
A Regularized Newton Method without Line Search

for Unconstrained Optimization∗

Kenji Ueda† and Nobuo Yamashita‡

Abstract

In this paper, we propose a regularized Newton method without line search. The proposed method
controls a regularized parameter instead of a step size in order to guarantee the global convergence.
We demonstrate that it is closely related to the TR-Newton method when the Hessian of the objective
function is positive definite. Moreover, it does not solve nonconvex problems but linear equations
as subproblems at each iteration. Thus, the proposed algorithm is regarded as a desired solution
method mentioned above. We show that the proposed algorithm has the following convergence
properties. (a) The proposed algorithm has global convergence under appropriate conditions. (b) It
has superlinear rate of convergence under the local error bound condition. (c) Its global complexity

bound, which is the first iteration k such that ‖∇f(xk)‖ ≤ ε, is O(ε−2) when f is nonconvex, O(ε−
5
3)

when f is convex, and O(ε−1) when f is strongly convex. Moreover, we report numerical results
that show that the proposed algorithm is competitive with the existing Newton-type methods, and
hence it is very promising.

Keywords Regularized Newton methods, Adaptive regularized parameter, Trust-region methods,
Global complexity bound

Mathematics Subject Classification (2000) 90C30, 65K05, 49M15

1 Introduction

In this paper, we consider the following unconstrained minimization problem.

minimize
x∈Rn

f(x), (1.1)

where f is a twice continuously differentiable function from Rn into R. Many solution methods for
(1.1), such as the steepest descent method and the Newton’s method, have been proposed [1, 2, 11, 14].
Usually, efficiencies of these solution methods are discussed from the following points of view [1, 2, 11, 14].

• Global convergence from an arbitrary initial point to a stationary point of f ;

• Rate of convergence, such as the superlinear convergence and the quadratic convergence, in a
neighborhood of a local optimal solution;

• Numerical results for benchmark problems such as CUTEr [7];

• The first iteration Jg satisfying ‖∇f(xJg)‖ ≤ ε, or the first iteration Jf satisfying f(xJf
)−f∗ ≤ ε,

where {xk} is a sequence generated by some algorithms, ε is a given positive constant and f∗ is
the optimal value of f .

∗Technical Report, 2009-007, February 12, 2009
†Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501,

Japan, E-mail: kueda@amp.i.kyoto-u.ac.jp
‡Corresponding author. Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto

University, Kyoto 606-8501, Japan, E-mail: nobuo@i.kyoto-u.ac.jp, Tel: 81-75-7534759, Fax: 81-75-7534759

1

This last item is important when we solve large-scale problems where an appropriate initial point is
difficult to find and we want to estimate the computational time for a given accuracy of a solution in
advance [3, 12, 13, 16, 17]. In this paper, Jg and Jf are referred to as global complexity bounds of the
algorithm. In what follows, we discuss existing algorithms from the above four points of view, and then
we explain a regularized Newton method proposed in this paper.

The steepest descent method is an iterative method which uses −∇f(xk) as a search direction. The
steepest descent method has a global convergence and a linear rate of convergence under appropriate
conditions. A convergence of the steepest descent method is generally slow as compared to that of the
Newton-type methods. However, the steepest descent method is suitable for large-scale problems since
it does not need to compute Hessian matrices of f . The global complexity bound of the steepest descent
method is shown to be Jg = O(ε−2) when f is nonconvex, and Jf = O(ε−

1
2) when f is convex [11].

The Newton’s method uses Hessian matrices of f , and has a quadratic rate of convergence under
appropriate conditions. Moreover, the Newton’s method combined with a trust-region method [4] has
global convergence. In what follows, we represent the TR-Newton method by the Newton’s method with
a trust-region method. For a current point xk and a current trust-region ∆k, the TR-Newton method
adopts a search direction d̄k(∆k) as

d̄k(∆k) ∈ argmin
‖d‖≤∆k

(
f(xk) + ∇f(xk)T d +

1
2
dT∇2f(xk)d

)
.

For large-scale problems with sparse Hessian matrices, the TR-Newton method can get a solution effi-
ciently with the use of the sparsity. However, a complexity bound of the TR-Newton method remains
unknown.

Recently, Nesterov and Polyak [13] proposed the cubic regularization of Newton’s method. The cubic
regularization of Newton’s method has a global and quadratic convergence as well as the TR-Newton
method. Moreover, the global complexity bound of the cubic regularization of Newton’s method is
shown to be Jg = O(ε−

3
2) when f is nonconvex, and Jf = O(ε−

1
3) when f is convex [12]. More recently,

Cartis, Gould and Toint [3] extended the cubic regularization of Newton’s method, called the adaptive
cubic overestimation method, and they reported that the adaptive cubic overestimation method worked
well as compared to the TR-Newton method in their numerical experiments. The cubic regularization of
Newton’s method uses a global minimizer of a cubic model function as the next iteration point. In order
to get the minimizer, it solves certain nonlinear equations equivalent to minimizing the cubic model
function. Since we do not know a computational complexity to solve the nonlinear equations, we cannot
estimate the total computational complexity of the cubic regularization of Newton’s method even if we
know Jg or Jf .

When f is convex, the regularized Newton method [9, 10, 16, 17] is one of the efficient solution
methods for (1.1). For a current point xk, the regularized Newton method adopts a search direction dk

by

dk = −(∇2f(xk) + µkI)−1∇f(xk),

where µk is a positive parameter. We call µk a regularized parameter. If f is convex, then a matrix
∇2f(xk) + µkI is positive definite, and hence dk is a descent direction for f at xk. Therefore, the
regularized Newton method with an appropriate line search method, such as the Armijo’s step size rule,
has a global convergence property. Li, Fukushima, Qi and Yamashita [9] showed that the regularized
Newton method, which sets the regularized parameter µk as µk = ‖∇f(xk)‖, has a quadratic rate of
convergence under the assumption that ‖∇f(x)‖ provides a local error bound for (1.1) in a neighbor-
hood of an optimal solution x∗. Moreover, Polyak [16] showed that the global complexity bound of
the regularized Newton method, which also sets the regularized parameter µk as µk = ‖∇f(xk)‖, is
Jg = O(ε−4). Recently, Ueda and Yamashita [17] extended the regularized Newton method to the un-
constrained nonconvex optimization. The extended regularized Newton method adopts the regularized
parameter µk as

µk = c1 min(0,−λmin(∇2f(xk))) + c2‖∇f(xk)‖δ,

where c1, c2 and δ are given positive constants, and λmin(∇2f(xk)) is the minimum eigenvalue of
∇2f(xk). Ueda and Yamashita [17] adopted the Armijo’s step size rule as a line search method. They

2

showed that the extended regularized Newton method has global convergence under appropriate condi-
tions and superlinear convergence under the local error bound condition. Moreover, its global complexity
bound is Jg = O(ε−2).

The TR-Newton method and the cubic regularization of Newton’s method have to solve nonconvex
subproblems at each iteration. A number of efficient solution methods for these subproblems have been
proposed. However, a lot of computational complexities may be required to get an exact solution of
the subproblem, and this complexity is unknown. On the other hand, the regularized Newton method
with line search methods can get a search direction by only solving linear equations. However, it may
evaluate the objective function value many times in a line search step. Therefore, it is desirable to
construct a solution method whose behavior is similar to the TR-Newton method, and subproblems
can be solved easily. In this paper, we proposed a regularized Newton method without line search.
In order to guarantee the global convergence, it controls the regularized parameter µk. The proposed
algorithm solves linear equations to get the search direction dk(µk). As seen in the next section, the
next iteration point xk+1 = xk + dk(µk) generated by the proposed algorithm coincides with the next
iteration point xk+1 = xk + d̄k(∆k) generated by the TR-Newton method with a certain trust-region ∆k.
Therefore, we expect that the proposed regularized Newton method behaves as well as the TR-Newton
method. We show that the proposed algorithm has a global convergence property, and a superlinear
convergence property under the local error bound condition. We also give global complexity bounds of
the proposed algorithm. In particular, we show that the global complexity bounds are Jg = O(ε−2) when
f is nonconvex, Jg = O(ε−

5
3) and Jf = O(ε−

2
3) when f is convex, and Jg = O(ε−1) and Jf = O(log ε−1)

when f is strongly convex.
This paper is organized as follows. In the next section, we propose a regularized Newton’s method

that controls the regularized parameter at each iteration. In Section 3, we show its global convergence.
In Section 4, we establish superlinear convergence under the local error bound condition. In Section 5,
we give the global complexity bounds of the proposed algorithm. Then, numerical results are presented
and discussed in Section 6. Finally Section 7 concludes the paper.

Throughout the paper, we use the following notations. For a vector x ∈ Rn, ‖x‖ denotes the
Euclidean norm defined by ‖x‖ :=

√
xT x. For a symmetric matrix M ∈ Rn×n, we denote the maximum

eigenvalue and the minimum eigenvalue of M as λmax(M) and λmin(M), respectively. Then, ‖M‖
denotes the `2 norm of M defined by ‖M‖ :=

√
λmax(MT M). If M is symmetric positive semidefinite

matrix, then ‖M‖ = λmax(M). Furthermore, M Â (º)0 denotes the positive (semi)definiteness of M ,
i.e., λmin(M) > (≥)0. B(x, r) denotes the closed sphere with center x and radius r, i.e., B(x, r) := {y ∈
Rn | ‖y − x‖ ≤ r}. dist(x, S) denotes the distance between a vector x ∈ Rn and a set S ⊆ Rn, i.e.,
dist(x, S) := miny∈S ‖y − x‖. For sets S1 ⊆ Rn and S2 ⊆ Rn, S1 + S2 denotes the sum of S1 and S2

defined by S1 + S2 := {x + y ∈ Rn | x ∈ S1, y ∈ S2}.

2 Proposed algorithm

In this section, we propose a regularized Newton method that controls the regularized parameter at
each iteration. In what follows, xk denotes the k-th iterative point, and gk and Hk denotes the gradient
∇f(xk) and the Hessian ∇2f(xk), respectively.

For a given positive parameter νk, we consider a regularized parameter µk defined by

µk := cΛk + νk‖gk‖δ, (2.1)

where c and δ are given constants such that c > 1 and δ ≥ 0, and Λk is defined by

Λk := max(0,−λmin(Hk)).

From the definition of Λk, the matrix Hk+cΛkI is positive semidefinite even if f is nonconvex. Therefore,
if ‖gk‖ 6= 0, then Hk + µkI = Hk + cΛkI + νk‖gk‖δI Â 0. Thus we can compute a vector dk(νk) defined
by

dk(νk) := −(Hk + cΛkI + νk‖gk‖δI)−1gk. (2.2)

The existing regularized Newton method uses a search direction dk(ν) with νk fixed to a certain ν, and
generates the next iteration point xk+1 = xk + tdk(ν) by controlling a step size t so that the objective

3

function value decreases. In this paper, we propose to control νk in order to satisfy f(xk+1) < f(xk)
with xk+1 = xk + dk(νk).

In order to find an appropriate νk, we use the idea of updating trust-region ∆k in the TR-Newton
method. Let mk : Rn × R → R be a model function of f at xk defined by

mk(d, ν) := f(xk) + gT
k d +

1
2
dT (Hk + cΛkI + ν‖gk‖δI)d. (2.3)

Note that dk(νk) is a global minimizer of mk(·, νk) if ‖gk‖ 6= 0. Let ρk : Rn ×R → R be the ratio of the
reduction of the objective function value to that of the model function value, i.e.,

ρk(d, ν) :=
f(xk) − f(xk + d)
f(xk) − mk(d, ν)

. (2.4)

If ρk(dk(νk), νk) is large, i.e., the reduction f(xk) − f(xk + dk(νk)) is sufficiently large as compared to
the reduction of the model function, we adopt dk(νk) and decrease the parameter νk. On the other
hand, if ρk(dk(νk), νk) is small, i.e., the reduction f(xk) − f(xk + dk(νk)) is not large, we increase νk

and compute dk(νk) once again.
Based on the ideas, we propose the following algorithm. We call the proposed algorithm the adaptive

regularized Newton method, because it uses an adaptive parameter ν.

The Adaptive Regularized Newton Method

Step 0 : Choose parameters ν0, νmin, δ, c, γ1, γ2, η1, η2 such that

ν0 ≥ νmin > 0, δ ≥ 0, c > 1, 1 < γ1 ≤ γ2, 0 < η1 ≤ η2 ≤ 1.

Choose a starting point x0. Set k := 0.

Step 1 : If the stopping criterion is satisfied, then terminate. Otherwise, go to Step 2.

Step 2 : Step 2.0 : Set lk := 1 and ν̄lk = νk.

Step 2.1 : Compute
dk(ν̄lk) = −(Hk + cΛkI + ν̄lk‖gk‖δI)−1gk.

Step 2.2 : Compute

ρk(dk(ν̄lk), ν̄lk) =
f(xk) − f(xk + dk(ν̄lk))
f(xk) − mk(dk(ν̄lk), ν̄lk)

.

If ρk(dk(ν̄lk), ν̄lk) < η1, then update ν̄lk+1 ∈ [γ1ν̄lk , γ2ν̄lk], set lk := lk + 1, and go
to Step 2.1. Otherwise, go to Step 3.

Step 3 : If η2 > ρk(dk(ν̄lk), ν̄lk) ≥ η1, then update νk+1 ∈ [ν̄lk , γ1ν̄lk].
If ρk(dk(ν̄lk), ν̄lk) ≥ η2, then update νk+1 ∈ [νmin, ν̄lk].
Update xk+1 = xk + dk(ν̄lk). Set k := k + 1, and go to Step 1.

The proposed algorithm is closely related to the TR-Newton method as follows. Consider the case
where Hk is positive definite. Then, since Λk = 0, the next iteration point xk+1 of the proposed
algorithm lies on a trajectory Γk defined by

Γk :=
{
x ∈ Rn | x = xk − (Hk + νI)−1gk, ν ∈ (0,∞)

}
.

On the other hand, the next iteration point xk+1 of the TR-Newton method lie on a trajectory Γ̄k

defined by

Γ̄k :=

{
x ∈ Rn

∣∣∣∣∣ x = xk + d̄k(∆), d̄k(∆) ∈ argmin
‖d‖≤∆

(
f(xk) + gT

k d +
1
2
dT Hkd

)
, ∆ ∈ (0,∞)

}
.

4

In [4], it is shown that d̄k(∆) ∈ argmin‖d‖≤∆

(
f(xk) + gT

k d + 1
2dT Hkd

)
if and only if there exists λk(∆)

such that

(Hk + λk(∆)I)d̄k(∆) = −gk,

Hk + λk(∆)I º 0,

λk(∆) ≥ 0,

λk(∆)(‖d̄k(∆)‖ − ∆) = 0.

It then follows from the positive definiteness of Hk that

d̄k(∆) =

{
−H−1

k gk if ‖H−1
k gk‖ ≤ ∆,

−(Hk + λk(∆)I)−1gk otherwise,

where λk(∆) is a positive constant such that ‖(Hk + λk(∆)I)−1gk‖ = ∆. Therefore, the trajectory Γ̄k

can be written as

Γ̄k = {x ∈ Rn | x = xk − (Hk + λk(∆)I)−1gk, ‖(Hk + λk(∆)I)−1gk‖ = ∆, ∆ ∈ (0, ‖H−1
k gk‖)}

∪ {xk − H−1
k gk}.

Since λk(∆) decreases monotonically on (0, ‖H−1
k gk‖), we have lim∆→0 λk(∆) = ∞ and lim∆→‖H−1

k gk‖

λk(∆) = 0. Thus the trajectory Γk coincides with the trajectory Γ̄k \ {xk − H−1
k gk}, and hence for a

certain ν ∈ (0,∞), there exists ∆ such that dk(ν) = d̄k(∆). From this fact, we expect that the proposed
algorithm behaves as well as the TR-Newton method when Hk is positive definite.

On the other hand, when Hk is not positive definite, the behavior of the proposed algorithm may be
different from that of the TR-Newton method. For example, consider the case where Hk is not positive
semidefinite and ‖gk‖ = 0. Then, dk(ν) of the proposed algorithm is always 0 for any ν ∈ (0,∞), while
d̄k(∆) of the TR-Newton method is not 0. Therefore, the proposed algorithm do not necessarily have
the same properties as the TR-Newton method.

In the remainder of this section, we show that the proposed algorithm is well-defined when ‖gk‖ 6= 0.

Theorem 2.1. If ‖gk‖ 6= 0, then the proposed algorithm is well-defined, i.e., the number lk of inner
iterations is finite.

Proof. Since f is twice continuously differentiable, we have from the definition of dk(ν̄lk) that

f(xk) − f(xk + dk(ν̄lk)) = −gT
k dk(ν̄lk) − O(‖dk(ν̄lk)‖2)

= gT
k (Hk + cΛkI + ν̄lk‖gk‖δI)−1gk − O(‖dk(ν̄lk)‖2).

Moreover, from the definitions of dk(ν̄lk) and mk(dk(ν̄lk), ν̄lk), we have

f(xk) − mk(dk(ν̄lk), ν̄lk) = −gT
k dk(ν̄lk) − 1

2
dk(ν̄lk)T (Hk + cΛkI + ν̄lk‖gk‖δI)dk(ν̄lk)

=
1
2
gT

k (Hk + cΛkI + ν̄lk‖gk‖δI)−1gk.

It then follows from the definitions of dk(ν̄lk) and ρk(dk(ν̄lk), ν̄lk) that

ρk(dk(ν̄lk), ν̄lk) =
gT

k (Hk + cΛkI + ν̄lk‖gk‖δI)−1gk − O(‖dk(ν̄lk)‖2)
1
2gT

k (Hk + cΛkI + ν̄lk‖gk‖δI)−1gk

= 2 −
O

(∥∥∥(Hk + cΛkI + ν̄lk‖gk‖δI)−1gk

∥∥∥2
)

1
2gT

k (Hk + cΛkI + ν̄lk‖gk‖δI)−1gk

= 2 −
O

(
1

ν̄2
lk

∥∥∥(
1

ν̄lk

Hk + 1
ν̄lk

cΛkI + ‖gk‖δI
)−1

gk

∥∥∥2
)

1
2ν̄lk

gT
k

(
1

ν̄lk

Hk + 1
ν̄lk

cΛkI + ‖gk‖δI
)−1

gk

(2.5)

5

From the updating rule of ν̄lk in Step 2.2, we have ν̄lk → ∞ as lk → ∞. Then, taking lk → ∞, the
second term of the right-hand side of (2.5) goes to 0, and hence limlk→∞ ρk(dk(ν̄lk) = 2 > η1. Therefore,
the proposed algorithm is well-defined.

In Sections 3 – 5, we will show global and superlinear convergence, and give the global complexity
bounds. In the sections, for simplicity, we denote lk and ν̄lk of the last iteration in the inner loops
of Steps 2.0 – 2.2 at each k as l∗k and ν∗

k , respectively. We also denote dk(ν∗
k), mk(dk(ν∗

k), ν∗
k) and

ρk(dk(ν∗
k), ν∗

k) as d∗
k, m∗

k, and ρ∗k, respectively, i.e.,

d∗
k := dk(ν∗

k) = −(Hk + cΛkI + ν∗
kI)−1gk, (2.6)

m∗
k := mk(dk(ν∗

k), ν∗
k) = f(xk) + gT

k d∗
k +

1
2
d∗

k
T (Hk + cΛkI + ν∗

kI)d∗k, (2.7)

ρ∗k := ρk(dk(ν∗
k), ν∗

k) =
f(xk) − f(xk + d∗

k)
f(xk) − m∗

k

. (2.8)

3 Global convergence

In this section, we investigate the global convergence property of the proposed algorithm. To this end,
we need the following assumption.

Assumption 1. There exists a compact set Ω ⊆ Rn such that {xk} ⊆ Ω.

Note that Assumption 1 holds if the level set of f at the initial point x0 is compact.
First, we show the relationship between ‖dk(ν)‖ and ‖gk‖.

Lemma 3.1. Suppose that ‖gk‖ 6= 0. Then, for any ν ∈ [νmin,∞),

‖dk(ν)‖ ≤ ‖gk‖1−δ

ν
.

Proof. We have from (2.2) that

‖dk(ν)‖ = ‖(Hk + cΛkI + ν‖gk‖δI)−1gk‖
≤ ‖(Hk + cΛkI + ν‖gk‖δI)−1‖ · ‖gk‖

= λmax

(
(Hk + cΛkI + ν‖gk‖δI)−1

)
‖gk‖

=
‖gk‖

λmin(Hk + cΛkI + ν‖gk‖δI)
(3.1)

≤ ‖gk‖1−δ

ν
,

where the last inequality follows from the facts that Hk +cΛkI is positive semidefinite and ‖gk‖ 6= 0.

Since the sequence {xk} is in the compact set Ω by Assumption 1, there exists Ug > 0 such that

‖gk‖ ≤ Ug, ∀k ≥ 0. (3.2)

The next lemma indicates that ‖dk(ν)‖ is bounded above if ‖gk‖ is away from 0.

Lemma 3.2. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such
that ‖gk‖ ≥ ε. Then, for any ν ∈ [νmin,∞),

‖dk(ν)‖ ≤ b(ε),

where

b(ε) := max

(
U1−δ

g

νmin
,

1
νminεδ−1

)
.

6

Proof. When δ ≤ 1, it follows from Lemma 3.1, (3.2) and ν ≥ νmin that

‖dk(ν)‖ ≤
U1−δ

g

νmin
. (3.3)

Meanwhile, when δ > 1, it follows from Lemma 3.1, ‖gk‖ ≥ ε and ν ≥ νmin

‖dk(ν)‖ ≤ 1
νminεδ−1

.

This completes the proof.

When ‖gk‖ ≥ ε for all k, we have from Lemma 3.2 that

xk + sdk(ν) ∈ Ω + B(0, b(ε)), ∀s ∈ [0, 1], ∀k ≥ 0.

Moreover, since Ω+B(0, b(ε)) is compact and f is twice continuously differentiable, there exists UH(ε) >
0 such that

‖∇2f(x)‖ ≤ UH(ε), ∀x ∈ Ω + B(0, b(ε)). (3.4)

Next, we show that the parameter ν∗
k in µk is bounded above when ‖gk‖ ≥ ε for all k ≥ 0.

Lemma 3.3. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such
that ‖gk‖ ≥ ε for all k ≥ 0. Then,

ν∗
k ≤ νmax(ε),

where

νmax(ε) := max
(

ν0,
γ2UH(ε)

εδ

)
.

Proof. From Taylor’s theorem, there exists τ ∈ (0, 1) such that

f(xk + dk(ν)) = f(xk) + gT
k dk(ν) +

1
2
dk(ν)T∇2f(xk + τdk(ν))dk(ν).

It then follows from the definition (2.3) of mk(dk(ν), ν) that

f(xk + dk(ν)) − mk(dk(ν), ν)

=
1
2
dk(ν)T

(
∇2f(xk + τdk(ν)) − (Hk + cΛkI + ν‖gk‖δI)

)
dk(ν) (3.5)

=
1
2
dk(ν)T

(
∇2f(xk + τdk(ν)) − ν‖gk‖δI

)
dk(ν) − 1

2
dk(ν)T (Hk + cΛkI)dk(ν)

≤ 1
2
(UH(ε) − ν‖gk‖δ)‖dk(ν)‖2

≤ 1
2
(UH(ε) − νεδ)‖dk(ν)‖2,

where the first inequality follows from Hk + cΛk º 0 and (3.4), and the last inequality follows from
‖gk‖ ≥ ε. Now suppose that ν ≥ UH(ε)/εδ. Then, we have

f(xk + dk(ν)) ≤ mk(dk(ν), ν),

and hence

ρk(dk(ν), ν) =
f(xk) − f(xk + dk(ν))
f(xk) − mk(dk(ν), ν)

≥ 1.

Thus, if ν̄lk ≥ UH(ε)/εδ, then inner loops of Step 2 must terminate. Therefore, ν∗
k must satisfy

ν∗
k ≤ max

(
ν∗

k−1,

(
UH(ε)

εδ

)
γ2

)
≤ · · · ≤ max

(
ν0,

(
UH(ε)

εδ

)
γ2

)
.

This completes the proof.

7

Next, we give a lower bound of the reduction of the model function when ‖gk‖ ≥ ε for all k ≥ 0.

Lemma 3.4. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such
that ‖gk‖ ≥ ε for all k ≥ 0. Then,

f(xk) − m∗
k ≥ p(ε)ε2,

where

p(ε) :=
1

2
(
(1 + c)UH(ε) + νmax(ε)Uδ

g

) .

Proof. Since Hk + cΛkI is positive semidefinite and ‖gk‖ 6= 0, we have

λmin

(
(Hk + cΛkI + ν∗

k‖gk‖δI)−1
)

=
1

λmax(Hk + cΛkI + ν‖gk‖δI)

=
1

λmax(Hk) + cΛk + ν∗
k‖gk‖δ

.

It then follows from ‖gk‖ ≥ ε, (3.2), (3.4) and Lemma 3.3 that

λmin

(
(Hk + cΛkI + ν∗

k‖gk‖δI)−1
)
≥ 1

(1 + c)UH(ε) + νmax(ε)Uδ
g

. (3.6)

Therefore, we have from the definition (2.6) of d∗
k and the definition (2.7) of m∗

k that

f(xk) − m∗
k = −gT

k d∗k − 1
2
d∗

k
T (Hk + cΛkI + ν∗

k‖gk‖δI)d∗k

=
1
2
gT

k (Hk + cΛkI + ν∗
k‖gk‖δI)−1gk

≥ 1
2
λmin

(
(Hk + cΛkI + ν∗

k‖gk‖δI)−1
)
‖gk‖2

≥ 1

2
(
(1 + c)UH(ε) + νmax(ε)Uδ

g

)‖gk‖2 (3.7)

≥ 1

2
(
(1 + c)UH(ε) + νmax(ε)Uδ

g

)ε2,

where the second inequality follows from (3.6), and the last inequality follows from ‖gk‖ ≥ ε.

By using the above lemma and the updating rule of xk, we give a lower bound of the reduction
f(xk) − f(xk+1) when ‖gk‖ ≥ ε for all k ≥ 0.

Lemma 3.5. Suppose that Assumption 1 holds. Suppose also that there exists a constant ε > 0 such
that ‖gk‖ ≥ ε for all k ≥ 0. Then,

f(xk) − f(xk+1) ≥ η1p(ε)ε2.

Proof. Since ρ∗k ≥ η1, we have

f(xk) − f(xk+1) ≥ η1(f(xk) − m∗
k) ≥ η1p(ε)ε2,

where the last inequality follows from Lemma 3.4.

Now, we are at the position to prove the main theorem of this section.

Theorem 3.1. Suppose that Assumption 1 holds. Then,

lim inf
k→∞

‖gk‖ = 0 or ‖gK‖ = 0, for some K ≥ 0.

8

Proof. Suppose the contrary, i.e., there exists a constant ε such that ‖gk‖ ≥ ε for all k ≥ 0. Then, we
have from Lemma 3.5 that

f(x0) − f(xk) ≥
k−1∑
j=0

(f(xj) − f(xj+1)) ≥
k−1∑
j=0

η1p(ε)ε2 = η1p(ε)ε2k.

Taking k → ∞, the right-hand side of the inequality goes to infinity, and hence limk→∞ f(xk) = −∞.
This contradicts Assumption 1 and the continuity of f . Hence, we have lim infk→∞ ‖gk‖ = 0 or ‖gK‖ = 0
for some K ≥ 0.

Remark 3.1. Note that we can prove limk→∞ ‖gk‖ = 0 in a way similar to the proof of [17, Theorem
3.1] by replacing the statement “If η2 > ρk(dk(ν̄lk), ν̄lk) ≥ η1, then update νk+1 ∈ [ν̄lk , γ1ν̄lk]. If
ρk(dk(ν̄lk), ν̄lk) ≥ η2, then update νk+1 ∈ [νmin, ν̄lk].” in Step 3 with “If ρk(dk(ν̄lk), ν̄lk) ≥ η1, then
update νk+1 = ν0.” However, this modification may increase the number of inner iterations.

Remark 3.2. The TR-Newton method has a global convergence property to a second-order critical
point [4]. However, since dk(ν̄lk) = 0 when ‖gk‖ = 0, the proposed algorithm may not converge to a
second-order critical point.

4 Local convergence

In this section, we show that the proposed algorithm converges superlinearly when ‖∇f(x)‖ provides a
local error bound (see Assumption 2 (d) below). Note that the local error bound condition holds if the
second-order sufficient optimality condition holds at x∗. But the converse is not true. Thus the local
error bound condition is weaker than the second-order sufficient optimality condition. In order to prove
the superlinear convergence, we use techniques similar to [17] where the regularized Newton method
with Armijo’s step size rule is shown to have a superlinear rate of convergence under the local error
bound condition.

First, we make the following assumptions.

Assumption 2.

(a) 0 < δ < 1.

(b) There exists a local optimal solution x∗ of the problem (1.1).

(c) ∇2f is local Lipschitz continuous, i.e., there exist constants b1 ∈ (0, 1) and L̄H > 0 such that

‖∇2f(x) −∇2f(y)‖ ≤ L̄H‖x − y‖, ∀x, y ∈ B(x∗, b1).

(d) ‖∇f(x)‖ provides a local error bound for the problem (1.1) on B(x∗, b1), i.e., there exists a constant
κ1 > 0 such that

κ1dist(x,X∗) ≤ ‖∇f(x)‖, ∀x ∈ B(x∗, b1),

where X∗ is the local optimal solution set of (1.1).

Note that under Assumption 2 (c), the following inequality holds.

‖∇2f(y)(x − y) − (∇f(x) −∇f(y))‖ ≤ 1
2
L̄H‖x − y‖2, ∀x, y ∈ B(x∗, b1). (4.1)

Moreover, since f is twice continuously differentiable, there exists a positive constant L̄g such that

‖∇f(x) −∇f(y)‖ ≤ L̄g‖x − y‖, ∀x, y ∈ B(x∗, b1). (4.2)

In what follows, x̄k denotes an arbitrary vector such that

‖xk − x̄k‖ = dist(xk, X∗), x̄k ∈ X∗.

First, we show that ‖dk(ν)‖ = O(dist(xk, X∗)).

9

Lemma 4.1. Suppose that Assumption 2 holds. If xk ∈ B(x∗, b1/2), then

‖dk(ν)‖ ≤ κ2dist(xk, X∗), ∀ν ∈ [νmin,∞),

where

κ2 :=
L̄H

2νminκδ
1

+ max
(

1,
1

c − 1

)
.

Proof. First note that ∇f(x̄k) = 0. From the definition (2.2) of dk(ν) we have

‖dk(ν)‖
=

∥∥(Hk + cΛkI + ν‖gk‖δI)−1gk

∥∥
=

∥∥∥(Hk + cΛkI + ν‖gk‖δI)−1
(
gk −∇f(x̄k) − Hk(xk − x̄k) + Hk(xk − x̄k)

)∥∥∥
≤

∥∥∥(Hk + cΛkI + ν‖gk‖δI)−1
(
gk −∇f(x̄k) − Hk(xk − x̄k)

)∥∥∥ +
∥∥(Hk + cΛkI + ν‖gk‖δI)−1Hk(xk − x̄k)

∥∥
≤

∥∥(Hk + cΛkI + ν‖gk‖δI)−1
∥∥ ‖gk −∇f(x̄k) − Hk(xk − x̄k)‖ +

∥∥(Hk + cΛkI + ν‖gk‖δI)−1Hk

∥∥ ‖xk − x̄k‖

≤ L̄H

2
‖xk − x̄k‖2

∥∥(Hk + cΛkI + ν‖gk‖δI)−1
∥∥ + ‖xk − x̄k‖

∥∥(Hk + cΛkI + ν‖gk‖δI)−1Hk

∥∥
=

L̄H

2
dist(xk, X∗)2

∥∥(Hk + cΛkI + ν‖gk‖δI)−1
∥∥ + dist(xk, X∗)

∥∥(Hk + cΛkI + ν‖gk‖δI)−1Hk

∥∥ ,

(4.3)

where the last inequality follows from (4.1). First, we consider ‖(Hk + cΛkI + ν‖gk‖δI)−1‖. Since
xk ∈ B(x∗, b1/2), we have x̄k ∈ B(x∗, b1). It follows from Hk + cΛk º 0, ν ≥ νmin and Assumption 2
(d) that ∥∥(Hk + cΛkI + ν‖gk‖δI)−1

∥∥ = λmax

(
(Hk + cΛkI + ν‖gk‖δI)−1

)
=

1
λmin(Hk + cΛkI + ν‖gk‖δI)

≤ 1
ν‖gk‖δ

≤ 1
νminκδ

1dist(xk, X∗)δ
. (4.4)

Next, we consider ‖(Hk + cΛkI + ν‖gk‖δI)−1Hk‖. Let λ
(i)
k be the i-th largest eigenvalue of Hk. Then,

the eigenvalues of (Hk + cΛkI + ν‖gk‖δI)−1Hk are given by

λ
(i)
k

λ
(i)
k + cΛk + ν‖gk‖δ

, 1 ≤ i ≤ n.

Now we consider two cases: (a) λ
(i)
k ≥ 0 and (b) λ

(i)
k < 0.

Case (a): This case implies that ∣∣∣λ(i)
k

∣∣∣∣∣∣λ(i)
k + cΛk + ν‖gk‖δ

∣∣∣ ≤ 1.

Case (b): In this case, since −Λk = λmin(Hk) ≤ λ
(i)
k < 0, we have λ

(i)
k − λmin(Hk) ≥ 0 and |λ(i)

k | ≤

10

|λmin(Hk)|. Therefore, we have∣∣∣λ(i)
k

∣∣∣∣∣∣λ(i)
k + cΛk + ν‖gk‖δ

∣∣∣ =

∣∣∣λ(i)
k

∣∣∣∣∣∣(λ(i)
k − λmin(Hk)) − (c − 1)λmin(Hk) + ν‖gk‖δ

∣∣∣
≤ |λmin(Hk)|

λ
(i)
k − λmin(Hk) + (c − 1) |λmin(Hk)| + ν‖gk‖δ

≤ 1
c − 1

.

Thus we have ∣∣∣λ(i)
k

∣∣∣∣∣∣λ(i)
k + cΛk + ν‖gk‖δ

∣∣∣ ≤ max
(

1,
1

c − 1

)
, 1 ≤ i ≤ n,

and hence ∥∥(Hk + cΛkI + ν‖gk‖δI)−1Hk

∥∥ ≤ max
(

1,
1

c − 1

)
. (4.5)

From (4.3) – (4.5), we have

‖dk(ν)‖ ≤ L̄H

2νminκδ
1

dist(xk, X∗)2−δ + max
(

1,
1

c − 1

)
dist(xk, X∗)

≤
(

L̄H

2νminκδ
1

+ max
(

1,
1

c − 1

))
dist(xk, X∗),

which is the desired inequality.

From the above lemma, we can show that the next iteration point xk+1 = xk + dk(ν) ∈ B(x∗, b1) if
xk is sufficiently close to x∗.

Lemma 4.2. Suppose that Assumption 2 holds. Let b2 := b1/(κ2 + 1). If xk ∈ B(x∗, b2), then

xk + dk(ν) ∈ B(x∗, b1), ∀ν ∈ [νmin,∞).

Proof. Since b2 ≤ b1/2, we have xk ∈ B(x∗, b1/2). Therefore, we obtain

‖xk + dk(ν) − x∗‖ ≤ ‖xk − x∗‖ + ‖dk(ν)‖
≤ ‖xk − x∗‖ + κ2dist(xk, X∗)
≤ ‖xk − x∗‖ + κ2‖xk − x∗‖
≤ (κ2 + 1)b2 = b1,

where the second inequality follows from Lemma 4.1.

From Lemma 4.2 and the convexity of the set B(x∗, b1), we have

xk + sdk(ν) ∈ B(x∗, b1), ∀s ∈ [0, 1], ∀ν ∈ [νmin,∞)

if xk ∈ B(x∗, b2). It then follows from Assumption 2 (c) that

‖∇2f(xk + sdk(ν)) − Hk‖ ≤ L̄H‖dk(ν)‖, ∀s ∈ [0, 1], ∀ν ∈ [νmin,∞). (4.6)

Now, we show that l∗k = 1 and ν∗
k ≤ ν∗

k−1 if xk is sufficiently close to x∗.

11

Lemma 4.3. Suppose that Assumption 2 holds. Let

b3 := min

(
b2,

(
νminκδ

1

κ2L̄H

) 1
1−δ

)
.

If xk ∈ B(x∗, b3), then l∗k = 1 and ν∗
k ≤ ν∗

k−1. In particular, if x0, x1, . . . , xk ∈ B(x∗, b3), then ν∗
k ≤ ν0.

Proof. Since cΛk ≥ 0, we have from (3.5) that

f(xk + dk(ν)) − mk(dk(ν), ν) ≤ 1
2
dk(ν)T (∇2f(xk + τ(ν)dk(ν)) − Hk − ν‖gk‖δI)dk(ν)

≤ 1
2
(‖∇2f(xk + τ(ν)dk(ν)) − Hk‖ − ν‖gk‖δ)‖dk(ν)‖2 (4.7)

≤ 1
2
(L̄H‖dk(ν)‖ − ν‖gk‖δ)‖dk(ν)‖2

≤ 1
2

(
L̄H‖dk(ν)‖

‖gk‖δ
− ν

)
‖gk‖δ‖dk(ν)‖2.

where the third inequality follows from (4.6). It then follows from Assumption 2 (d), Lemma 4.1 and
ν ≥ νmin that

f(xk + dk(ν)) − mk(dk(ν), ν) ≤ 1
2

(
L̄Hκ2

κδ
1

dist(xk, X∗)1−δ − ν

)
‖gk‖δ‖dk(ν)‖2

≤ 1
2

(
L̄Hκ2

κδ
1

‖xk − x∗‖1−δ − νmin

)
‖gk‖δ‖dk(ν)‖2

≤ 0,

where the second inequality follows from ν ≥ νmin, and the last inequality follows from xk ∈ B(x∗, b3).
Therefore, we have ρ(dk(ν), ν) ≥ 1, and hence l∗k = 1 and ν∗

k ≤ ν∗
k−1. The second part of the Lemma

directly follows from the updating rule of ν.

Next, we show that dist(xk, X∗) converges to 0 superlinearly, as long as {xk} lies in a neighborhood
of x∗.

Lemma 4.4. Suppose that Assumption 2 holds. If x0, x1, . . . , xk, xk+1 ∈ B(x∗, b3), then

dist(xk+1, X
∗) = O

(
dist(xk, X∗)1+δ

)
.

Therefore, there exists a positive constant b4 such that

dist(xk, X∗) ≤ b4 ⇒ dist(xk+1, X
∗) ≤ 1

2
dist(xk, X∗).

Proof. We have from Assumption 2 (d) that

dist(xk+1, X
∗) ≤ 1

κ1
‖gk+1‖

≤ 1
κ1

‖Hkd∗
k + gk‖ +

L̄H

2κ1
‖d∗

k‖2

=
1
κ1

∥∥cΛkd∗k + ν∗
k‖gk‖δd∗

k

∥∥ +
L̄H

2κ1
‖d∗k‖2

≤ cΛk

κ1
‖d∗

k‖ +
ν∗

k

κ1
‖gk‖δ‖d∗k‖ +

L̄H

2κ1
‖d∗k‖2

≤ cΛk

κ1
‖d∗

k‖ +
ν0

κ1
‖gk‖δ‖d∗k‖ +

L̄H

2κ1
‖d∗k‖2, (4.8)

12

where the second inequality follows from (4.1), the first equality follows from the definition (2.6) of d∗k,
and the last inequality follows from Lemma 4.3. From (4.2), we have

‖gk‖δ = ‖gk −∇f(x̄k)‖δ ≤ L̄δ
gdist(xk, X∗)δ. (4.9)

Moreover, from [17, Lemma 5.2], we have

Λk ≤ L̄Hdist(xk, X∗). (4.10)

Therefore, we obtain from (4.8) – (4.10) and Lemma 4.1 that

dist(xk+1, X
∗) ≤ cκ2L̄H

κ1
dist(xk, X∗)2 +

ν0κ2L̄
δ
g

κ1
dist(xk, X∗)1+δ +

κ2
2L̄H

2κ1
dist(xk, X∗)2

≤
κ2(2cL̄H + 2ν0L̄

δ
g + κ2L̄H)

2κ1
dist(xk, X∗)1+δ.

Lemma 4.4 shows that {dist(xk, X∗)} converges to 0 superlinearly if xk ∈ B(x∗, b3) for all k. Now
we give a sufficient condition for xk ∈ B(x∗, b3) for all k.

Lemma 4.5. Suppose that Assumption 2 holds. Let b5 := min(b3, b4) and b6 := 1
1+2κ2

b5. If x0 ∈
B(x∗, b6), then xk ∈ B(x∗, b5) for all k.

Proof. In a way similar to the proof of [17, Lemma 5.7], we can show this lemma.

By using Lemmas 4.4 and 4.5, we give the rate of convergence.

Theorem 4.1. Suppose that Assumption 2 holds. Let {xk} be a sequence generated by the proposed
algorithm with x0 ∈ B(x∗, b6). Then, {dist(xk, X∗)} converges to 0 at the rate of 1+ δ. Moreover, {xk}
converges to a local optimal solution x̂ ∈ B(x∗, b5).

Proof. In a way similar to the proof of [17, Theorem 5.1], we can show this theorem.

Remark 4.1. Note that in a way similar to the proof of [9, Theorem 3.2], we can prove that {xk}
converges to x̂ at the rate of 1 + δ.

Remark 4.2. We get a rapid convergence if we take a larger δ. However, we cannot guarantee the
quadratic convergence since δ must be less than 1. Note that when the second-order sufficient condition
holds at x∗, we can prove that the proposed algorithm with δ = 1 has quadratic convergence.

5 Global complexity bound

In this section, we estimate the global complexity bound of the proposed algorithm. We consider three
cases (a) f is nonconvex, (b) f is convex and (c) f is strongly convex.

5.1 Nonconvex case

In this subsection, we consider the case where f is nonconvex. Throughout this subsection, we need the
following assumptions in addition to Assumption 1.

Assumption 3.

(a) δ ≤ 1/2.

(b) Let b7 := U1−δ
g /νmin. ∇2f is Lipschitz continuous on Ω + B(0, b7), i.e., there exists LH > 0 such

that

‖∇2f(x) −∇2f(y)‖ ≤ LH‖x − y‖, ∀x, y ∈ Ω + B(0, b7).

13

Under Assumption 1, the inequality (3.2) holds. Moreover, there exists fmin such that

f(xk) ≥ fmin, ∀k ≥ 0. (5.1)

From Assumptions 1 and 3 (a), the inequality (3.3) holds. Therefore, we have

xk + sdk(ν) ∈ Ω + B(0, b7), ∀s ∈ [0, 1], ∀ν ∈ [0,∞), ∀k ≥ 0. (5.2)

It then follows from Assumption 3 (b) that

‖∇2f(xk + sdk(ν)) − Hk‖ ≤ LH‖dk(ν)‖, ∀s ∈ [0, 1], ∀ν ∈ [0,∞), ∀k ≥ 0. (5.3)

Moreover, since Ω + B(0, b7) is compact and f is twice continuously differentiable, there exists UH > 0
such that

‖∇2f(x)‖ ≤ UH , ∀x ∈ Ω + B(0, b7). (5.4)

The next lemma indicates that the parameter ν∗
k is bounded above by some positive constant inde-

pendent of k.

Lemma 5.1. Suppose that Assumptions 1 and 3 hold. Then,

ν∗
k ≤ νmax,

where

νmax := max
(

ν0, γ2

√
LHU1−2δ

g

)
.

Proof. From the inequalities (4.7) of Lemma 4.3 and (5.3), we have

f(xk + dk(ν)) − mk(dk(ν), ν) ≤ 1
2
(LH‖dk(ν)‖ − ν‖gk‖δ)‖dk(ν)‖2 (5.5)

≤ 1
2

(
LH‖gk‖1−δ

ν
− ν‖gk‖δ

)
‖dk(ν)‖2

≤ 1
2ν

(
LHU1−2δ

g − ν2
)
‖gk‖δ‖dk(ν)‖2,

where the first inequality follows from (5.3), the second inequality follows from Lemma 3.1, and the last

inequality follows from (3.2). Now we suppose that ν ≥
√

LHU1−2δ
g . Then, we have

f(xk + dk(ν)) ≤ mk(dk(ν), ν),

and hence

ρk(dk(ν), ν) =
f(xk) − f(xk + dk(ν))
f(xk) − mk(dk(ν), ν)

≥ 1.

Therefore, from the updating rule of ν̄lk , ν∗
k must satisfy

ν∗
k ≤ max

(
ν∗

k−1,

(√
LHU1−2δ

g

)
γ2

)
≤ · · · ≤ max

(
ν0,

(√
LHU1−2δ

g

)
γ2

)
.

This completes the proof.

From the above lemma, we show that the number l∗k of inner iterations at the k-th iteration is
bounded above by some positive constant independent of k.

14

Theorem 5.1. Suppose that Assumptions 1 and 3 hold. Then, for all k,

l∗k ≤ lmax,

where

lmax :=
⌈
logγ1

(
νmax

νmin

)
+ 1

⌉
.

Proof. We have from Lemma 5.1 that νmin ≤ ν̄lk ≤ νmax. From the updating rule of ν, we have
ν̄lk+1 ≥ γ1ν̄lk , and hence we obtain the desired inequality.

Next, we give a lower bound of the reduction of the model function.

Lemma 5.2. Suppose that Assumptions 1 and 3 hold. Then,

f(xk) − m∗
k ≥ p1‖gk‖2,

where

p1 :=
1

2((1 + c)UH + νmaxUδ
g)

.

Proof. It directly follows from (5.4), Lemma 5.1 and the inequality (3.7) of Lemma 3.4.

By using this lemma, we give a lower bound of the reduction f(xk) − f(xk+1).

Lemma 5.3. Suppose that Assumptions 1 and 3 hold. Then,

f(xk) − f(xk+1) ≥ η1p1‖gk‖2.

Proof. In a way similar to the proof of Lemma 3.5, we obtain the desired inequality.

Now, we obtain the following global complexity bound Jg.

Theorem 5.2. Suppose that Assumptions 1 and 3 hold. Let {xk} be a sequence generated by the
proposed algorithm. Let Jg be the first iteration such that ‖gJg‖ ≤ ε. Then,

Jg ≤ f(x0) − fmin

η1p1
ε−2.

Proof. It follows from Lemma 5.3 that

f(x0) − fmin ≥ f(x0) − f(xk) ≥
k−1∑
j=0

(f(xj) − f(xj+1)) ≥ η1p1

k−1∑
j=0

‖gj‖2 ≥ kη1p1

(
min

0≤j≤k−1
‖gj‖

)2

.

Then, we have

min
0≤j≤k−1

‖gj‖ ≤
(

f(x0) − fmin

kη1p1

) 1
2

,

and hence

k ≥ f(x0) − fmin

η1p1
ε−2

implies min0≤j≤k−1 ‖gj‖ ≤ ε. This completes the proof.

The above global complexity bound is same as that of the steepest descent method. On the other
hand, it can be reduced under the following additional assumption on the minimum eigenvalue of Hk.

15

Assumption 4. There exist positive constants δ̄ and κ3 such that

Λk ≤ κ3‖gk‖δ̄, ∀k ≥ 0.

Before we show the reduced complexity bound, we give sufficient conditions for Assumption 4.

Proposition 5.1.

(a) Suppose that f is convex. Then, Assumption 4 holds for any δ̄ and κ3.

(b) Suppose that Assumption 3 holds. Suppose also that f is analytic and ∇2f(x) º 0 for any x such
that ∇f(x) = 0. Then, Assumption 4 holds.

Proof. The statement (a) directly follows from the fact that Λk = 0,∀k ≥ 0 when f is convex.
Next, we show (b). Let X1 := {x ∈ Rn | ‖∇f(x)‖ = 0} and X2 := {x ∈ Rn | ‖∇f(x)‖ = 0, ∇2f(x) º

0}. In a way similar to the proof of [17, Lemma 5.2], we can show that there exists c1 > 0 such that

Λk ≤ c1dist(xk, X2),

when Assumption 3 holds. Moreover, it is shown in [15] that there exist c2 > 0 and δ̄ > 0 such that

dist(x,X1) ≤ c2‖∇f(x)‖δ̄, ∀x ∈ Ω,

when f is analytic. It then follows from X1 = X2 that

Λk ≤ c1c2‖gk‖δ̄,

and hence Assumption 4 holds.

Remark 5.1. If f is quasi-convex, then ∇2f(x) º 0 for any x such that ∇f(x) = 0 [5]. Thus, an
analytic quasi-convex function satisfies the assumptions of Proposition 5.1 (b).

Now we show that the global complexity bound Jg is reduced to O(ε−
2+δ
1+δ) under Assumption 4. To

this end, we need the following assumption on δ.

Assumption 5. δ ≤ δ̄.

First, we give the relationship between ‖d∗k‖ and ‖gk‖.

Lemma 5.4. Suppose that Assumptions 1 and 3 hold. Then,

‖d∗
k‖ ≥ 1

(1 + c)UH + νmaxUδ
g

‖gk‖.

Proof. From the definition (2.6) of d∗k, we have

gk = (Hk + cΛkI + ν∗
k‖gk‖δI)d∗k. (5.6)

It then follows from (3.2), (5.4) and Lemma 5.1 that

‖gk‖ = ‖(Hk + cΛkI + ν∗
k‖gk‖δI)d∗k‖

≤ ‖Hk + cΛkI + ν∗
k‖gk‖δI‖ · ‖d∗k‖

≤ (UH + cUH + νmaxU
δ
g)‖d∗k‖.

This completes the proof.

Next, we show the following key lemma for the desired global complexity bound Jg.

16

Lemma 5.5. Suppose that Assumptions 1, 3, 4 and 5 hold. Then,

‖gk+1‖ ≤ κ4 max
(
‖gk‖δ‖d∗k‖, ‖d∗

k‖2
)
,

where

κ4 := cκ3U
δ̄−δ
g + νmax +

1
2
LH .

Proof. From (5.2) and Assumption 3 (b), we have

‖Hkd∗
k − (gk+1 − gk)‖ ≤ LH

2
‖d∗

k‖2,

and hence

‖gk+1‖ ≤ ‖Hkd∗
k + gk‖ +

LH

2
‖d∗k‖2. (5.7)

Moreover, we have from the definition (2.6) of d∗
k that

Hkd∗
k + gk = −cΛkd∗

k − ν∗
k‖gk‖δd∗

k.

It then follows from (5.7) that

‖gk+1‖ ≤ ‖Hkd∗k + gk‖ +
LH

2
‖d∗

k‖2

≤ cΛk‖d∗k‖ + ν∗
k‖gk‖δ‖d∗k‖ +

LH

2
‖d∗

k‖2

≤ cκ3‖gk‖δ̄‖d∗
k‖ + νmax‖gk‖δ‖d∗k‖ +

LH

2
‖d∗

k‖2

= cκ3‖gk‖δ̄−δ‖gk‖δ‖d∗
k‖ + νmax‖gk‖δ‖d∗k‖ +

LH

2
‖d∗

k‖2

≤ cκ3U
δ̄−δ
g ‖gk‖δ‖d∗

k‖ + νmax‖gk‖δ‖d∗
k‖ +

LH

2
‖d∗

k‖2

≤
(

cκ3U
δ̄−δ
g + νmax +

LH

2

)
max

(
‖gk‖δ‖d∗

k‖, ‖d∗
k‖2

)
,

where the third inequality follows from Assumption 4 and Lemma 5.1, and the fourth inequality follows
from (3.2).

By using Lemmas 5.4 and 5.5, we give a lower bound of the reduction of the model function.

Lemma 5.6. Suppose that Assumptions 1, 3, 4 and 5 hold. Then,

f(xk) − m∗
k ≥ p2‖gk+1‖

2+δ̄
1+δ̄ ,

where

p2 := min

νmin

2κ2
4

,
νmin

2κ4((1 + c)UH + νmaxUδ
g)

,
ν

1
1−δ

min

2κ
2−δ

2(1−δ)
4 U

2−3δ−δ2
2(1+δ)(1−δ)
g

 .

Proof. We have from the equality (5.6) of Lemma 5.4 and Hk + cΛkI º 0 that

f(xk) − m∗
k(d∗k) = −gT

k d∗
k − 1

2
d∗

k
T (Hk + cΛkI + ν∗

k‖gk‖δI)d∗k

=
1
2
d∗

k
T (Hk + cΛkI + ν∗

k‖gk‖δI)d∗k (5.8)

≥ 1
2
ν∗

k‖gk‖δ‖d∗k‖2

≥ 1
2
νmin‖gk‖δ‖d∗

k‖2. (5.9)

In what follows, we consider two cases: (i) ‖d∗
k‖2 ≤ ‖gk‖δ‖d∗

k‖ and (ii) ‖d∗
k‖2 ≥ ‖gk‖δ‖d∗

k‖.

17

Case (i): In this case, we have from Lemma 5.5 that

‖gk+1‖ ≤ κ4‖gk‖δ‖d∗
k‖, (5.10)

and hence

‖d∗
k‖ ≥ 1

κ4
‖gk‖−δ‖gk+1‖.

It then follows from (5.9) that

f(xk) − m∗
k ≥ 1

2
νmin‖gk‖δ

(
1
κ4

‖gk‖−δ‖gk+1‖
)2

=
νmin

2κ2
4

‖gk‖−δ‖gk+1‖2, (5.11)

where the last inequality follows from Lemma 5.1.

On the other hand, we have from (5.9), (5.10) and Lemma 5.4 that

f(xk) − m∗
k ≥ νmin

2κ4
‖d∗k‖ · ‖gk+1‖

≥ νmin

2κ4((1 + c)UH + νmaxUδ
g)

‖gk‖ · ‖gk+1‖. (5.12)

Now we consider two cases: (a) ‖gk+1‖ ≥ ‖gk‖α and (b) ‖gk+1‖ ≤ ‖gk‖α, where α is an
arbitrary positive constant.

Case (a): This case implies that

‖gk‖−δ ≥ ‖gk+1‖−
δ
α .

It then follows from (5.11) that

f(xk) − m∗
k ≥ νmin

2κ2
4

‖gk+1‖2− δ
α . (5.13)

Case (b): In this case, we have

‖gk‖ ≥ ‖gk+1‖
1
α .

It then follows from (5.12) that

f(xk) − m∗
k ≥ νmin

2κ4((1 + c)UH + νmaxUδ
g)

‖gk+1‖1+ 1
α . (5.14)

Since α is an arbitrary positive constant, we choose α := 1 + δ, which minimizes max(2−
δ
α , 1 + 1

α). Then, we have

2 − δ

α
= 1 +

1
α

=
2 + δ

1 + δ
.

It then follows from (5.13) and (5.14) that

f(xk) − m∗
k ≥ min

(
νmin

2κ2
4

,
νmin

2κ4((1 + c)UH + νmaxUδ
g)

)
‖gk+1‖

2+δ
1+δ . (5.15)

18

Case (ii): In this case, we have from Lemma 5.5 that

‖gk+1‖ ≤ κ4‖d∗
k‖2. (5.16)

It then follows from Lemma 3.1 that

‖gk+1‖ ≤ κ4‖d∗k‖2 ≤ κ4

(ν∗
k)2

‖gk‖2(1−δ) ≤ κ4

ν2
min

‖gk‖2(1−δ).

Thus we have

‖gk‖δ ≥
(

ν2
min

κ4
‖gk+1‖

) δ
2(1−δ)

. (5.17)

From (5.9), (5.16) and (5.17), we have

f(xk) − m∗
k ≥ νmin

2κ4

(
ν2
min

κ4

) δ
2(1−δ)

‖gk+1‖1+ δ
2(1−δ)

=
ν

1
1−δ

min

2κ
2−δ

2(1−δ)
4

‖gk+1‖
2+δ
1+δ −

2−3δ−δ2

2(1+δ)(1−δ) .

Since δ ∈ (0, 1
2], we have

2 − 3δ − δ2

2(1 + δ)(1 − δ)
≥ 0.

Moreover, from (3.2), we have

‖gk+1‖ ≤ Ug.

Thus we obtain

f(xk) − m∗
k ≥ ν

1
1−δ

min

2κ
2−δ

2(1−δ)
4 U

2−3δ−δ2
2(1+δ)(1−δ)
g

‖gk+1‖
2+δ
1+δ . (5.18)

Therefore, we obtain from (5.15) and (5.18) that

f(xk) − m∗
k ≥ min

νmin

2κ2
4

,
νmin

2κ4((1 + c)UH + νmaxUδ
g)

,
ν

1
1−δ

min

2κ
2−δ

2(1−δ)
4 U

2−3δ−δ2
2(1+δ)(1−δ)
g

 ‖gk+1‖
2+δ
1+δ .

This completes the proof.

By using the above lemma, we give a lower bound of the reduction f(xk) − f(xk+1).

Lemma 5.7. Suppose that Assumptions 1, 3, 4 and 5 hold. Then,

f(xk) − f(xk+1) ≥ η1p2‖gk+1‖
2+δ
1+δ .

Proof. In a way similar to the proof of Lemma 3.5, we obtain the desired inequality.

Finally, by using this lemma, we obtain the desired global complexity bound Jg.

Theorem 5.3. Suppose that Assumptions 1, 3, 4 and 5 hold. Let {xk} be a sequence generated by the
proposed algorithm. Let Jg be the first iteration such that ‖gJg‖ ≤ ε. Then,

Jg ≤ f(x0) − fmin

η1p2
ε−

2+δ
1+δ + 1.

Proof. It directly follows from the proof of Theorem 5.2.

Remark 5.2. Under Assumption 4, the global complexity bound O(ε−
2+δ
1+δ) of the proposed algorithm is

better than O(ε−2) of the steepest descent method.

19

5.2 Convex case

In this subsection, we consider the case where f is convex. We need the following assumptions instead
of Assumption 3.

Assumption 6.

(a) δ ≤ 1/2.

(b) ∇2f is Lipschitz continuous on Ω + B(0, b7) with modulus LH .

(c) f is convex.

From Proposition 5.1 (a), Assumption 4 holds for any δ̄. Moreover, under Assumptions 1 and 6,
Lemma 5.1, Theorems 5.1 and 5.3 hold. Thus we can directly get the following global complexity bound
Jg.

Theorem 5.4. Suppose that Assumptions 1 and 6 hold. Let {xk} be a sequence generated by the
proposed algorithm. Let Jg be the first iteration such that ‖gJg‖ ≤ ε. Then,

Jg ≤ f(x0) − fmin

η1p2
ε−

2+δ
1+δ + 1.

In particular, if δ = 1/2, then

Jg ≤ f(x0) − fmin

η1p2
ε−

5
3 + 1.

In what follows, we discuss the global complexity bound Jf . From Assumption 1 and Theorem 3.1,
there exists a solution x∗ of (1.1). Moreover, there exists Ux > 0 such that

‖xk − x∗‖ ≤ Ux, ∀k ≥ 0. (5.19)

First, we give the following technical lemma.

Lemma 5.8. Let β, γ and u be positive parameters such that 0 < β ≤ 1, γ ≥ 0 and u > 0. Then,

(1 + γα)β ≥ 1 +
(1 + γu)β − 1

u
α, ∀α ∈ [0, u]. (5.20)

Proof. Let h(t) := (1 + γt)β . Since 0 < β ≤ 1 and γ ≥ 0, we have

d2

dt2
h(t) = − β(1 − β)γ2

(1 + γt)2−β
≤ 0, ∀t ∈ [0,∞)

Therefore, h(t) is concave on [0, u]. Let α ∈ [0, u]. Then, α/u ∈ [0, 1]. It then follows from the concavity
of h that

h(α) = h
(α

u
u +

(
1 − α

u

)
0
)

≥ α

u
h(u) +

(
1 − α

u

)
h(0)

= 1 +
(1 + γu)β − 1

u
α,

which is the desired inequality.

By using Lemma 5.8, we obtain the global complexity bound Jf . Note that the proof technique is
similar to [13, Theorem 6] where the global complexity bound Jf of the cubic regularization of Newton’s
method is given.

20

Theorem 5.5. Suppose that Assumptions 1 and 6 hold. Let {xk} be a sequence generated by the
proposed algorithm. Let Jf be the first iteration such that f(xJf

) − f(x∗) ≤ ε. Then,

Jf = O
(
ε−

1
1+δ

)
.

In particular, if δ = 1/2, then

Jf = O
(
ε−

2
3

)
.

Proof. Since f is convex, we have from (5.19) that

f(xk+1) − f(x∗) ≤ gT
k+1(xk+1 − x∗) ≤ Ux‖gk+1‖.

It then follows from Lemma 5.7 that

f(xk) − f(xk+1) ≥
η1p2

U
2+δ
1+δ
x

(f(xk+1) − f(x∗))
2+δ
1+δ .

Denoting αk := f(xk) − f(x∗), β := 1/(1 + δ) and γ := η1p2/U
2+δ
1+δ
x , we obtain

αk ≥ αk+1 + γα1+β
k+1 .

Then, we have

1

αβ
k+1

− 1

αβ
k

≥ 1

αβ
k+1

− 1

(αk+1 + γα1+β
k+1)β

=
αβ

k+1(1 + γαβ
k+1)

β − αβ
k+1

α2β
k+1(1 + γαβ

k+1)β

=
(1 + γαβ

k+1)
β − 1

αβ
k+1(1 + γαβ

k+1)β
. (5.21)

Since αβ
k+1 ≤ αβ

0 and β ≤ 1, substituting u := αβ
0 and α := αβ

k+1 into (5.20) of Lemma 5.8 yields

1 +
(1 + γαβ

0)β − 1

αβ
0

αβ
k+1 ≤ (1 + γαβ

k+1)
β ≤ (1 + γαβ

0)β .

It then follows from (5.21) that

1

αβ
k+1

≥ 1

αβ
k

+
(1 + γαβ

0)β − 1

αβ
0 (1 + γαβ

0)β

≥ 1

αβ
0

+
(1 + γαβ

0)β − 1

αβ
0 (1 + γαβ

0)β
(k + 1)

=
(1 + γαβ

0)β +
(
(1 + γαβ

0)β − 1
)

(k + 1)

αβ
0 (1 + γαβ

0)β
,

and hence

αk ≤

 αβ
0 (1 + γαβ

0)β

(1 + γαβ
0)β +

(
(1 + γαβ

0)β − 1
)

k

 1
β

.

Therefore, f(xk) − f(x∗) = αk ≤ ε, provided that

k ≥ αβ
0 (1 + γαβ

0)βε−β − (1 + γαβ
0)β

(1 + γαβ
0)β − 1

.

This completes the proof.

21

Remark 5.3. The global complexity bounds Jg = O(ε−
2+δ
1+δ) and Jf = O(ε−

1
1+δ) become better as we

take a larger δ. However, we need δ ≤ 1/2 for Lemma 5.1 and Theorem 5.1. Thus, the upper bounds of
Jg and Jf are O(ε−

5
3) and O(ε−

2
3), respectively.

5.3 Strongly convex case

In this subsection, we show that the global complexity bound of the proposed algorithm is Jg = O(ε−
2

1+δ)
when f is strongly convex. Moreover, we show that a sequence {f(xk)−f(x∗)} globally linearly converges
to 0 as well as the steepest descent method [11] and the cubic regularization of Newton’s method [13].

From Remarks 4.2 and 5.3, we expect that the proposed algorithm behaves well as we take a larger
δ. Therefore, it is worth considering the case where δ > 1/2. When δ > 1/2, Lemma 5.1 and Theorem
5.1 do not always hold. However, when f is strongly convex, we can relax the assumption δ ≤ 1/2 to
δ ≤ 1, and prove properties similar to Lemma 5.1 and Theorem 5.1.

Now, we formally state assumptions used in this subsection.

Assumption 7.

(a) δ ≤ 1.

(b) ∇2f is Lipschitz continuous on Ω + B(0, b7) with modulus LH .

(c) f is strongly convex with modulus σ > 0.

Under Assumption 7 (c), λmin(∇2f(x)) ≥ σ for all x ∈ Rn and Λk = 0 for all k ≥ 0.
First, we give an upper bound of ‖dk(ν)‖.

Lemma 5.9. Suppose that ‖gk‖ 6= 0. Suppose also that Assumption 7 holds. Then,

‖dk(ν)‖ ≤ 1
σ
‖gk‖, ∀ν ∈ [νmin,∞).

Proof. It directly follows from the inequality (3.1) of Lemma 3.1 and λmin(Hk+cΛkI+ν‖gk‖δI) ≥ σ.

From the above lemma, we show that the regularized parameter ν∗
k is bounded above by some positive

constant independent of k.

Lemma 5.10. Suppose that Assumptions 1 and 7 hold. Then,

ν ≤ ν̂max,

where

ν̂max := max

(
ν0,

γ2LHU1−δ
g

σ

)
.

Proof. We have from (5.5) of Lemma 5.1 that

f(xk + dk(ν)) − mk(dk(ν), ν) ≤ 1
2
(LH‖dk(ν)‖ − ν‖gk‖δ)‖dk(ν)‖2

≤ 1
2

(
LH‖gk‖

σ
− ν‖gk‖δ

)
‖dk(ν)‖2

≤ 1
2

(
LHU1−δ

g

σ
− ν

)
‖gk‖δ‖dk(ν)‖2,

where the second inequality follows from Lemma 5.9, and the third inequality follows from (3.2). Now
we suppose that ν ≥ LHU1−δ

g /σ. Then, we have

f(xk + dk(ν)) ≤ mk(dk(ν), ν),

22

and hence

ρk(dk(ν), ν) =
f(xk) − f(xk + dk(ν))
f(xk) − mk(dk(ν), ν)

≥ 1.

Therefore, from the updating rule of ν̄lk , ν∗
k must satisfy

ν∗
k ≤ max

(
ν∗

k−1,

(
LHU1−δ

g

σ

)
γ2

)
≤ · · · ≤ max

(
ν0,

(
LHU1−δ

g

σ

)
γ2

)
.

This completes the proof.

From the above lemma, we show that the number of inner iteration l∗k at k-th iteration is bounded
above by some positive constant independent of k.

Theorem 5.6. Suppose that Assumptions 1 and 7 hold. Then,

lk ≤ l̂max,

where

l̂max :=
⌈
logγ1

(
ν̂max

νmin

)
+ 1

⌉
.

Proof. In a way similar to the proof of Theorem 5.1, we obtain the desired inequality.

By using Lemmas 5.4 and 5.5, we give a lower bound of the reduction of the model function.

Lemma 5.11. Suppose that Assumptions 1 and 7 hold. Then,

f(xk) − m∗
k ≥ p3‖gk+1‖

2
1+δ ,

where

p3 := min

 σ

2((1 + c)UH + ν̂maxUδ
g)2

(
σ

κ4

) 2
1+δ

,
σ

2κ4U
1−δ
1+δ

g

 .

Proof. We have from the equality (5.8) of Lemma 5.6 and λmin(Hk) ≥ σ that

f(xk) − m∗
k ≥ 1

2
σ‖d∗

k‖2. (5.22)

From Lemma 5.5, ‖gk+1‖ ≤ κ4 max(‖gk‖δ‖d∗
k‖, ‖d∗

k‖2) holds. Now we consider two cases: (i) ‖d∗
k‖2 ≤

‖gk‖δ‖d∗
k‖ and (ii) ‖d∗

k‖2 ≥ ‖gk‖δ‖d∗
k‖.

Case (i): In this case, we have from Lemma 5.5 that

‖gk+1‖ ≤ κ4‖gk‖δ‖d∗
k‖ ≤ κ4

σ
‖gk‖1+δ,

where the second inequality follows from Lemma 5.9, and the last inequality follows from
Lemma 5.10. Thus we have

‖gk‖ ≥
(

σ

κ4
‖gk+1‖

) 1
1+δ

.

From Lemma 5.4 and Lemma 5.10, we have

‖d∗k‖ ≥ 1
(1 + c)UH + ν̂maxUδ

g

‖gk‖.

It then follows from (5.22) that

f(xk) − m∗
k ≥ σ

2((1 + c)UH + ν̂maxUδ
g)2

‖gk‖2

≥ σ

2((1 + c)UH + ν̂maxUδ
g)2

(
σ

κ4

) 2
1+δ

‖gk+1‖
2

1+δ . (5.23)

23

Case (ii): In this case, we have from Lemma 5.5 that

‖gk+1‖ ≤ κ4‖d∗
k‖2.

It then follows from (5.22) that

f(xk) − m∗
k ≥ σ

2κ4
‖gk+1‖

≥ σ

2κ4
‖gk+1‖

2
1+δ −

1−δ
1+δ

≥ σ

2κ4U
1−δ
1+δ

g

‖gk+1‖
2

1+δ , (5.24)

where the last inequality follows from (3.2).

Therefore, we obtain from (5.23) and (5.24) that

f(xk) − m∗
k ≥ min

 σ

2((1 + c)UH + ν̂maxUδ
g)2

(
σ

κ4

) 2
1+δ

,
σ

2κ4U
1−δ
1+δ

g

 ‖gk+1‖2.

This completes the proof.

By using the above lemma, we give a lower bound of the reduction f(xk) − f(xk+1).

Lemma 5.12. Suppose that Assumptions 1 and 7 hold. Then,

f(xk) − f(xk+1) ≥ η1p3‖gk+1‖
2

1+δ

Proof. In a way similar to the proof of Lemma 3.5, we obtain the desired inequality.

Now, by using Lemma 5.12, we obtain the global complexity bound Jg in the case where f is strongly
convex.

Theorem 5.7. Suppose that Assumptions 1 and 7 hold. Let {xk} be a sequence generated by the
proposed algorithm. Let Jg be the first iteration such that ‖gJg‖ ≤ ε. Then,

Jg ≤ f(x0) − fmin

η1p3
ε−

2
1+δ + 1.

In particular, if δ = 1, then

Jg ≤ f(x0) − fmin

η1p3
ε−1 + 1.

Proof. It directly follows from the proof of Theorem 5.2.

By using a technique similar to [13, Theorem 7], we can show that {f(xk) − f(x∗)} converges to 0
linearly.

Theorem 5.8. Suppose that Assumptions 1 and 7 hold. Let {xk} be a sequence generated by the
proposed algorithm. Then, {f(xk) − f(x∗)} globally linearly converges to 0. Thus, the first iteration Jf

such that f(xJf
) − f(x∗) ≤ ε satisfies

Jf = O
(
log ε−1

)
.

Proof. Since f is strongly convex, we have

f(xk+1) − f(x∗) ≤ gT
k+1(xk+1 − x∗) ≤ ‖gk+1‖ · ‖xk+1 − x∗‖ ≤ 1

σ
‖gk+1‖2.

24

It then follows from Lemma 5.12 that

f(xk) − f(xk+1) ≥ η1p3σ
1

1+δ (f(xk+1) − f(x∗))
1

1+δ .

Denoting αk := f(xk) − f(x∗) and γ := η1p3σ
1

1+δ , we obtain

αk ≥ αk+1 + γα
1

1+δ

k+1.

Then, we have from αk+1 ≤ α0 that

αk+1 ≤ 1

1 + γα
− δ

1+δ

k

αk ≤ 1

1 + γα
− δ

1+δ

0

αk. (5.25)

Therefore, f(xk) − f(x∗) globally linearly converges to 0.
Next, we show the second part of the theorem. From (5.25), we have

αk ≤

 1

1 + γα
− δ

1+δ

0

k

α0,

and hence if

k ≥ 1

1 + γα
− δ

1+δ

0

log
α0

ε
,

then αk ≤ ε. This completes the proof.

6 Numerical results

In this section, we report some results on the following numerical experiments for the proposed algorithm.

1. Examination of the effects of the updating rules of the regularized parameter;

2. Comparison of the proposed algorithm and the existing Newton-type methods.

In each experiment, benchmark problems were chosen from CUTEr [7]. All algorithms were coded in
MATLAB 7.4, and run on a machine with 3.2GHz Pentium 4 CPU and 3.2GB memory. We used an
initial point x0 given by CUTEr, and set the termination criterion as ‖gk‖ ≤ 10−5. If the number of
inner iterations at the k-th iteration or the number of outer iterations exceeds 104, then we terminated
all methods as failing.

We consider the following two updating rules of the regularized parameter µk.

(A) µk = cΛk + νk‖gk‖δ;

(B) µk = cΛk + νk min(1, ‖gk‖δ).

The updating rule (B) prevents ‖dk(ν̄lk)‖ from becoming too small when ‖gk‖δ is large. Note that the
convergence properties given in Sections 3-5 still hold even if we replace the above updating rule (A)
with (B). We updated νk in Steps 2 and 3 as follows.

ρk(dk(ν̄lk), ν̄lk) < η1 ⇒ ν̄lk+1 = γbν̄lk ,

η2 > ρk(dk(ν̄lk), ν̄lk) ≥ η1 ⇒ νk+1 = ν̄lk ,

ρk(dk(ν̄lk), ν̄lk) ≥ η2 ⇒ νk+1 = max (νmin, γaν̄lk) ,

where γa and γb are positive parameters such that γa < 1 and γb > 1. In all numerical experiments,
except for γa, γb and δ, the parameters of the proposed algorithm are chosen as follows.

ν0 = 1, νmin = 10−5, c = 2, η1 = 0.01, η2 = 0.8.

25

In Subsections 6.1 and 6.2, we will compare algorithms by using the distribution function proposed
in [6]. We denote a set of solvers as S, and a set of problems that can be solved by all methods in S
as PS . We also denote a measure for evaluation required to solve a problem p by a solver s as tp,s, and
the best tp,s for each p as t∗p, i.e., t∗p := min{tp,s | a ∈ S}. The distribution function FS

s (τ) for a method
s is defined by

FS
s (τ) =

|{p ∈ PS | tp,s ≤ τt∗p}|
|PS |

, τ ≥ 1.

The algorithm whose FS
s (τ) is close to 1 is considered to be superior to the other algorithms in S.

6.1 Influences of the updating rule of the regularized parameter

First, we investigate influences of the parameter δ and the updating rules (A) and (B). We set γa and
γb as γa = 0.5 and γb = 2, respectively.

Figure 1 shows the distribution functions for the proposed algorithm with various δ and the updating
rules (A) and (B) in terms of the number of the function evaluations. Figure 1 shows that for δ = 0.5,
the updating rule (A) is almost same as the updating rule (B). On the other hand, for δ = 1 and 2,
the updating rule (B) is better than the updating rule (A). The reason is that when ‖gk‖δ is large,
‖dk(ν̄lk)‖ becomes too small, and a sequence of the proposed algorithm changes only slightly. Moreover,
from the same reason, the number of the function evaluations tends to become large as δ become large
for the updating rule (A). Finally, for the updating rule (B), the proposed algorithm does not have
much difference among δ = 0.5, 1, 2. From the above fact, the proposed algorithm has good numerical
performance when we use the updating rule (B).

Next, we examine the influences of (γa, γb). We set δ = 1 and used the updating rule (B), and tested
the proposed algorithm for each (γa, γb) in { 1

2 , 1
10} × {2, 10}.

Figure 2 shows the comparisons of (γa, γb) in terms of the number of the function evaluations. From
Figure 2, we see that γb = 10 has good performances as compared to γb = 2.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

δ = 0.5 and (A)
δ = 0.5 and (B)
δ = 1 and (A)
δ = 1 and (B)
δ = 2 and (A)
δ = 2 and (B)

τ

F
s
S (τ)

Fig. 1: Comparison of δ, (A) and (B)

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

(γ
a
, γ

b
) = (1/2, 2)

(γ
a
, γ

b
) = (1/2, 10)

(γ
a
, γ

b
) = (1/10, 2)

(γ
a
, γ

b
) = (1/10, 10)

τ

F
s
S (τ)

Fig. 2: Comparison of (γa, γb)

6.2 Comparison with the existing Newton-type methods

We compare the proposed adaptive regularized Newton method (ARNM) with the regularized Newton
method with Armijo’s step size rule (RNM) and the TR-Newton method which solves subproblems
exactly (TR-NM).

26

The regularized Newton method with Armijo’s step size rule is described as follows.

The Regularized Newton Method with Armijo’s Step Size Rule

Step 0 : Choose a starting point x0. Set k := 0.

Step 1 : If the stopping criterion is satisfied, then terminate. Otherwise, go to Step 2.

Step 2 : Compute

dk = −(Hk + 2ΛkI + min(1, ‖gk‖)I)−1gk.

Step 3 : Find the smallest nonnegative integer lk such that

f(xk) − f(xk + (0.5)lkdk) ≥ −0.01 × (0.5)lkgT
k dk.

Step 4 : Update xk+1 = xk + (0.5)lkdk. Set k := k + 1, and go to Step 1.

The TR-Newton method is described as follows.

The TR-Newton Method

Step 0 : Choose a starting point x0. Set ∆0 := 1 and k := 0.

Step 1 : If the stopping criterion is satisfied, then terminate. Otherwise, go to Step 2.

Step 2 : Step 2.0 : Set lk := 1 and ∆̄lk = ∆k.

Step 2.1 : Compute an approximate solution dk(∆̄lk) of the trust-region subproblem

minimize
d∈Rn

f(xk) + gT
k d +

1
2
dT Hkd,

subject to ‖d‖ ≤ ∆̄lk .

Step 2.2 : Compute

ρk(dk(∆̄lk), ∆̄lk) =
f(xk) − f(xk + dk(∆̄lk))

f(xk) − (f(xk) + gT
k dk(∆̄lk) + 1

2dk(∆̄lk)T Hkdk(∆̄lk))
.

If ρk(dk(∆̄lk), ∆̄lk) < 0.05, then update ∆̄lk+1 = 0.25∆̄lk . Set lk := lk + 1, and
go to Step 2.1. Otherwise, go to Step 3.

Step 3 : If 0.9 > ρk(dk(∆̄lk), ∆̄lk) ≥ 0.05, then update ∆k+1 = ∆̄lk .
If ρk(dk(∆̄lk), ∆̄lk) ≥ 0.9, then update ∆k+1 = max(105, 2.5∆̄lk).
Update xk+1 = xk + dk(∆̄lk). Set k := k + 1, and go to Step 1.

In solving subproblems of the TR-NM, we used Algorithm 7.3.4 in [4], and employed the terminate
condition (7.3.20) in [4], where we set a parameter κeasy as κeasy = 10−4. We set the upper bound of the
number of iterations in the trust-region subproblems as 5× 104. In the proposed algorithm, we adopted
the updating rule (B) of µk, and set δ = 1, γa = 1/10 and γb = 10.

Table 1 shows the number of the function evaluations (Nf) and the number of solving linear equations
(NL) for each method. Note that the computational complexity of calculating the minimum eigenvalue
of Hk is not contained in NL.

27

The symbol “−” in the table means that the number of inner or outer iterations of the proposed
algorithm exceeds 104. The ARNM cannot solve ’MARATOSB’, and the TR-NM cannot solve ’BROW-
NAL’, ’FREUROTH’ and ’SBRYBND’.

Figures 3 and 4 show the comparisons of the ARNM and the RNM for Nf and NL, and Figures 5
and 6 show the comparisons of the ARNM and the TR-NM for Nf and NL.

Figures 3 and 4 show that both Nf and NL of the ARNM are much less than those of the RNM,
that is, the proposed algorithm is much superior to the traditional regularized Newton method. Figure
5 shows that Nf of the ARNM is almost same as that of the TR-NM. On the other hand, from Figure
6, we see that NL of the ARNM is much less than that of the TR-NM. These results show that the
ARNM can solve subproblems more easily as compared to the TR-NM.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ARNM
RNM

F
s
S (τ)

τ

Fig. 3: Comparison of ARNM and RNM for Nf

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ARNM
RNM

F
s
S (τ)

τ

Fig. 4: Comparison of ARNM and RNM for NL

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ARNM
TR−NM

τ

F
s
S (τ)

Fig. 5: Comparison of ARNM and TR-NM for Nf

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ARNM
TR−NM

τ

F
s
S (τ)

Fig. 6: Comparison of ARNM and TR-NM for NL

7 Concluding remarks

In this paper, we have proposed a regularized Newton method without line search. We have shown
the global and superlinear convergence of the proposed algorithm, and given its global complexity
bounds. In particular, we have given the conditions under which the global complexity bound Jg of
the proposed algorithm is better than that of the steepest descent method Jg = O(ε−2) when f is not
convex. Moreover, we have presented some numerical results, which shows that the proposed algorithm
is competitive with the existing Newton-type methods.

28

References

[1] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, New York, 1995.

[2] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge,
U.K., 2004.

[3] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic overestimation methods for uncon-
strained optimization, Technical Report 07/05, Department of Mathematics, FUNDP - University
of Namur, 2007.

[4] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
USA, 2000.

[5] J. P. Crouzeix, On second order conditions for quasiconvexity, Mathematical Programming, 18
(1980), pp. 349–352.

[6] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Mathematical Programming, 91 (2002), pp. 201–213.

[7] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr (and SifDec), a Constrained and Uncon-
strained Testing Environment, revisited, ACM Transactions on Mathematical Software, 29 (2003),
pp. 373–394.

[8] R. A. Horn and C. R. Johnson, Matrix Analysis, Canbridge University Press, 1985.

[9] D. H. Li, M. Fukushima, L. Qi, and N.Yamashita, Regularized Newton methods for convex
minimization problems with singular solutions, Computational Optimization and Applications, 28
(2004), pp. 131–147.

[10] Y. J. Li and D. H. Li, Truncated regularized Newton method for convex minimizations, Compu-
tational Optimization and Applications, (2007). DOI: 10.1007/s10589-007-9128-7.

[11] Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2004.

[12] , Accelerating the cubic regularization of Newton’s method on convex problems, Mathematical
Programming, 112 (2008), pp. 159–181.

[13] Yu. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global perfor-
mance, Mathematical Programming, 108 (2006), pp. 177–205.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.

[15] J. S. Pang, Error bounds in mathematical programming, Mathematical Programming, 79 (1997),
pp. 299–332.

[16] R. A. Polyak, Regularized Newton method for unconstrained convex optimization, Mathematical
Programming, (2007). DOI: 10.1007/s10107-007-0143-3.

[17] K. Ueda and N. Yamashita, Convergence properties of the regularized Newton method for the un-
constrained nonconvex optimization, Technical Report 2008-015, Department of Applied Mathemat-
ics and Physics, Graduate School of Informatics, Kyoto University, 2008. http://www.amp.i.kyoto-
u.ac.jp/tecrep/ps file/2008/2008-015.pdf.

29

A Tables of numerical results

Table 1: Comparison with other methods

ARNM RNM TR-NM
Name n Nf , NL f Nf NL f Nf NL f
3PK 30 6 1.72E + 00 333 333 1.72E + 00 8 33 1.72E + 00
AKIVA 2 6 6.17E + 00 7 7 6.17E + 00 6 6 6.17E + 00
ALLINITU 4 8 5.74E + 00 11 9 5.74E + 00 8 18 5.74E + 00
ARGLINA 200 4 2.00E + 02 8 8 2.00E + 02 5 5 2.00E + 02
ARWHEAD 100 5 8.79E − 14 6 6 0.00E + 00 5 5 6.59E − 14
BARD 3 7 8.21E − 03 10 10 8.21E − 03 12 30 8.21E − 03
BDQRTIC 100 9 3.79E + 02 10 10 3.79E + 02 10 15 3.79E + 02
BEALE 2 8 8.23E − 13 8 8 2.50E − 11 7 16 7.52E − 14
BIGGS6 6 100 8.17E − 08 102 97 1.11E − 06 398 2576 2.43E − 01
BOX3 3 7 2.28E − 12 9 9 4.05E − 11 7 10 1.52E − 11
BRKMCC 2 3 1.69E − 01 4 4 1.69E − 01 2 2 1.69E − 01
BROWNAL 200 4 3.80E − 13 4 4 3.21E − 09 − − −
BROWNBS 2 12 1.00E − 13 22 20 0.00E + 00 32 74 1.97E − 31
BROWNDEN 4 8 8.58E + 04 8 8 8.58E + 04 10 17 8.58E + 04
BROYDN7D 100 33 3.28E + 01 30 30 3.28E + 01 22 99 4.01E + 01
BRYBND 100 12 3.56E − 15 11 9 3.61E − 13 17 112 4.69E − 18
CHNROSNB 50 119 3.55E − 19 51 43 1.79E − 17 71 161 1.86E − 23
CLIFF 2 27 2.00E − 01 34 34 2.00E − 01 27 29 2.00E − 01
COSINE 100 9 −9.90E + 01 12 11 −9.90E + 01 6 15 −9.90E + 01
CRAGGLVY 100 13 3.23E + 01 15 15 3.23E + 01 13 20 3.23E + 01
CUBE 2 46 6.77E − 15 34 29 4.85E − 13 38 54 6.80E − 18
CURLY10 100 26 −1.00E + 04 22 20 −1.00E + 04 8 30 −1.00E + 04
CURLY20 100 24 −1.00E + 04 20 18 −1.00E + 04 9 33 −1.00E + 04
DECONVU 61 25 7.31E − 08 17 15 1.46E − 07 21 146 8.19E − 09
DENSCHNA 2 5 1.35E − 12 6 6 1.02E − 15 5 5 2.21E − 12
DENSCHNB 2 5 1.85E − 20 4 4 4.77E − 18 3 8 1.88E − 15
DENSCHNC 2 10 4.87E − 20 11 11 2.27E − 17 10 10 2.18E − 20
DENSCHND 3 36 1.82E − 08 29 29 1.35E − 08 40 123 8.19E − 09
DENSCHNE 3 13 7.78E − 13 26 26 1.01E − 18 9 19 1.07E − 18
DENSCHNF 2 6 6.86E − 22 6 6 8.44E − 20 6 6 6.51E − 22
DIXMAANA 300 9 1.00E + 00 10 10 1.00E + 00 7 17 1.00E + 00
DIXMAANB 300 17 1.00E + 00 11 11 1.00E + 00 18 73 1.00E + 00
DIXMAANC 300 9 1.00E + 00 12 12 1.00E + 00 14 60 1.00E + 00
DIXMAAND 300 9 1.00E + 00 12 12 1.00E + 00 11 43 1.00E + 00
DIXMAANE 300 8 1.00E + 00 25 25 1.00E + 00 11 44 1.00E + 00
DIXMAANF 300 12 1.00E + 00 21 21 1.00E + 00 17 87 1.00E + 00
DIXMAANG 300 13 1.00E + 00 21 21 1.00E + 00 20 108 1.00E + 00
DIXMAANH 300 14 1.00E + 00 22 22 1.00E + 00 22 106 1.00E + 00
DIXMAANI 300 12 1.00E + 00 41 41 1.00E + 00 15 78 1.00E + 00
DIXMAANJ 300 21 1.00E + 00 27 27 1.00E + 00 24 141 1.00E + 00
DIXMAANK 15 18 1.00E + 00 17 17 1.00E + 00 15 62 1.00E + 00
DIXMAANL 300 22 1.00E + 00 27 27 1.00E + 00 27 170 1.00E + 00
DIXON3DQ 100 5 4.96E − 14 35 35 2.39E − 08 4 19 1.09E − 29
DQDRTIC 100 4 2.67E − 25 6 6 2.99E − 18 5 8 6.28E − 29
EDENSCH 36 12 2.19E + 02 12 12 2.19E + 02 15 48 2.19E + 02
ENGVAL1 100 7 1.09E + 02 8 8 1.09E + 02 9 11 1.09E + 02
ENGVAL2 3 17 1.28E − 14 21 21 8.39E − 22 13 17 9.71E − 17
ERRINROS 50 57 3.99E + 01 130 127 3.99E + 01 54 115 3.99E + 01
EXPFIT 2 12 2.41E − 01 10 8 2.41E − 01 8 21 2.41E − 01
FLETCBV2 100 3 −5.14E − 01 4 4 −5.14E − 01 2 4 −5.14E − 01
FREUROTH 100 13 1.20E + 04 15 12 1.20E + 04 − − −
GENROSE 100 144 1.00E + 00 105 77 1.00E + 00 88 362 1.00E + 00
GROWTHLS 3 184 1.00E + 00 366 366 1.00E + 00 99 199 1.00E + 00
GULF 3 36 2.84E − 11 119 117 2.41E − 06 30 93 4.36E − 20
HAIRY 2 70 2.00E + 01 78 60 2.00E + 01 69 225 2.00E + 01
HATFLDD 3 21 6.62E − 08 21 21 6.76E − 08 20 47 6.62E − 08
HATFLDE 3 17 5.12E − 07 23 23 5.12E − 07 19 36 5.12E − 07
HEART6LS 6 1875 7.93E − 23 3193 2923 1.75E − 10 555 4064 1.78E − 26
HEART8LS 8 175 4.00E − 23 107 83 1.90E − 19 78 444 6.80E − 21
HELIX 3 10 3.74E − 23 11 11 1.91E − 13 10 34 4.22E − 15
HIELOW 3 10 8.74E + 02 7 6 8.74E + 02 8 30 8.74E + 02
HILBERTA 2 4 3.39E − 15 9 9 1.92E − 13 3 7 2.05E − 33

30

Table 1: Comparison with other methods

ARNM RNM TR-NM
Name n Nf , NL f Nf NL f Nf NL f
HILBERTB 10 3 1.23E − 12 5 5 2.44E − 19 3 5 1.28E − 29
HIMMELBB 2 12 1.99E − 18 12 12 6.13E − 26 15 66 5.53E − 21
HIMMELBF 4 158 3.19E + 02 993 993 3.19E + 02 46 259 3.19E + 02
HIMMELBG 2 7 1.05E − 14 6 6 1.17E − 12 5 9 8.86E − 12
HIMMELBH 2 6 −1.00E + 00 7 6 −1.00E + 00 4 6 −1.00E + 00
HUMPS 2 340 3.39E − 12 1275 1221 4.20E − 13 2712 10595 1.42E − 10
KOWOSB 4 12 3.08E − 04 8 8 3.08E − 04 10 35 3.08E − 04
LIARWHD 100 10 1.52E − 13 12 12 1.19E − 12 12 19 6.12E − 14
LOGHAIRY 2 51 6.53E + 00 214 211 6.48E + 00 2757 10486 1.82E − 01
MARATOSB 2 − − 948 672 −1.00E + 00 1036 1419 −1.00E + 00
MEXHAT 2 44 −4.00E − 02 31 28 −4.00E − 02 44 52 −4.00E − 02
MOREBV 100 2 7.69E − 07 3 3 5.44E − 07 1 1 7.89E − 10
NONCVXU2 100 36 2.32E + 02 98 98 2.34E + 02 44 206 2.32E + 02
NONCVXUN 100 27 2.34E + 02 42 42 2.37E + 02 36 154 2.32E + 02
NONDIA 100 10 4.93E − 16 8 7 6.78E − 21 6 24 1.50E − 18
OSBORNEA 5 59 5.51E − 05 52 32 5.51E − 05 38 98 5.46E − 05
OSBORNEB 11 17 4.01E − 02 26 26 4.01E − 02 28 88 8.76E − 02
PALMER1C 8 6 9.76E − 02 282 282 9.76E − 02 7 37 9.76E − 02
PALMER1D 7 6 6.53E − 01 189 189 6.53E − 01 7 35 6.53E − 01
PALMER2C 8 6 1.44E − 02 165 165 1.44E − 02 6 32 1.44E − 02
PALMER3C 8 6 1.95E − 02 170 170 1.95E − 02 6 30 1.95E − 02
PALMER4C 8 6 5.03E − 02 227 227 5.03E − 02 7 33 5.03E − 02
PALMER5C 6 4 2.13E + 00 7 7 2.13E + 00 5 10 2.13E + 00
PALMER6C 8 6 1.64E − 02 365 365 1.64E − 02 7 36 1.64E − 02
PALMER7C 8 6 6.02E − 01 1139 1139 6.02E − 01 9 35 6.02E − 01
PALMER8C 8 6 1.60E − 01 495 495 1.60E − 01 8 43 1.60E − 01
PFIT1LS 3 613 1.14E − 10 808 357 1.85E − 09 374 561 6.99E − 15
PFIT2LS 3 238 2.01E − 08 255 129 1.00E − 11 133 210 9.91E − 13
PFIT3LS 3 245 2.41E − 24 311 156 1.18E − 14 161 274 1.14E − 15
PFIT4LS 3 419 2.56E − 13 473 283 2.52E − 11 322 460 1.94E − 16
POWELLSG 4 15 4.43E − 09 16 16 5.64E − 09 15 19 4.64E − 09
QUARTC 100 24 2.31E − 08 27 27 1.11E − 07 29 84 2.78E − 08
ROSENBR 2 40 6.25E − 16 27 24 5.93E − 15 27 33 7.30E − 26
S308 2 11 7.73E − 01 8 8 7.73E − 01 10 12 7.73E − 01
SBRYBND 100 30 1.24E − 13 17 13 3.89E − 14 − − −
SCHMVETT 100 4 −2.94E + 02 5 5 −2.94E + 02 4 6 −2.94E + 02
SINEVAL 2 123 3.41E − 15 61 48 2.56E − 12 62 94 1.46E − 14
SINQUAD 100 16 −4.01E + 03 15 13 −4.01E + 03 9 23 −4.01E + 03
SISSER 2 12 1.14E − 08 13 13 5.90E − 09 12 12 1.07E − 08
SNAIL 2 236 4.84E − 13 126 126 5.58E − 18 93 163 2.63E − 17
SPARSINE 100 6 9.52E − 22 7 7 8.59E − 21 28 216 7.96E − 16
SPARSQUR 100 16 7.66E − 09 17 17 5.50E − 09 16 19 1.48E − 08
SPMSRTLS 100 10 4.05E − 11 11 11 1.30E − 16 11 33 6.97E − 13
SROSENBR 100 7 7.74E − 15 14 14 2.16E − 17 6 11 1.14E − 27
STRATEC 10 26 2.21E + 03 38 36 2.21E + 03 41 91 2.21E + 03
TESTQUAD 1000 4 2.53E − 20 7 7 4.31E − 14 5 14 2.14E − 26
TOINTGOR 50 5 1.37E + 03 11 11 1.37E + 03 9 22 1.37E + 03
TOINTGSS 100 5 1.01E + 01 8 8 1.01E + 01 15 53 1.01E + 01
TOINTPSP 50 41 2.26E + 02 56 22 2.26E + 02 26 67 2.26E + 02
TOINTQOR 50 4 1.18E + 03 7 7 1.18E + 03 4 11 1.18E + 03
TQUARTIC 100 13 1.12E − 24 21 20 1.73E − 15 12 34 1.27E − 14
TRIDIA 100 3 1.60E − 11 5 5 1.59E − 14 4 13 7.65E − 31
VARDIM 200 29 2.53E − 24 29 29 2.33E − 25 29 33 2.33E − 25
VAREIGVL 50 25 2.01E − 11 12 12 2.16E − 09 22 93 1.02E − 10
VIBRBEAM 8 44 1.56E − 01 63 54 1.56E − 01 74 341 1.56E − 01
WATSON 12 9 6.60E − 12 11 11 7.77E − 09 10 77 2.62E − 07
WOODS 4 67 2.38E − 14 48 46 4.09E − 16 57 140 5.57E − 16
YFITU 3 62 6.67E − 13 221 217 6.29E − 09 57 90 6.67E − 13
ZANGWIL2 2 4 −1.82E + 01 5 5 −1.82E + 01 2 3 −1.82E + 01

31

