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Abstract

The regularized Newton method (RNM) is one of the efficient solution methods for the unconstrained
convex optimization. It is well-known that the RNM has good convergence properties as compared
to the steepest descent method and the pure Newton’s method. For example, Li, Fukushima, Qi and
Yamashita showed that the RNM has a quadratic rate of convergence under the local error bound
condition. Recently, Polyak showed that the global complexity bound of the RNM, which is the first
iteration k such that ‖∇f(xk)‖ ≤ ε, is O(ε−4), where f is the objective function and ε is a given positive
constant. In this paper, we consider the RNM for the unconstrained “nonconvex” optimization. We
show that the RNM has the following properties. (a) The RNM has a global convergence property under
appropriate conditions. (b) The global complexity bound of the RNM is O(ε−2) if ∇2f is Lipschitz
continuous on a certain compact set. (c) The RNM has a superlinear rate of convergence under the
local error bound condition.

Key words. Regularized Newton methods, Global convergence, Global complexity bound, Local error
bound, Superlinear convergence

1 Introduction

In this paper, we consider the regularized Newton method (RNM) for the following unconstrained mini-
mization problem.

minimize
x∈Rn

f(x), (1.1)

where f is a twice continuously differentiable function from Rn into R. When f is convex, the RNM is one
of the efficient solution methods for (1.1) and has good convergence properties [3, 4]．

For a current point xk, the RNM adopts a search direction dk defined by

dk = −(∇2f(xk) + µkI)−1∇f(xk), (1.2)

where µk is a positive parameter. If f is convex, then ∇2f(xk) + µkI is a positive definite matrix, and
hence dk is a descent direction for f at xk, i.e., ∇f(xk)T dk < 0. Therefore, the RNM with an appropriate
line search method, such as the Armijo’s step size rule, has a global convergence property.

Li, Fukushima, Qi and Yamashita [3] showed that the RNM has a quadratic rate of convergence under
the assumption that ‖∇f(x)‖ provides a local error bound for (1.1) in a neighborhood of an optimal solution
x∗. Note that the local error bound condition holds if the second-order sufficient optimality condition holds
at x∗. But the converse is not true. Thus the local error bound condition is weaker than the second-order
sufficient optimality condition.
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Recently, Polyak [4] proposed the RNM with a special step size and analyzed its global complexity
bound defined as follows. Let {xk} be a sequence generated by some algorithms. For a given positive
constant ε, let J be the first iteration that satisfies

‖∇f(xJ)‖ ≤ ε.

We call J the global complexity bound of the algorithm. Polyak showed that if the level set of f at the
initial point x0 is compact, then the global complexity bound of his method satisfies

J = O(ε−4).

Note that this complexity holds without the local error bound condition or the second-order sufficient
optimality condition. However, since the Polyak’s RNM uses a special step size containing the Lipschitz
constant of ∇f , the above result may not hold if the Lipschitz constant is unknown.

In most past studies for the RNM, the convergence properties have been discussed only when f is
convex. In this paper, we consider the RNM extended to the problem (1.1) whose objective function f
is nonconvex. The extended RNM (E-RNM) uses the Armijo’s step size rule, and it does not contain
unknown constants, e.g., the Lipschitz constant of ∇f as Polyak’s method. We show that the E-RNM has
the following properties:

• If a sequence {xk} generated by the E-RNM is bounded, then ‖∇f(xk)‖ converges to 0.

• If {xk} is bounded and ∇2f is Lipschitz continuous on a certain compact set containing {xk}, then
the global complexity bound of the E-RNM is

J = O(ε−2).

• Under the local error bound condition, the distance between xk and the local optimal solution set
converges to 0 superlinearly.

This paper is organized as follows. In the next section, we extend the RNM to the problem (1.1)
whose objective function f is not necessarily convex. In Section 3, we show that the E-RNM has global
convergence. In Section 4, we give the global complexity bound of the E-RNM. In Section 5, we establish
superlinear convergence under the local error bound condition. Finally, Section 6 concludes the paper.

We use the following notations throughout the paper. For a vector x ∈ Rn, ‖x‖ denotes the Euclidean
norm defined by ‖x‖ :=

√
xT x. For a symmetric matrix M ∈ Rn×n, we denote the maximum eigenvalue and

the minimum eigenvalue of M as λmax(M) and λmin(M), respectively. Then, ‖M‖ denotes the `2 norm of M
defined by ‖M‖ :=

√
λmax(MT M). If M is symmetric positive semidefinite matrix, then ‖M‖ = λmax(M).

Furthermore, M Â (º)0 denotes the positive (semi)definiteness of M , i.e., λmin(M) > (≥)0. B(x, r) denotes
the closed sphere with center x and radius r, i.e., B(x, r) := {y ∈ Rn | ‖y − x‖ ≤ r}. dist(x, S) denotes the
distance between a vector x ∈ Rn and a set S ⊆ Rn, i.e., dist(x, S) := miny∈S ‖y − x‖. For sets S1 ⊆ Rn

and S2 ⊆ Rn, S1 + S2 denotes the sum of S1 and S2 defined by S1 + S2 := {x + y ∈ Rn | x ∈ S1, y ∈ S2}.

2 Extended regularized Newton method for the unconstrained
nonconvex optimization

In this section, we extend the RNM to be able to used when f is nonconvex. Let xk be the k-th iterative
point. In what follows, we denote the gradient ∇f(xk) and the Hessian ∇2f(xk) as gk and Hk, respectively.
At the k-th iteration of the RNM, we set the regularized parameter µk as

µk = c1Λk + c2‖gk‖δ, (2.1)

where c1, c2, δ are constants such that c1 > 1, c2 > 0, δ ≥ 0, and Λk is defined by

Λk := max(0,−λmin(Hk)). (2.2)
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From the definition of Λk, the matrix Hk + c1ΛkI is positive semidefinite even if f is nonconvex. Therefore,
if ‖gk‖ 6= 0, then Hk + µkI = Hk + c1ΛkI + c2‖gk‖δI Â 0. So we can adopt a search direction dk at xk as

dk = −(Hk + c1ΛkI + c2‖gk‖δI)−1gk (2.3)

when f is nonconvex.
The algorithm of the RNM with the above dk and Armijo’s step size rule is described as follows.¶ ³

Extended Regularized Newton Method (E-RNM)

Step 0 : Choose parameters δ, c1, c2, α, β such that

δ ≥ 0, c1 > 1, c2 > 0, 0 < α < 1, 0 < β < 1.

Choose a starting point x0. Set k := 0.

Step 1 : If the stopping criteria is satisfied, then terminate. Otherwise, go to Step 2.

Step 2 : [Computing search direction dk]
Compute

dk = −(Hk + c1ΛkI + c2‖gk‖δI)−1gk.

Step 3 : [Armijo’s step size rule ]
Find the smallest nonnegative integer lk such that

f(xk) − f(xk + βlkdk) ≥ −αβlkgT
k dk. (2.4)

Step 4 : Set tk = βlk , xk+1 = xk + tkdk and k := k + 1. Go to Step 1.µ ´
In Step 3 of the E-RNM, a backtracking scheme is used. Since dT

k gk < 0 for k such that ‖gk‖ 6= 0, the
number of backtracking steps is finite.

3 Global convergence

In this section, we investigate the global convergence of the E-RNM. To this end, we need the following
assumption.

Assumption 1. There exists a compact set Ω ⊆ Rn such that {xk} ⊆ Ω.

Note that Assumption 1 holds if the level set of f at the initial point x0 is compact.
First, we show the boundedness of {dk}.

Lemma 3.1. Suppose that ‖gk‖ 6= 0. Then, dk defined by (2.3) satisfies

‖dk‖ ≤ ‖gk‖1−δ

c2
.

Proof. We have from (2.3) that

‖dk‖ = ‖(Hk + c1ΛkI + c2‖gk‖δI)−1gk‖
≤ ‖(Hk + c1ΛkI + c2‖gk‖δI)−1‖ · ‖gk‖

= λmax

(
(Hk + c1ΛkI + c2‖gk‖δI)−1

)
‖gk‖

=
‖gk‖

λmin(Hk + c1ΛkI + c2‖gk‖δI)

≤ ‖gk‖1−δ

c2
,
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where the last inequality follows from the facts that Hk + c1ΛkI is positive semidefinite and ‖gk‖ 6= 0.

Since {xk} is in the compact set Ω, there exists Ug > 0 such that

‖gk‖ ≤ Ug, ∀k ≥ 0. (3.1)

The next lemma indicates that ‖dk‖ is bounded above if ‖gk‖ does not converges to 0.

Lemma 3.2. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such that
‖gk‖ ≥ ε. Then, dk defined by (2.3) satisfies

‖dk‖ ≤ b(ε),

where

b(ε) := max

(
U1−δ

g

c2
,

1
c2εδ−1

)
.

Proof. When δ ≤ 1, it follows from Lemma 3.1 and (3.1) that

‖dk‖ ≤
U1−δ

g

c2
. (3.2)

Meanwhile, when δ > 1, it follows from Lemma 3.1 and ‖gk‖ ≥ ε that

‖dk‖ ≤ 1
c2εδ−1

.

This completes the proof.

When ‖gk‖ ≥ ε for all k, we have from Lemma 3.2 that

xk + τdk ∈ Ω + B(0, b(ε)), ∀τ ∈ [0, 1], ∀k ≥ 0.

Moreover, since Ω + B(0, b(ε)) is compact and f is twice continuously differentiable, there exists UH(ε) > 0
such that

‖∇2f(x)‖ ≤ UH(ε), ∀x ∈ Ω + B(0, b(ε)). (3.3)

Next, we show that the step size tk determined in Step 4 of the E-RNM is bounded away from 0 when
‖gk‖ ≥ ε.

Lemma 3.3. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such that
‖gk‖ ≥ ε. Then,

tk ≥ tmin(ε),

where

tmin(ε) := min
(

1,
2(1 − α)βc2ε

δ

UH(ε)

)
.

Proof. From Taylor’s theorem, there exists τk ∈ (0, 1) such that

f(xk + tkdk) = f(xk) + tkgT
k dk +

1
2
t2kdT

k ∇2f(xk + τktkdk)dk.

Thus we have

f(xk) − f(xk + tkdk) + αtkgT
k dk = (1 − α)tkgT

k dk − 1
2
t2kdT

k ∇2f(xk + τktkdk)dk. (3.4)
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Since

gk = −(Hk + c1ΛkI + c2‖gk‖δI)dk

from the definition (2.3) of dk, substituting it into (3.4) yields

f(xk) − f(xk + tkdk) + αtkgT
k dk

= (1 − α)tkdT
k (Hk + c1ΛkI + c2‖gk‖δI)dk − 1

2
t2kdT

k ∇2f(xk + τktkdk)dk

= (1 − α)tkdT
k (Hk + c1ΛkI) dk + (1 − α)tkdT

k

(
c2‖gk‖δI − 1

2(1 − α)
tk∇2f(xk + τktkdk)

)
dk. (3.5)

Since Hk + c1ΛkI is positive semidefinite, we have

f(xk) − f(xk + tkdk) + αtkgT
k dk ≥ (1 − α)tkdT

k

(
c2‖gk‖δI − 1

2(1 − α)
tk∇2f(xk + τktkdk)

)
dk

≥ (1 − α)tk

(
c2‖gk‖δ − 1

2(1 − α)
tk‖∇2f(xk + τktkdk)‖

)
‖dk‖2. (3.6)

It then follows from ‖gk‖ ≥ ε and (3.3) that

f(xk) − f(xk + tkdk) + αtkgT
k dk ≥ (1 − α)tk

(
c2ε

δ − 1
2(1 − α)

tkUH(ε)
)
‖dk‖2. (3.7)

Now we consider two cases: (i) 2(1 − α)c2ε
δ/UH(ε) ≥ 1 and (ii) 2(1 − α)c2ε

δ/UH(ε) < 1.

Case (i): From (3.7), we have

f(xk) − f(xk + dk) ≥ −αgT
k dk,

and hence tk = 1 satisfies the Armijo’s rule (2.4).

Case (ii): In this case, it follows from (3.7) that

tk ≤ 2(1 − α)c2ε
δ

UH(ε)
⇒ f(xk) − f(xk + tkdk) ≥ −αtkgT

k dk.

Therefore, tk must be

tk ≥
(

2(1 − α)c2ε
δ

UH(ε)

)
β.

Otherwise tk/β satisfies the Armijo’s rule (2.4), which contradicts the definition of tk.

This completes the proof.

Next, we give a lower bound of the reduction f(xk) − f(xk+1) when ‖gk‖ ≥ ε.

Lemma 3.4. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such that
‖gk‖ ≥ ε. Then,

f(xk) − f(xk+1) ≥ p(ε)ε2,

where

p(ε) :=
αtmin(ε)

(1 + c1)UH(ε) + c2Uδ
g

.

5



Proof. Since Hk + c1ΛkI is positive semidefinite and ‖gk‖ 6= 0, we have

λmin

(
(Hk + c1ΛkI + c2‖gk‖δI)−1

)
=

1
λmax(Hk + c1ΛkI + c2‖gk‖δI)

=
1

λmax(Hk) + c1Λk + c2‖gk‖δ
.

It then follows from ‖gk‖ ≥ ε, (3.1) and (3.3) that

λmin

(
(Hk + c1ΛkI + c2‖gk‖δI)−1

)
≥ 1

(1 + c1)UH(ε) + c2Uδ
g

. (3.8)

Therefore, we have from the Armijo’s rule (2.4) and the definition (2.3) of dk that

f(xk) − f(xk+1) ≥ −αtkgT
k dk

= αtkgT
k (Hk + c1ΛkI + c2‖gk‖δI)−1gk

≥ αtkλmin

(
(Hk + c1ΛkI + c2‖gk‖δI)−1

)
‖gk‖2

≥ αtmin(ε)
(1 + c1)UH(ε) + c2Uδ

g

‖gk‖2 (3.9)

≥ αtmin(ε)
(1 + c1)UH(ε) + c2Uδ

g

ε2,

where the third inequality follows from (3.8) and Lemma 3.3, and the last inequality follows from ‖gk‖ ≥
ε.

From the above lemma, we show the global convergence of the E-RNM.

Theorem 3.1. Suppose that Assumption 1 holds. Then,

lim
k→∞

‖gk‖ = 0.

Proof. Suppose the contrary, i.e., lim supk→∞ ‖gk‖ > 0. Let

ε :=
lim supk→∞ ‖gk‖

2
,

Iε(k) := {j ∈ {0, 1, . . . } | j ≤ k, ‖gj‖ ≥ ε}.

Then, we have

lim
k→∞

|Iε(k)| = ∞,

where |Iε(k)| denotes the number of the elements of Iε(k). From Lemma 3.4, we obtain

f(x0) − f(xk+1) ≥
k∑

j=0

(f(xj) − f(xj+1))

≥
∑

j∈Iε(k)

(f(xj) − f(xj+1))

≥
∑

j∈Iε(k)

p(ε)ε2

= p(ε)ε2 |Iε(k)| .

Taking k → ∞, the right hand side of the inequality goes to infinity. This contradicts Assumption 1 and
the continuity of f . Hence, we have lim supk→∞ ‖gk‖ = 0, i.e., limk→∞ ‖gk‖ = 0.
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4 Global complexity bound

In this section, we estimate the global complexity bound of the E-RNM. To this end, we need the following
assumptions in addition to Assumption 1 in the previous section.

Assumption 2.

(a) δ ≤ 1/2.

(b) α ≤ 1/2.

(c) Let b1 := U1−δ
g /c1. ∇2f is Lipschitz continuous on Ω + B(0, b1), i.e., there exists LH > 0 such that

‖∇2f(x) −∇2f(y)‖ ≤ LH‖x − y‖, ∀x, y ∈ Ω + B(0, b1).

Under Assumption 1, the inequality (3.1) holds. Moreover, there exists fmin such that

f(xk) ≥ fmin, ∀k ≥ 0. (4.1)

From Assumptions 1 and 2 (a), the inequality (3.2) holds. Therefore, we have

xk + τdk ∈ Ω + B(0, b1), ∀τ ∈ [0, 1], ∀k ≥ 0.

Since Ω + B(0, b1) is compact and f is twice continuously differentiable, there exists UH > 0 such that

‖∇2f(x)‖ ≤ UH , ∀x ∈ Ω + B(0, b1). (4.2)

Moreover, from Assumption 2 (c), we have

‖∇2f(y)(x − y) − (∇f(x) −∇f(y))‖ ≤ 1
2
LH‖x − y‖2, ∀x, y ∈ Ω + B(0, b1). (4.3)

The next lemma indicates that the step size tk is bounded below by some positive constant independent
of k.

Lemma 4.1. Suppose that Assumptions 1 and 2 hold. Then,

tk ≥ tmin,

where

tmin := min

(
1,

√
2(1 − α)βc2

2

LHU1−2δ
g

)
.

Proof. Since Hk + c1ΛkI is positive semidefinite and 1 ≥ 1
2(1−α) tk, we have

dT
k (Hk + c1Λk)dk ≥ 1

2(1 − α)
tkdT

k (Hk + c1Λk)dk

≥ 1
2(1 − α)

tkdT
k Hkdk. (4.4)

It then follows from (3.5) and (4.4) that

f(xk) − f(xk + tkdk) + αtkgT
k dk

≥ 1
2
t2kdT

k Hkdk + (1 − α)tkdT
k

(
c2‖gk‖δI − 1

2(1 − α)
tk∇2f(xk + τktkdk)

)
dk

≥ (1 − α)tk

(
c2‖gk‖δ − 1

2(1 − α)
tk‖∇2f(xk + τktkdk) − Hk‖

)
‖dk‖2.
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Moreover, since τk ∈ (0, 1) and ∇2f is Lipschitz continuous from Assumption 2 (c), we have

f(xk) − f(xk + tkdk) + αtkgT
k dk ≥ (1 − α)tk

(
c2‖gk‖δ − LH

2(1 − α)
t2k‖dk‖

)
‖dk‖2

=
LHtk

2

(
2(1 − α)c2‖gk‖δ

LH‖dk‖
− t2k

)
‖dk‖3. (4.5)

From Assumption 2 (a), Lemma 3.1 and (3.1), we have

‖dk‖
‖gk‖δ

≤ ‖gk‖1−2δ

c2
≤

U1−2δ
g

c2
. (4.6)

Thus we obtain from (4.5) and (4.6) that

f(xk) − f(xk + tkdk) + αtkgT
k dk ≥ LHtk

2

(
2(1 − α)c2

2

LHU1−2δ
g

− t2k

)
‖dk‖3.

If 2(1 − α)c2
2/(LHU1−2δ

g ) ≥ 1, then Armijo’s rule (2.4) holds with tk = 1. If 2(1 − α)c2
2/(LHU1−2δ

g ) < 1,
then we have

tk ≤

√
2(1 − α)c2

2

LHU1−2δ
g

⇒ f(xk) − f(xk + tkdk) ≥ −αtkgT
k dk.

Thus tk must satisfy

tk ≥

(√
2(1 − α)c2

2

LHU1−2δ
g

)
β.

This completes the proof.

From the above lemma, we show that the number of backtracking steps is bounded above by some
positive constant independent of k.

Theorem 4.1. Suppose that Assumptions 1 and 2 hold. Then,

lk ≤ lmax,

where

lmax :=
ln tmin

lnβ
.

Proof. From Lemma 4.1, we obtain lk ln β ≥ ln tmin. Since lnβ < 0, we have lk ≤ ln tmin
ln β .

Remark 4.1. Since the Polyak’s RNM [4] uses a special step size which contains the Lipschitz constant,
his method does not need a backtracking scheme. However, the step size used in the Polyak’s RNM cannot
be used when the Lipschitz constant is unknown.

Next, we estimate a lower bound of the reduction f(xk) − f(xk+1).

Lemma 4.2. Suppose that Assumptions 1 and 2 hold. Then,

f(xk) − f(xk+1) ≥ p‖gk‖2,

where

p :=
αtmin

(1 + c1)UH + c2Uδ
g

.

8



Proof. It directly follows from (4.2), Lemma 4.1 and the inequality (3.9) of Lemma 3.4.

By Lemma 4.2, we obtain the global complexity bound of the E-RNM.

Theorem 4.2. Suppose that Assumptions 1 and 2 hold. Let {xk} be a sequence generated by the E-RNM.
Let J be the first iteration such that ‖gJ‖ ≤ ε. Then,

J ≤ f(x0) − fmin

p
ε−2,

where p is a constant given in Lemma 4.2.

Proof. It follows from Lemma 4.2 that

f(x0) − fmin ≥ f(x0) − f(xk) ≥
k−1∑
j=0

(f(xj) − f(xj+1)) ≥ p

k−1∑
j=0

‖gj‖2 ≥ kp

(
min

0≤j≤k−1
‖gj‖

)2

.

Then, we have

min
0≤j≤k−1

‖gj‖ ≤
(

f(x0) − fmin

kp

) 1
2

,

and hence

k ≥ f(x0) − fmin

p
ε−2 ⇒ min

0≤j≤k−1
‖gj‖ ≤ ε.

This completes the proof.

Remark 4.2. The global complexity bound O(ε−2) given in Theorem 4.2 is better than the existing result
O(ε−4) by Polyak [4]. Note that [4] does not assume Assumption 2 (c), i.e., the Lipschitz continuity of
∇2f .

5 Local Convergence

In this section, we show that the E-RNM has a superlinear convergence under the local error bound
condition. In order to prove the superlinear convergence, we use techniques similar to [5] and [1]. In
[5], Yamashita and Fukushima showed that the Levenberg-Marquardt method has a quadratic rate of
convergence under the local error bound condition. Similarly, in [1], Dan, Yamashita and Fukushima
showed that the inexact Levenberg-Marquardt method has a superlinear rate of convergence under the
local error bound condition.

First, we make the following assumptions.

Assumption 3.

(a) There exists a local optimal solution x∗ of the problem (1.1).

(b) ∇2f is local Lipschitz continuous, i.e., there exist constants b2 ∈ (0, 1) and L̄H > 0 such that

‖∇2f(x) −∇2f(y)‖ ≤ L̄H‖x − y‖, ∀x, y ∈ B(x∗, b2).

(c) ‖∇f(x)‖ provides a local error bound for the problem (1.1) on B(x∗, b2), i.e., there exists a constant
κ1 > 0 such that

κ1dist(x,X∗) ≤ ‖∇f(x)‖, ∀x ∈ B(x∗, b2),

where X∗ is the local optimal solution set of (1.1).

(d) 0 < δ < 1.
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(e) α ≤ 1/2.

Note that under Assumption 3 (b), the following inequality holds.

‖∇2f(y)(x − y) − (∇f(x) −∇f(y))‖ ≤ 1
2
L̄H‖x − y‖2, ∀x, y ∈ B(x∗, b2). (5.1)

Moreover, since f is twice continuously differentiable, there exist positive constants Ūg and L̄g such that

‖∇f(x)‖ ≤ Ūg, ∀x ∈ B(x∗, b2), (5.2)
‖∇f(x) −∇f(y)‖ ≤ L̄g‖x − y‖, ∀x, y ∈ B(x∗, b2). (5.3)

In what follows, x̄k denotes an arbitrary vector such that

‖xk − x̄k‖ = dist(xk, X∗), x̄k ∈ X∗.

In the case where f is convex, Li, Fukushima, Qi and Yamashita [3] showed the RNM has a quadratic rate
of convergence under the local error bound condition. The convexity of f implies Λk ≡ 0. However, since f
is not necessarily convex, it is not always true that Λk = 0. Therefore, we now investigate the relationship
between Λk and dist(xk, X∗). To this end, we need the following property on a singular matrix.

Lemma 5.1. Suppose that M ∈ Rn×n is singular, then ‖I − M‖ ≥ 1.

Proof. It directly follows from [2, Corollary 5.6.16].

By using Lemma 5.1, we show the following key lemma for superlinear convergence.

Lemma 5.2. Suppose that Assumption 3 holds. If xk ∈ B(x∗, b2/2), then

Λk ≤ L̄Hdist(xk, X∗).

Proof. When Hk º 0, we have Λk = 0. Thus the desired inequality holds. Next, we assume λmin(Hk) < 0.
Let λ̄

(l)
k be the l-th largest eigenvalue of ∇2f(x̄k). Since x̄k ∈ X∗, we have λ̄

(l)
k ≥ 0. Moreover, since

∇2f(x̄k) is a real symmetric matrix, ∇2f(x̄k) can be diagonalized by some orthogonal matrix Q̄k, i.e.,

Q̄T
k ∇2f(x̄k)Q̄k = diag(λ̄(l)

k ),

where diag(λ̄(l)
k ) denotes the diagonal matrix whose (l, l) element is λ̄

(l)
k . Then, we obtain

λmin(Hk)I − Q̄T
k HkQ̄k = λmin(Hk)I − Q̄T

k

(
∇2f(x̄k) + (Hk −∇2f(x̄k))

)
Q̄k

= λmin(Hk)I − diag(λ̄(l)
k ) − Q̄T

k (Hk −∇2f(x̄k))Q̄k.

Since Q̄T
k HkQ̄k has the eigenvalue λmin(Hk), λmin(Hk)I−Q̄T

k HkQ̄k is singular. Thus λmin(Hk)I−diag(λ̄(l)
k )−

Q̄T
k (Hk −∇2f(x̄k))Q̄k is also singular. On the other hand, λmin(Hk)I − diag(λ̄(l)

k ) is nonsingular, because
λmin(Hk) < 0 and λ̄

(l)
k ≥ 0.

Now let

M :=
(
λmin(Hk)I − diag(λ̄(l)

k )
)−1(

λmin(Hk)I − diag(λ̄(l)
k ) − Q̄T

k (Hk −∇2f(x̄k))Q̄k

)
.

Then, M is singular. It then follows from Lemma 5.1 that

1 ≤ ‖I − M‖

=
∥∥∥∥I −

(
I −

(
λmin(Hk)I − diag(λ̄(l)

k )
)−1

Q̄T
k (Hk −∇2f(x̄k))Q̄k

)∥∥∥∥
=

∥∥∥∥(
λmin(Hk)I − diag(λ̄(l)

k )
)−1

Q̄T
k (Hk −∇2f(x̄k))Q̄k

∥∥∥∥
≤

∥∥∥∥(
λmin(Hk)I − diag(λ̄(l)

k )
)−1

∥∥∥∥ · ‖Q̄T
k (Hk −∇2f(x̄k))Q̄k‖

=
∥∥∥∥(

λmin(Hk)I − diag(λ̄(l)
k )

)−1
∥∥∥∥ · ‖Hk −∇2f(x̄k)‖. (5.4)
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We consider ‖(λmin(Hk)I−diag(λ̄(l)
k ))−1‖ and ‖Hk−∇2f(x̄k)‖ separately. Since λmin(Hk) < 0 and λ̄

(l)
k ≥ 0,

we have ∥∥∥∥(
λmin(Hk)I − diag(λ̄(l)

k )
)−1

∥∥∥∥ = max
1≤l≤n

∣∣∣λmin(Hk) − λ̄
(l)
k

∣∣∣−1

=
1

min1≤l≤n

∣∣∣λmin(Hk) − λ̄
(l)
k

∣∣∣
≤ 1

|λmin(Hk)|

=
1

Λk
. (5.5)

Next, we consider ‖Hk −∇2f(x̄k)‖. Since xk ∈ B(x∗, b2/2), we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖ + ‖xk − x∗‖ ≤ ‖x∗ − xk‖ + ‖xk − x∗‖ ≤ b2,

and hence x̄k ∈ B(x∗, b2). It then follows from Assumption 3 (b) that

‖Hk −∇2f(x̄k)‖ ≤ L̄H‖xk − x̄k‖ = L̄Hdist(xk, X∗). (5.6)

Therefore, we have from (5.4) – (5.6) that

1 ≤ L̄Hdist(xk, X∗)
Λk

,

which is the desired inequality.

Using this lemma, we can show the superlinear convergence in a way similar to [5] and [1]. For the
completeness, we give the proofs.

Lemma 5.3. Suppose that Assumption 3 holds. If xk ∈ B(x∗, b2/2), then

‖dk‖ ≤ κ2dist(xk, X∗),

where

κ2 :=
L̄H

2c2κδ
1

+ max
(

1,
1

c1 − 1

)
.

Proof. First note that ∇f(x̄k) = 0. From the definition (1.2) of dk we have

‖dk‖ =
∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1gk

∥∥
=

∥∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1
(
gk −∇f(x̄k) − Hk(xk − x̄k) + Hk(xk − x̄k)

)∥∥∥
≤

∥∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1
(
gk −∇f(x̄k) − Hk(xk − x̄k)

)∥∥∥
+

∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1Hk(xk − x̄k)
∥∥

≤
∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1

∥∥ · ‖gk −∇f(x̄k) − Hk(xk − x̄k)‖
+

∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1Hk

∥∥ · ‖xk − x̄k‖

≤ L̄H

2
‖xk − x̄k‖2 ·

∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1
∥∥ + ‖xk − x̄k‖ ·

∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1Hk

∥∥
=

L̄H

2
dist(xk, X∗)2

∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1
∥∥ + dist(xk, X∗)

∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1Hk

∥∥ ,

(5.7)
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where the last inequality follows from (5.1). First, we consider ‖(Hk + c1ΛkI + c2‖gk‖δI)−1‖. Since
xk ∈ B(x∗, b2/2), we have x̄k ∈ B(x∗, b2). It follows from Hk + c2Λk º 0 and Assumption 3 (c) that∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1

∥∥ = λmax

(
(Hk + c1ΛkI + c2‖gk‖δI)−1

)
=

1
λmin(Hk + c1ΛkI + c2‖gk‖δI)

≤ 1
c2‖gk‖δ

=
1

c2κδ
1dist(xk, X∗)δ

. (5.8)

Next, we consider ‖(Hk + c1ΛkI + c2‖gk‖δI)−1Hk‖. Let λ
(l)
k be the l-th largest eigenvalue of Hk. Then,

the eigenvalues of (Hk + c1ΛkI + c2‖gk‖δI)−1Hk are given by

λ
(l)
k

λ
(l)
k + c1Λk + c2‖gk‖δ

, 1 ≤ l ≤ k.

Now we consider two cases: (i) λ
(l)
k ≥ 0 and (ii) λ

(l)
k < 0.

Case (i): This case implies that ∣∣∣λ(l)
k

∣∣∣∣∣∣λ(l)
k + c1Λk + c2‖gk‖δ

∣∣∣ ≤ 1.

Case (ii): In this case, since −Λk = λmin(Hk) ≤ λ
(l)
k < 0, we have λ

(l)
k − λmin(Hk) ≥ 0 and |λ(l)

k | ≤
|λmin(Hk)|. Therefore, we have∣∣∣λ(l)

k

∣∣∣∣∣∣λ(l)
k + c1Λk + c2‖gk‖δ

∣∣∣ =

∣∣∣λ(l)
k

∣∣∣∣∣∣(λ(l)
k − λmin(Hk)) − (c1 − 1)λmin(Hk) + c2‖gk‖δ

∣∣∣
≤ |λmin(Hk)|

λ
(l)
k − λmin(Hk) + (c1 − 1) |λmin(Hk)| + c2‖gk‖δ

≤ 1
c1 − 1

.

Thus we have ∣∣∣λ(l)
k

∣∣∣∣∣∣λ(l)
k + c1Λk + c2‖gk‖δ

∣∣∣ ≤ max
(

1,
1

c1 − 1

)
, 1 ≤ l ≤ k,

and hence ∥∥(Hk + c1ΛkI + c2‖gk‖δI)−1Hk

∥∥ ≤ max
(

1,
1

c1 − 1

)
. (5.9)

From (5.7) – (5.9), we have

‖dk‖ ≤ L̄H

2c2κδ
1

dist(xk, X∗)2−δ + max
(

1,
1

c1 − 1

)
dist(xk, X∗)

≤
(

L̄H

2c2κδ
1

+ max
(

1,
1

c1 − 1

))
dist(xk, X∗),

which is the desired inequality.
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From the above lemma, we can show that xk + τdk ∈ B(x∗, b2) for any τ ∈ [0, 1] if xk is sufficiently close
to x∗.

Lemma 5.4. Suppose that Assumption 3 holds. Let b3 := b2/(κ2 + 1). If xk ∈ B(x∗, b3), then

xk + τdk ∈ B(x∗, b2), ∀τ ∈ [0, 1].

Proof. Since b3 ≤ b2/2, we have xk ∈ B(x∗, b2/2). Therefore, we obtain

‖xk + τdk − x∗‖ ≤ ‖xk − x∗‖ + ‖dk‖
≤ ‖xk − x∗‖ + κ2dist(xk, X∗)
≤ ‖xk − x∗‖ + κ2‖xk − x∗‖
≤ (κ2 + 1)b3 ≤ b2,

where the second inequality follows from Lemma 5.3.

From the above lemma, lk = 0 (that is, tk = 1) is accepted in Step 3 of the RNM if xk is sufficiently
close to x∗.

Lemma 5.5. Suppose that Assumption 3 holds. Let

b4 := min

(
b3,

(
2(1 − α)c2κ

δ
1

κ2L̄H

) 1
1−δ

)
.

If xk ∈ B(x∗, b4), then tk = 1.

Proof. From Assumption 3 (b) and the inequality (4.4) we have

f(xk) − f(xk + tkdk) + αtkgT
k dk ≥ L̄Htk

2

(
2(1 − α)c2‖gk‖δ

L̄H‖dk‖
− t2k

)
‖dk‖3.

It then follows from Assumption 3 (c) and Lemma 5.3 that

f(xk) − f(xk + tkdk) + αtkgT
k dk ≥ L̄Htk

2

(
2(1 − α)c2κ

δ
1

κ2L̄Hdist(xk, X∗)1−δ
− t2k

)
‖dk‖3

≥ L̄Htk
2

(
2(1 − α)c2κ

δ
1

κ2L̄H‖xk − x∗‖1−δ
− t2k

)
‖dk‖3

≥ L̄Htk
2

(1 − t2k)‖dk‖3,

where the last inequality follows from xk ∈ B(x∗, b4). Therefore, we have tk = 1.

Next, we show that dist(xk, X∗) converges to 0 superlinearly, as long as {xk} lie in a neighborhood of
x∗.

Lemma 5.6. Suppose that Assumption 3 holds. If xk, xk+1 ∈ B(x∗, b4), then

dist(xk+1, X
∗) = O

(
dist(xk, X∗)1+δ

)
.

Therefore, there exists a positive constant b5 such that

dist(xk, X∗) ≤ b5 ⇒ dist(xk+1, X
∗) ≤ 1

2
dist(xk, X∗).
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Proof. We have from Assumption 3 (c)

dist(xk+1, X
∗) ≤ 1

κ1
‖gk+1‖

≤ 1
κ1

‖Hkdk + gk‖ +
L̄H

2κ1
‖dk‖2

=
1
κ1

∥∥∥c1Λkdk + c2‖gk‖δdk

∥∥∥ +
L̄H

2κ1
‖dk‖2

≤ c1Λk

κ1
‖d∗k‖ +

c2

κ1
‖gk‖δ‖dk‖ +

L̄H

2κ1
‖dk‖2, (5.10)

where the second inequality follows from (5.1) and Lemma 5.5, the first equality follows from the definition
(2.3) of dk. From (5.3), we have

‖gk‖δ = ‖gk −∇f(x̄k)‖δ ≤ L̄δ
gdist(xk, X∗)δ. (5.11)

Therefore, we obtain from (5.10), (5.11), Lemma 5.2 and Lemma 5.3 that

dist(xk+1, X
∗) ≤ c1κ2L̄H

κ1
dist(xk, X∗)2 +

c2κ2L̄
δ
g

κ1
dist(xk, X∗)1+δ +

κ2
2L̄H

2κ1
dist(xk, X∗)2

≤
κ2(2c1L̄H + 2c2L̄

δ
g + κ2L̄H)

2κ1
dist(xk, X∗)1+δ.

Lemma 5.6 shows that {dist(xk, X∗)} converges to 0 superlinearly if xk ∈ B(x∗, b4) for all k. Now we
give a sufficient condition for xk ∈ B(x∗, b4) for all k.

Lemma 5.7. Suppose that Assumption 3 holds. Let b6; = min(b4, b5) and b7 := 1
1+2κ2

b6. If x0 ∈ B(x∗, b7),
then xk ∈ B(x∗, b6) for all k.

Proof. We prove the lemma by induction. First we consider the case k = 0. Since b7 < b6 ≤ b4 ≤ b3 ≤ b2/2,
we have x0 ∈ B(x∗, b2/2). Therefore, from Lemma 5.3, we obtain

‖x1 − x∗‖ = ‖x0 + t0d0 − x∗‖
≤ ‖x0 − x∗‖ + ‖d0‖
≤ ‖x0 − x∗‖ + κ2dist(x0, X

∗)
≤ (1 + κ2)‖x0 − x∗‖
≤ (1 + κ2)b7

≤ 1 + κ2

1 + 2κ2
b6 ≤ b6,

which shows that x1 ∈ B(x∗, b6). Next, we consider the case where k ≥ 1. Suppose that xj ∈ B(x∗, b6), j =
1, . . . , k. It follows from Lemma 5.6 that

dist(xj , X
∗) ≤ 1

2
dist(xj−1, X

∗) ≤ · · · ≤
(

1
2

)j

dist(x0, X
∗) ≤

(
1
2

)j

‖x0 − x∗‖ ≤
(

1
2

)j

b7.

Therefore,

‖dj‖ ≤ κ2dist(xj , X
∗) ≤

(
1
2

)j

κ2b7. (5.12)

Thus we obtain

‖xk+1 − x∗‖ ≤ ‖x0 − x∗‖ +
k∑

j=0

‖dj‖ ≤ (1 + 2κ2)b7 = b6,

which shows that xk+1 ∈ B(x∗, b6). This completes the proof.
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By using Lemmas 5.6 and 5.7, we give the rate of convergence of the E-RNM.

Theorem 5.1. Suppose that Assumption 3 holds. Let {xk} be a sequence generated by the E-RNM with
x0 ∈ B(x∗, b7). Then, {dist(xk, X∗)} converges to 0 at the rate of 1 + δ. Moreover, {xk} converges to a
local optimal solution x̂ ∈ B(x∗, b6).

Proof. The first part of the theorem directly follows from Lemmas 5.6 and 5.7. So we only show the second
part. For all integers p > q ≥ 0, we obtain

‖xp − xq‖ ≤
p−1∑
j=q

‖dj‖

≤ κ2b7

p−1∑
j=q

(
1
2

)j

≤ κ2b7

∞∑
j=q

(
1
2

)j

≤ κ2b7

(
1
2

)q−1

,

where the second inequality follows from (5.12). Thus {xk} is a Cauchy sequence, and hence it converges.

Remark 5.1. Note that by using techniques similar to [3], we can prove that ‖xk − x̂‖ converges to 0 at
the rate of 1 + δ.

6 Concluding Remarks

In this paper, we have considered the RNM extended to the unconstrained nonconvex optimization. We
have shown that the E-RNM has a global convergence and a superlinear convergence under appropriate
conditions. Moreover, we have shown that the global complexity bound of the E-RNM is O(ε−2) when ∇2f
is Lipschitz continuous. To our knowledge, this complexity is best for RNMs.

For future work, we may consider to improve the global complexity bound of the E-RNM when f is
convex. Moreover, it would be important to investigate how to calculate a search direction dk efficiently or
how to choose the parameters δ, c1, c2.
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