v(p)
N =

N∑
k=1

N∑
l=1

SN,kW
(p−1)
k,l ST

l,N = (SN,N)2W(p−1)
N,N =

1

b2
N

w(p−1)
N ,

w(p)
1 =

N∑
k=1

N∑
l=1

ST
1,kV

(p−1)
k,l Sl,1 = (S1,1)2V(p−1)

1,1 =
1

b2
1

v(p−1)
1 .

(42)

This is because the matrixS is an upper triangular matrix. These are Eqs. (6) and (7)
in Theorem. By a way which is similar to Eq. (42), we obtain

x(q)
1 =

N∑
k=1

V(q)
1,kSk,1 = V(q)

1,1S1,1 =
1
b1

v(q)
1 ,

y(q)
1 =

N∑
k=1

ST
1,kV

(q)
k,1 = S1,1V(q)

1,1 =
1
b1

v(q)
1 ,

from Eq. (18). Summing both hand sides, we have

z(q)
1 = b1(x(q)

1 + y(q)
1 ) = 2v(q)

1 .

This is Eq. (8) in Theorem. Now the recurrence relations in Theorem have been de-
rived.

Finally, let us consider the initial values. The values ofv(0)
i andw(0)

i take the fol-
lowing simple values. It follows from the definition ofV(0) andW(0) thatv(0)

i = V(0)
i,i = I−1

i,i = I i,i = 1,

w(0)
i =W(0)

i,i = I−1
i,i = I i,i = 1,

(1 ≤ i ≤ N).

They are the initial values (9) and (10) in Theorem.�
As a corollary of Theorem, we estimate the computational cost to get all the diag-

onals.
Corollary

All the diagonals of the inverse matrix ((BT B)M)−1 or ((BBT)M)−1 are computed
within O(N) flops through the recurrence relations and the initial values presented in
Theorem.
Proof.

To compute values ofv(M)
i or w(M)

i on all i (1 ≤ i ≤ N), values ofv(r)
j ,w

(r)
j andz(r)

j
for all j (1 ≤ j ≤ N) andr (0 ≤ r ≤ M − 1) are necessary in addition to themselves.
Therefore, (3M + 1)N quantities are necessary to determine all the diagonals of the
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inverse matrix ((BT B)M)−1 or ((BBT)M)−1. The initial valuesv(0)
i andw(0)

i (1 ≤ i ≤ N)
are given as 1 directly. From the initial values and the recurrence relations (5) and (8)
in Theorem, we have

z(0)
i = z(0)

i−1 + 2(v(0)
i − w(0)

i−1) = z(0)
i−1 + 2(1− 1) = z(0)

i−1 = · · · = z(0)
1 = 2v(0)

1 = 2 · 1 = 2

for 2 ≤ i ≤ N. Then,z(0)
i (1 ≤ i ≤ N) are given as 2. Next, let us discuss on the

remaining (3M−2)N quantities. Regarding 1/b2
i for 1 ≤ i ≤ N andc2

j for 1 ≤ j ≤ N−1
in the recurrence relations (3), (4), (6) and (7) as new quantities,N times multiplication
and division are necessary to compute all 1/b2

i and N − 1 times multiplication are
necessary to compute allc2

j . Then, each quantity of the remained (3M − 2)N quantities
can be computed within at most four times of the four basic operations of arithmetic by
using one of the recurrence relations as shown in Theorem with the above-mentioned
new quantities and known quantities. Then, the total cost of operations to compute all
the diagonals of the inverse matrix ((BT B)M)−1 or ((BBT)M)−1 is O(N) flops. �

3 Concluding Remarks

On theN × N (N ≥ 2) non-singular upper bidiagonal matrixB where all the diagonals
and the upper subdiagonals ofB are nonzero, the matrix productsBT B andBBT are
symmetric positive definite tridiagonal matrices. We present a theorem on a simple
formula in the form of the recurrence relations with the initial values for computing
all the diagonals of the inverse powers of these symmetric positive definite tridiagonal
matrices such that ((BT B)M)−1 and ((BBT)M)−1. Total cost of operations is within
O(N) flops. In Section 1, we referred to the preceding works by Fernando and Parlett
[1] and von Matt [2] to compute such diagonals withinO(N) flops. Here we discuss a
relationship to the methods in [1, 2].

The method by Fernando and Parlett is for computing the diagonals of (AAT)−1

whereA is anN×N upper bidiagonal matrix whose diagonals and upper subdiagonals
are positive∗∗. The method by von Matt is for computing the diagonals of (UUT)−1

and ((UUT)2)−1 whereU is anN × N upper bidiagonal matrix whose diagonals and
upper subdiagonals are nonzero. In their methods, the quantities which are necessary
to compute the diagonals are obtained by applying sequential Givens rotations toAT or
U or UT .

On the other hand, the approach in this paper is somewhat different from those
in [1, 2]. Namely, we derived the recurrence relations and the initial values for the
desired diagonalsv(M)

i andw(M)
i (1 ≤ i ≤ N) based on an idea of utilizing the following

inherent properties of the inverseSof B. Indeed,S is an upper triangular matrix whose
diagonals are directly determined from the diagonals ofB. Moreover, the neighboring
elements among the diagonals and the off-diagonal elements in the upper triangular
part ofS are mutually related in a simple formula. These properties are shown in Eqs.
(15) and (16).

As an important application of Theorem, lower bounds of the minimal singular
value of B can be computed. When all the diagonals and the upper subdiagonals of
B are nonzero, then the singular values ofB are simple. Let singular values ofB
be σ1, · · · , σN such thatσ1 > · · · > σN > 0. Let us consider applications of the
well-known Newton method and the Laguerre method [2] to the characteristic equation
f (λ) ≡ det((BT B)M − λI ) = 0. Note that (BT B)M is positive definite. Let̃λN and

∗∗In [1], the matrixA is expressed with a symbolB.
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λN denote the minimal eigenvalues of (BT B)M and BT B, respectively. It holds that
λ̃N = λ

M
N = σ

2M
N . The following quantityθM which gives a lower bound of the minimal

singular valueσN can be readily derived by applying the Newton method tof (λ) = 0
starting fromλ = 0. Namely,

θM ≡ (Tr(((BT B)M)−1))−
1

2M = (Tr(((BBT)M)−1))−
1

2M =

 1

σ2M
1

+ · · · + 1

σ2M
N

− 1
2M

< σN.

It is to be noted thatθM increases monotonically and converges toσN whenM goes to
infinity, that is,θ1 < θ2 < · · · < σN. WhenM = 1, θ2

1 corresponds to the well-known
Newton shift discussed in [1, 2]. Then,θ2

M for M ≥ 2 can be used as a better shift
of origin in algorithms proposed in [1, 3] which compute singular values ofB. The
following quantityϕM which gives a lower bound of the minimal singular valueσN

can be derived through the Laguerre method for the characteristic equation. Namely,

ϕM ≡


1

Tr((FM)−1)
· N

1+

√
(N − 1)

(
N

Tr((F2M)−1)
(Tr((FM)−1))2

− 1

)


1
2M

< σN,

whereF is the matrix productBT B or BBT . When M = 1, ϕ2
1 corresponds to the

Laguerre shift presented in [2]. Theorem presented in this paper helps us to compute
the quantitiesθM andϕM within O(N) flops.
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