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1 Introduction

Let a nonempty closed convex subset K of <n and a mapping F : <n → <n be given. The

classical variational inequality problem (VIP), denoted by VI(K,F), is to find a vector x∗ ∈ K

such that

(x− x∗)TF(x∗) ≥ 0, ∀x ∈ K.

When K = <n
+, the variational inequality problem reduces to the following nonlinear comple-

mentarity problem (NCP), denoted by NCP(F): Find a vector x∗ such that

x∗ ≥ 0, F(x∗) ≥ 0, (x∗)TF(x∗) = 0.

In particular, the problem is called the linear complementarity problem (LCP), denoted by

LCP(M, q), if the function F is given by F(x) = Mx + q with M ∈ <n×n and q ∈ <n. NCP and

LCP are generally called the complementarity problem (CP). The systematic study of VIP and

CP began in the middle 1960s. As a result of more than four decades of research, the subject

has developed into a well-established and fruitful discipline within mathematical programming.

Several monographs [11, 13, 24, 25] and survey papers [19, 43] have documented the basic theory,

effective algorithms, and important applications of VIP and CP in engineering, economics, and

the optimization theory itself.

On the other hand, variational inequalities and complementarity conditions often appear

within constraints of an optimization problem. This kind of problems is generally called a

mathematical program with equilibrium constraints (MPEC), which can be stated as

min f(x, y)

s.t. (x, y) ∈ Z, (1.1)

y solves VI(C(x), F (x, ·))

or

min f(x, y)

s.t. (x, y) ∈ Z, (1.2)

y ≥ 0, F (x, y) ≥ 0, yT F (x, y) = 0.

Here, Z is a nonempty subset of <n+m and f : <n+m → <, F : <n+m → <m, C : <n → 2<m

are all mappings. Problem (1.2) is also called a mathematical program with complementarity

constraints (MPCC). MPEC is generally regarded as a generalization of the bilevel programming

problem and it plays a very important role in many fields such as engineering design, economic
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equilibrium, transportation science and game theory. However, MPEC may not be treated as

an ordinary nonlinear programming problem because its constraints fail to satisfy the standard

constraint qualifications including the linear independence constraint qualification (LICQ) and

the Mangasarian-Fromovitz constraint qualification (MFCQ) at any feasible point [10]. This

means that the well-developed nonlinear programming theory cannot be applied to MPEC di-

rectly. See the monographs [39, 42] and the survey paper [17] for more details about the MPEC

theory, algorithms, and applications.

Since some elements may involve uncertain data in many practical problems, the stochas-

tic versions of the above problems have drawn much attention in the recent literature. The

purpose of this paper is to review some recent developments in these topics, which include

stochastic variational inequality problems (SVIP), stochastic complementarity problems (SCP),

or more specifically, stochastic linear and nonlinear complementarity problems (SLCP, SNCP),

and stochastic mathematical programs with equilibrium constraints (SMPEC).

2 Examples

In this section, we give some examples to show how uncertainty arises in practice. The first

example is considered in [9].

Example 2.1. Consider a transportation network with a set of nodes and a set of paths between

origin-destination (OD) pairs. Denote

ξ: vector of path flows;

τ : vector of minimum transportation costs between OD pairs;

d: vector of travel demand between OD pairs;

Aξ + b: users’ travel cost function with A being a positive definite matrix;

B: path-OD pair incidence matrix.

By the Wardrop’s user equilibrium principle, the traffic equilibrium conditions can be formulated

as an LCP

ξ ≥ 0, Aξ + b−BT τ ≥ 0, ξT (Aξ + b−BT τ) = 0,

τ ≥ 0, Bξ − d ≥ 0, τT (Bξ − d) = 0.

In practice, the travel demand is not always constant, but may vary depending on the weather

etc. The travel cost function may also vary because of some unpredictable reasons. In such

uncertain situations, we may regard the demand and the cost coefficients as random variables

d(ω) and (A(ω), b(ω)) with ω ∈ Ω, where Ω is a sample space. Thus the traffic equilibrium
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conditions can be modeled as an SLCP

ξ ≥ 0, A(ω)ξ + b(ω)−BT τ ≥ 0, ξT (A(ω)ξ + b(ω)−BT τ) = 0,

τ ≥ 0, Bξ − d(ω) ≥ 0, τT (Bξ − d(ω)) = 0.

Note that there is in general no vector (ξ, τ) satisfying the above conditions for all ω in Ω simul-

taneously. Nevertheless one may want to estimate a traffic flow ξ along with the corresponding

travel cost τ that is most likely to occur on the whole. How to construct a model that produces

reasonable solutions of such problems is the main topic of Section 3.

We next give an example from [30], which is used to illustrate models of SMPEC.

Example 2.2. Consider a food company that wholesales picnic lunches to m venders who sell

lunches at different spots. Denote

x ∈ [a, b]: selling price of the company with b > a > 0;

κix: selling price of the ith vender with κi > 1;

si ∈ [c, +∞): amount of lunches booked by the ith vender with c > 0;

di: demand at the ith spot.

Here a, b, c and κi’s are given constants. Suppose that, even if there are unsold lunches, the

venders cannot return them to the company but they can dispose of the unsold lunches with

no cost. In general, the demands of lunches depend on the price and some uncertainty, say the

weather of the day. We treat the demands as random variables and denote by di(x, ω) the demand

at the ith spot. Since the ith vender’s objective is to maximize its total earnings κixmin(si,

di(x, ω)) − xsi, it is not difficult to show that his decision is given by si = max{di(x, ω), c}.
Thus, by letting yi = si − c for each i, we can formulate the company’s problem as an SMPEC

min −
m∑

i=1

x(yi + c)

s.t. a ≤ x ≤ b,

yi ≥ 0, −di(x, ω) + yi + c ≥ 0,

yi(−di(x, ω) + yi + c) = 0, i = 1, . . . , m.

This problem can be viewed as a bilevel, or leader-follower, problem with an upper level decision

x by the company (leader) and lower level decisions y1, . . . , ym by the venders (followers).

Now suppose that the company and the vendors have to decide their prices x and y1, . . . , ym

of lunches for sale on Sunday. Note that there are two cases concerning the times when the

decisions of the company and the venders are made; (i) both the company and the venders make

decisions on Saturday, without knowing the weather of Sunday, and (ii) the company makes

a decision on Saturday, while the venders make decisions on Sunday, after knowing the actual
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weather of that day. These two cases lead to the models called ‘here-and-now’ and ‘lower-level

wait-and-see’, respectively. More details of these models will be discussed in Section 4.

3 Stochastic Equilibrium Problems

Let K ⊆ <n be a nonempty closed convex set, (Ω,F ,P) be the underlying probability space,

and F : K × Ω → <n be a given mapping. The SVIP is to find x∗ ∈ K such that

P{ω ∈ Ω | (x− x∗)T F (x∗, ω) ≥ 0, ∀x ∈ K} = 1

or equivalently

(x− x∗)T F (x∗, ω) ≥ 0, ∀x ∈ K, ω ∈ Ω a.s., (3.1)

where “a.s.” is the abbreviation for “almost surely” under the given probability measure. Simi-

larly, the SCP is to find a vector x∗ such that

P{ω ∈ Ω | x∗ ≥ 0, F (x∗, ω) ≥ 0, (x∗)T F (x∗, ω) = 0} = 1,

which is equivalent to

x∗ ≥ 0, F (x∗, ω) ≥ 0, (x∗)T F (x∗, ω) = 0, ω ∈ Ω a.s. (3.2)

Because of the existence of a random element ω, however, we cannot generally expect that

there exists a vector x∗ satisfying (3.1) or (3.2) for almost all ω ∈ Ω. That is, both (3.1) and

(3.2) may not have a solution in general. Therefore, an important issue in the study of SCP

and SVIP is to present an appropriate deterministic formulation of the considered problem. In

what follows, we review some existing formulations and algorithms for SCP and SVIP.

3.1 Stochastic CP

In the study of SCP, there have been proposed three types of formulations; the expected value

(EV) formulation, the expected residual minimization (ERM) formulation, and the SMPEC

formulation.

3.1.1 EV formulation. This model is studied by Gürkan et al. [18]. The problem considered

in [18] is actually an SVIP, which can be traced back to King and Rockafellar [26]. When applied

to the SCP (3.2), the EV model can be stated as follows:

x∗ ≥ 0, E[F (x∗, ω)] ≥ 0, (x∗)TE[F (x∗, ω)] = 0, (3.3)
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where Emeans expectation with respect to ω. Since the expectation function E[F (·, ω)] is usually

difficult to evaluate exactly, it is assumed that a sequence {F k} of deterministic functions,

converging to the function E[F (·, ω)] in a certain sense, can be observed. Then a solution of

problem (3.3) may be obtained by solving a sequence of deterministic complementarity problems.

It is shown that, under some regularity conditions on F and some (unknown) solution x∗ of

(3.3), the approximation problem NCP(F k) has a solution close to x∗ if F k is sufficiently close

to E[F (·, ω)].

Since many parameter estimation problems can be transformed to a root-seeking problem

for an unknown function, stochastic approximation methods have been extensively studied and

applied to solving various stochastic problems; see for instance [7, 21, 45] and the references

therein. Jiang and Xu [20] propose several stochastic approximation approaches for SVIP and

SCP. Among others, a stochastic approximation method for (3.3) is presented by utilizing the

well known approach in NCP that a deterministic NCP can be transformed into a nonlinear

equation by using the so-called NCP functions. As usual, a function φ : <2 → < is called an

NCP function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

See [13] for more details about NCP functions. A popular NCP function is the Fischer-

Burmeister function φFB : <2 → < defined by

φFB(a, b) := a + b−
√

a2 + b2. (3.4)

Using the function φFB, (3.3) can be transformed equivalently into a system of equations

ΦFB(x) = 0, (3.5)

where the function ΦFB : <n → <n is defined by

ΦFB(x) :=




φFB(x1,E[F1(x, ω)])
...

φFB(xn,E[Fn(x, ω)])


 .

The equation (3.5) is then reformulated as the optimization problem

min
x∈<n

1
2
‖ΦFB(x)‖2

and the following stochastic approximation method is proposed:

xk+1 = xk − τkζ
k, k = 0, 1, 2, . . . , (3.6)
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where τk > 0 is a pre-determined step-length and ζk is a stochastic approximation of the vector

dk :=




φFB(xk
1,E[F1(xk, ω)]) ∂bφFB(xk

1,E[F1(xk, ω)])
...

φFB(xk
n,E[Fn(xk, ω)]) ∂bφFB(xk

n,E[Fn(xk, ω)])


 .

Here ∂bφFB(a, b) denotes a subgradient of the function φFB with respect to the second argument.

It is shown in [20] that, under suitable assumptions, the sequence {xk} generated by (3.6) is

almost surely convergent to a solution of (3.3) for any initial point x0 ∈ <n.

3.1.2 ERM formulation. This model is presented by Chen and Fukushima [8] for the SLCP

x ≥ 0, M(ω)x + q(ω) ≥ 0, xT (M(ω)x + q(ω)) = 0, ω ∈ Ω a.s., (3.7)

where M : Ω → <n×n and q : Ω → <n. By employing an NCP function φ, the SLCP (3.7) is

transformed equivalently into the stochastic equations

Φ(x, ω) = 0, ω ∈ Ω a.s.,

where Φ : <n × Ω → <n is defined by

Φ(x, ω) :=




φ(x1, [M(ω)x + q(ω)]1)
...

φ(xn, [M(ω)x + q(ω)]n)


 .

Then the following deterministic optimization formulation for (3.7) is proposed:

min
x∈<n

+

θ(x) := E[‖Φ(x, ω)‖2]. (3.8)

Problem (3.8) is called an ERM formulation for the SLCP (3.7). The NCP functions employed

in [8] include the Fischer-Burmeister function φFB defined by (3.4) and the “min” function

φmin(a, b) := min(a, b). (3.9)

As observed in [8], the ERM formulations with different NCP functions may have different

properties. Various existence theorems and quasi-Monte Carlo methods are given in [8].

The ERM formulation for SLCP has subsequently been studied in [14, 9, 60, 58]. Fang et al.

[14] introduce a new concept of stochastic matrices: M(·) is called a stochastic R0 matrix if

P{ω ∈ Ω | x ≥ 0,M(ω)x ≥ 0, xT M(ω)x = 0} = 1 =⇒ x = 0.

This is an extension of an R0 matrix that plays an important role in the LCP theory [11]. It

is shown that M(·) being a stochastic R0 matrix is a necessary and sufficient condition for the

solution set of the ERM model (3.8) being nonempty and bounded for any random vector q(·).
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Furthermore, a number of necessary and/or sufficient conditions for stochastic R0 matrices are

given. Local and global error bounds for (3.8) are also studied in [14].

Chen et al. [9] consider the SLCP (3.7) in which the expectation matrix M̄ := E[M(ω)] is

positive semi-definite. Such an SLCP is called a monotone SLCP. The ERM model (3.8) studied

in [9] uses the min function φmin defined above and the penalized Fischer-Burmeister function

[4] defined by

φPFB(a, b) := λ(a + b−
√

a2 + b2) + (1− λ)a+b+,

where λ ∈ (0, 1) is a given scalar and z+ denotes max(z, 0). Firstly, for the ERM formulation

(3.8), some results on boundedness of the level sets

L(c) := {x | θ(x) ≤ c}

are obtained for the above-mentioned two NCP functions. Then, a regularization method for the

monotone SLCP is suggested and its convergence is also discussed. Moreover, an error bound

property of the ERM formulation for the original SLCP is investigated. Specifically, when the

sample space Ω is a finite set, if M(ω) is a positive semi-definite matrix and LCP(M(ω), q(ω))

has a nonempty solution set SOL(M(ω), q(ω)) for each ω ∈ Ω, then there exists a constant β > 0

such that

E[dist(x,SOL(M(ω), q(ω)))] ≤ β
√

θPFB(x), ∀x ∈ <n
+,

where θPFB is the objective function of (3.8) defined by means of the penalized Fischer-Burmeister

function φPFB and dist(x,SOL(M(ω), q(ω))) denotes the distance from a point x to the set

SOL(M(ω), q(ω)). This result particularly shows that a solution x∗ of the ERM formulation

(3.8) satisfies the inequality

E[dist(x∗, SOL(M(ω), q(ω)))] ≤ β
√

θPFB(x∗).

Unlike an error bound for the deterministic LCP, the left-hand side of this inequality does not

vanish in general. Nevertheless, the inequality suggests that the expected distance to the solution

set SOL(M(ω), q(ω)) of LCP(M(ω), q(ω)) for ω ∈ Ω is also likely to be small at x∗. In other

words, one may expect that a solution of the ERM formulation (3.8) has a minimum sensitivity

with respect to random parameter variation in SLCP. In this sense, solutions of (3.8) can be

regarded as robust solutions for the SLCP (3.7).

Zhou and Cacceta [60] consider the SLCP (3.7) in which the sample space Ω has only finite

realizations {ω1, ω2, . . . , ωL}. By introducing slack variables y = (y1, . . . , yL) ∈ <nL and making
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use of the penalized Fischer-Burmeister function φPFB, the SLCP is reformulated as the following

nonsmooth equations with nonnegative constraints:

Φ̂(x, y) = 0, y ≥ 0, (3.10)

where

Φ̂(x, y) :=




φPFB(x1, [M̄x + q̄]1)
...

φPFB(xn, [M̄x + q̄]n)
M(ω1)x + q(ω1)− y1

...
M(ωL)x + q(ωL)− yL




∈ <n+nL

and M̄ := E[M(ω)], q̄ := E[q(ω)]. The system (3.10) has n(1 + L) equations with n(1 + L)

unknowns and the function Φ̂ is shown to be strongly semismooth; see [46] for details about

semismoothness. Since (3.10) may have no solution, it is further transformed into the following

optimization problem:

min
(x,y)∈<n+nL

+

1
2
‖Φ̂(x, y)‖2. (3.11)

Then, a feasible semismooth Newton method is proposed for solving problem (3.11) and its

convergence properties are investigated. Results of numerical experiments are also reported in

[60].

Zhang and Chen [58] consider the SLCP (3.7) and its ERM formulation (3.8) with the

function φmin defined by (3.9). Let ρ : < → [0, +∞) be a piecewise continuous density function

satisfying φ(s) = ρ(−s) and
∫∞
−∞ |s| ρ(s)ds < +∞. Then the following function serves as a

smooth approximation to φmin [6]:

φµ
min(a, b) := a−

∫ ∞

−∞
(a− b− µs)+ ρ(s)ds,

where µ > 0 is a smoothing parameter. By using this function, a smooth approximation of the

objective function in problem (3.8) is constructed as

θµ
min(x) :=

n∑

i=1

E[φµ
min

2(xi, [M(ω)x + q(ω)]i)].

In [58], differentiability properties of the function θµ
min are investigated. Moreover, a smoothing

projected gradient method with the above smoothing technique is proposed and its convergence

analysis is given in [58].

The ERM formulation for the SNCP (3.2) is discussed in [29, 59, 35]. Based on the observa-

tion that the ERM formulation (3.8) retains the nonnegative constraints x ≥ 0, Lin et al. [29]
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use a restricted NCP function ψ : <2 → <, which is nonnegative-valued everywhere and satisfies

the property

ψ(a, b) = 0, a ≥ 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (3.12)

to formulate the SNCP (3.2) as the following ERM problem:

min
x∈<n

+

θR(x) :=
n∑

i=1

E[ψ(xi, Fi(x, ω))]. (3.13)

The restricted NCP functions are studied in [56] for deterministic NCPs. In [29], the following

three new restricted NCP functions are mainly considered:

(i) ψ1(a, b) := (ab)+ + (−b)+, which can be rewritten as ψ1(a, b) = max(ab,−b) when a ≥ 0;

(ii) ψ2(a, b) := (ab)2+ + (−b)2+, which is a smoothed modification of ψ1;

(iii) ψ3(a, b) := a2b2 + (−b)2+, which may also be regarded as a smoothed modification of ψ1.

It is shown in [29] that the level sets

L+(c) := {x ∈ <n
+ | θR(x) ≤ c}

defined by the above restricted NCP functions are bounded for any nonnegative scalar c, if one of

the following conditions holds: (a) the expectation function F̄ (x) := E[F (x, ω)] is monotone and

the problem NCP(F̄ ) has a nonempty bounded solution set; (b) the function F̄ is an R0 function

on <n
+ in the sense of [5]. Error bound conditions are also investigated. Some counterexamples

are constructed to show that the new restricted NCP functions indeed have some favorable

properties that the NCP functions φmin and φFB do not have in dealing with SNCP.

Zhang and Chen [59] introduce a new concept of stochastic R0 function, which can be

regarded as a generalization of the deterministic R0 function given in [5] and the stochastic R0

matrix given in [14]. It is shown that, under suitable assumptions, the objective function of the

ERM problem (3.13) with ψ replaced by either φmin or φFB is coercive if and only if the function

F is a stochastic R0 function. Furthermore, a traffic equilibrium problem under uncertainty

is modeled as an SNCP and the objective function in the corresponding ERM formulation is

shown to be a stochastic R0 function. Numerical results reported in [59] indicate that the ERM

approach has various desirable properties.

Ling et al. [35] mainly discuss properties of the objective function θR of problem (3.13)

in which ψ is replaced by the Fischer-Burmeister function φFB. Their main result is that,

under some mild conditions, θR possesses the so-called SC1 property, that is, θR is continuously

differentiable and its gradient is semismooth.
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3.1.3 SMPEC formulation. Lin and Fukushima [33] study the SNCP (3.2) from another

point of view. Recall that there may not exist a vector x satisfying the complementarity condi-

tions for almost all ω ∈ Ω. In order to get a reasonable resolution, recourse variables z(ω) ≥ 0

are introduced for each inequality F (x, ω) ≥ 0 and the total recourse is minimized. Thus, one

obtains the following formulation for (3.2):

min E[dT z(ω)]

s.t. x ≥ 0, F (x, ω) + z(ω) ≥ 0, (3.14)

xT (F (x, ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.s.,

where d is a weight vector with positive components. Problem (3.14) is actually a special here-

and-now model of SMPEC, which will formally be introduced in Section 4.

It is well known that SMPECs are very difficult to deal with. In order to develop effective

methods for solving (3.14), a new function Q : <n × Ω → [0, +∞] is defined in [33] by

Q(x, ω) := sup{−(u + tx)T F (x, ω) | u + tx ≤ d, u ≥ 0, t ≤ 0}.

It is easy to see from the duality theorem in linear programming that, for any fixed x ∈ <n and

ω ∈ Ω, Q(x, ω) is finite if and only if the set

Z(x, ω) :=

{
z(ω)

∣∣∣∣∣
xT (F (x, ω) + z(ω)) ≤ 0
F (x, ω) + z(ω) ≥ 0, z(ω) ≥ 0

}

is nonempty and, if Z(x, ω) is nonempty, one can actually write

Q(x, ω) = inf{dT z(ω) | z(ω) ∈ Z(x, ω)}.

It can be shown that, for any x ∈ <n
+ and ω ∈ Ω, Q(x, ω) < +∞ if and only if xiFi(x, ω) ≤ 0

for all i = 1, . . . , n and, when Q(x, ω) < +∞, one has

Q(x, ω) = dT (−F (x, ω))+,

where (−F (x, ω))+ denotes the vector with components (−Fi(x, ω))+, i = 1, . . . , m. Based on

these results, it is not difficult to show the equivalence between the SMPEC formulation (3.14)

and the optimization problem

min
x≥0

E[Q(x, ω)]

or

min E[dT (−F (x, ω))+]

s.t. x ≥ 0, (3.15)

x ◦ F (x, ω) ≤ 0, ω ∈ Ω a.s.,
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where ◦ denotes the Hadamard product, i.e., x ◦ F (x, ω) = (x1F1(x, ω), . . . , xnFn(x, ω))T . For

the case where Ω is a finite set, a smoothed penalty method based on (3.15) is presented in [33].

Subsequently, Lin [27] proposes a new SMPEC formulation for the SNCP (3.2):

min E[‖z(ω)‖2]

s.t. x ≥ 0, F (x, ω) + z(ω) ≥ 0, (3.16)

xT (F (x, ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.s.

Since both dT z(ω) and ‖z(ω)‖2 serve as a penalty term for the possible violation of the com-

plementarity constraints, the objectives of problems (3.14) and (3.16) are essentially the same.

However, the quadratic penalty ‖z(ω)‖2 in (3.16) yields the equivalent problem

min E[‖(−F (x, ω))+‖2]

s.t. x ≥ 0, (3.17)

x ◦ F (x, ω) ≤ 0, ω ∈ Ω a.s.,

which has a differentiable objective function, while the linear penalty dT z(ω) yields the equivalent

problem (3.15) whose objective function is not differentiable everywhere. Note that both the re-

course variables and the complementarity constraints vanish in problem (3.17). However, (3.17)

is actually a semi-infinite programming problem with a large number of complementarity-like

constraints. Moreover, it involves an expectation in the objective function. Therefore, problem

(3.17) is generally more difficult to handle than an ordinary semi-infinite programming problem.

In [27], the case of a compact sample space Ω is considered first. For this case, the Monte

Carlo methods [47, Chapter 6] are employed to approximate the expectation function involved

in (3.17) and a penalty technique is used to deal with the complementarity-like constraints. Fur-

thermore, for the case where the sample space is unbounded, a compact approximation approach

is suggested.

Besides the above three formulations, one may use stochastic programming techniques to

study SNCP from other points of view. For instance, Wang et al. [51] treat the SMPEC

formulation (3.14) as a two-stage stochastic program

min
x≥0

E[Q(x, ω)],

where Q(x, ω) is defined by

Q(x, ω) := inf {dT z(ω) | z(ω) ≥ 0, F (x, ω) + z(ω) ≥ 0, xT (F (x, ω) + z(ω)) = 0},

and propose penalty-based sampling approximation methods to solve it. Moreover, applications

of SNCP in supply chain network equilibria are discussed.
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3.2 Stochastic VIP

There have been presented two types of formulations for SVIP; the EV formulation and the

ERM formulation.

3.2.1 EV formulation. Suppose that the expectation function E[F (x, ω)] is well-defined.

Then the EV formulation for SVIP (3.1) is defined as

(x− x∗)TE[F (x∗, ω)] ≥ 0, ∀x ∈ K. (3.18)

A class of problems that contains problem (3.18) as a special case is the EV formulation of

stochastic generalized equations, which is to find a vector x∗ such that

0 ∈ E[F (x∗, ω)] +N (x∗), (3.19)

where N : <n → 2<n
is a set-valued function. When N is the normal cone operator associated

with the closed convex set K, the generalized equation (3.19) boils down to the EV formutaion

(3.18) of SVIP.

As mentioned in Subsection 3.1, the EV formulation for SVIP may be attributed to King and

Rockafellar [26] and Gürkan et al. [18]. In particular, for the EV formutaion (3.18), Gürkan et al.

[18] consider a sequence {F k} of deterministic functions converging to the function E[F (·, ω)]

in a certain sense, and show that a solution of problem (3.18) can be obtained by solving the

sequence of variational inequality problems VI(K, F k). King and Rockafellar [26] consider the

generalized equation (3.19) and study the asymptotic behavior of a sequence of solutions to

generalized equations (3.19) in which E[F (x∗, ω)] is replaced by some F k. See also [47, Chapter

6] for stochastic generalized equations.

Recently, Jiang and Xu [20] consider two types of the stochastic approximation methods

for solving the EV formulation (3.18). One is based on the following well-known result in the

deterministic VIP theory: x∗ solves (3.18) if and only if

x∗ = ProjK,G(x∗ − τG−1E[F (x∗, ω)]),

where G is an n×n symmetric positive definite matrix, τ > 0 is a constant, and ProjK,G denotes

the projection operator onto K under G-norm. The corresponding iterative scheme is given by

xk+1 = ProjK,G(xk − τkG
−1ζk), k = 0, 1, 2, . . . , (3.20)

where τk is a stepsize and ζk is a stochastic approximation of E[F (xk, ω)]. The formula (3.20)

can be regarded as a Robbins-Monro type stochastic approximation method for solving (3.18).

For the case where E[F (·, ω)] is strongly monotone on K, it is shown that, under some standard
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conditions, the sequence {xk} generated by (3.20) is convergent to the unique solution of (3.18)

with probability one for any initial point x0 ∈ <n.

The second approach considered in [20] is based on reformulation techniques with merit func-

tions [16] that have been used as popular tools for dealing with deterministic VIPs. Specifically,

in [20], the regularized gap function

gα(x) := max
y∈K

{
(x− y)TE[F (x, ω)]− α

2
‖x− y‖2

}
(3.21)

introduced in [15] is used to transform (3.18) into a constrained optimization problem

min
x∈K

gα(x), (3.22)

and the D-gap function

gαβ(x) := gα(x)− gβ(x)

introduced in [57] is employed to transform (3.18) into an unconstrained optimization problem

min
x∈<n

gαβ(x), (3.23)

where the parameters are chosen to satisfy β > α > 0. Both the regularized gap function

and the D-gap function are proved to be continuously differentiable if E[F (·, ω)] is continuously

differentiable. In the case where E[F (·, ω)] is strongly monotone on K, problem (3.18) has a

unique solution, which is also the unique solution of problems (3.22) and (3.23). By applying

the stochastic approximation methods [45] for stochastic optimization problems, the iterative

scheme based on (3.22) is given by

xk+1 = ProjK(xk − τkζ
k
α), k = 0, 1, 2, . . . , (3.24)

where τk is a stepsize, ζk
α is a stochastic approximation of ∇gα(xk), and ProjK is the Euclidean

projection operator onto K, while the iterative scheme based on (3.23) is given by

xk+1 = xk − τkζ
k
αβ, k = 0, 1, 2, . . . , (3.25)

where τk is a stepsize and ζk
αβ is a stochastic approximation of ∇gαβ(xk). Assuming further that

the function E[F (·, ω)] is affine, it is shown that, under suitable assumptions, the sequence {xk}
generated by (3.24) or (3.25) is almost surely convergent to the unique solution of (3.18) for

any initial point x0 ∈ <n. Furthermore, since the iterative schemes (3.24) and (3.25) require to

evaluate the Jacobians of the functions involved, a derivative-free iterative scheme is presented,

which is based on the one proposed in [57], and is given by

xk+1 = xk − τkζ
k, k = 0, 1, 2, . . . , (3.26)
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where τk is a stepsize and ζk is a stochastic approximation of the vector

dk := Hα(xk)−Hβ(xk) + ρ[α(xk −Hα(xk))− β(xk −Hβ(xk))],

where Hα(x) := ProjK(x− α−1E[F (x, ω)]) is the unique solution of the maximization problem

in (3.21), and ρ > 0 is chosen sufficiently small so that dk can serve as a descent direction of the

merit function gαβ at xk. Global convergence of the iterative method (3.26) is shown in [20].

Wang et al. [52] propose a sample average approximation method [47, Chapter 6] for problem

(3.22). By taking independently and identically distributed samples {ω1, ω2, . . . , ωk} ⊆ Ω, the

following sample average approximation of (3.22) is obtained:

min gk
α(x) := max

y∈K
{(x− y)T

[1
k

k∑

j=1

F (x, ωj)
]− α

2
‖x− y‖2

G} (3.27)

s.t. x ∈ K,

whose objective function is differentiable everywhere [15]. By solving problems (3.27) with

increasing k, a sequence of approximate solutions of (3.22) can be obtained. Comprehensive

convergence analysis is established under suitable assumptions.

Xu and Zhang [55] consider a stochastic Nash equilibrium problem with N non-cooperative

players. In particular, the first-order equilibrium conditions of the problem are formulated as

the following generalized equations:

0 ∈ E[∂xνfν(xν , x−ν , ω)] +NKν (xν), ν = 1, 2, · · · , N, (3.28)

where xν , Kν and fν denote the strategy, the strategy set, and the cost function of the νth player,

respectively, x−ν denotes the vector (x1, · · · , xν−1, xν+1, · · · , xN ), NKν (xν) denotes the normal

cone of Kν at xν , and ∂xν denotes the Clarke subdifferential operator. To compute a solution

x∗ = (x1,∗, . . . , xN,∗) ∈ K1 × · · · × KN satisfying (3.28), the sample average approximation

approach is considered in [55]. Specifically, by taking independently and identically distributed

samples {ω1, ω2, . . . , ωk} from Ω, the sample average approximation generalized equations

0 ∈ 1
k

k∑

j=1

∂xνfν(xν , x−ν , ωj) +NKν (xν), ν = 1, 2, · · · , N,

are solved to get a solution xk = (x1,k, . . . , xN,k) ∈ K1 × · · · × KN . It is shown that, under

suitable conditions, the sequence {xk} converges to a solution of problem (3.28) with probability

approaching one at exponential rate as the sample size tends to infinity.

3.2.2 ERM formulation. As a natural extension of Chen and Fukushima [8], Luo and Lin

[36] present an ERM formulation for the SVIP (3.1). In a similar manner to [15], the regularized
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gap function gα : Rn × Ω → [0,∞) for (3.1) is defined by

gα(x, ω) := max
y∈K

{
(x− y)T F (x, ω)− α

2
‖x− y‖2

G

}
, (3.29)

where α is a positive parameter and G is an n×n symmetric positive definite matrix. Then the

ERM formulation for (3.1) is given as the following optimization problem:

min θ(x) := E[gα(x, ω)] =
∫

Ω
gα(x, ω)ρ(ω)dω (3.30)

s.t. x ∈ K,

where ρ : Ω → [0,∞) stands for the probability density function. In [36], the function F (x, ω)

is assumed to be affine with respect to x. It is shown that, under very mild conditions, the level

sets

LK(c) := {x ∈ K | θ(x) ≤ c}

are bounded for any c ≥ 0, which implies the existence of a solution of the ERM problem (3.30).

Furthermore, since an expectation function is generally difficult to evaluate exactly, a quasi-

Monte Carlo method for numerical integration [41] is suggested to solve (3.30). Specifically, by

generating a sample set {ω1, . . . , ωk} from Ω by a quasi-Monte Carlo method, one may construct,

for each k, an approximation to problem (3.30) as follows:

min
1
k

k∑

i=1

gα(x, ωi)ρ(ωi) (3.31)

s.t. x ∈ K.

It is shown [36] that, under some standard conditions, every accumulation point of the sequence

of optimal solutions (or stationary points) of the approximation problems (3.31) is an optimal

solution (or a stationary point) of the ERM problem (3.30).

Subsequently, Luo and Lin [37] generalize the above approach to the case where the function

F (x, ω) is nonlinear with respect to x. First, assuming that the underlying sample space is a

compact set, it is shown that the conclusions established in [36] remain valid for the nonlinear

case. For the case where the sample space Ω is unbounded, the following approximation to

problem (3.30) is considered:

min θν(x) :=
∫

Ων

gα(x, ω)ρ(ω)dω (3.32)

s.t. x ∈ K,

where ν > 0 is a parameter and

Ων := {ω ∈ Ω | ‖ω‖ ≤ ν}
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is a compact approximation of Ω. Since problem (3.32) has a compact sample space, one may

employ the above-mentioned method to solve it. It is shown that, for any sequence {νk} tending

to infinity, every accumulation point of the sequence of optimal solutions to the corresponding

problems (3.32) is an optimal solution of the ERM problem (3.30) under some conditions.

In general, an optimization problem obtained through the ERM formulation of SVIP is not

necessarily convex, and hence it may be difficult to obtain a global optimal solution. In this

respect, it is important and interesting to investigate conditions that guarantee the convexity

of ERM problems. Agdeppa et al. [1] consider an affine SVIP, which is to find x∗ ∈ K(ω) such

that

(x− x∗)T F (x∗, ω) ≥ 0, ∀x ∈ K(ω), (3.33)

where F (x, ω) := M(ω)x + q(ω) with M : Ω → <n×n and q : Ω → <n, and K(ω) := {y ∈
<n | A(ω)y = b(ω), y ≥ 0} with A : Ω → <m×n and b : Ω → <m. It is shown that the

regularized gap function gα defined by (3.29) and the D-gap function of the form

ĝα(x, ω) = g1/α(x, ω)− gα(x, ω),

where α > 1, are (strongly) convex under suitable conditions on M(ω) and α. In consequence,

the corresponding ERM formulation defined by gα or ĝα is a convex program and hence a global

optimal solution may be obtained by using standard optimization methods. Applications of the

affine SVIP (3.33) to traffic equilibrium problems under uncertainty are also illustrated in [1].

Luo and Lin [38] consider an SVIP with additional constraints, which is to find a vector

x∗ ∈ K satisfying

(x− x∗)T F (x∗, ω) ≥ 0, ∀x ∈ K, ω ∈ Ω a.s., (3.34)

and

u(x∗) ≤ 0, v(x∗) = 0, (3.35)

where u : <n → <p and v : <n → <q are smooth but not necessarily convex. Since the VIP is

a generalization of a system of equations, the deterministic counterpart of (3.34)–(3.35) may be

regarded as a generalization of constrained nonlinear equations, see for example [23]. Similarly

to Luo and Lin [36, 37], since the system (3.34)–(3.35) may have no solution in general, the

regularized gap function gα defined by (3.29) is used to formulate the following ERM problem

associated with (3.34)–(3.35):

min E[gα(x, ω)]

s.t. x ∈ K, (3.36)

u(x) ≤ 0, v(x) = 0.
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Quasi-Monte Carlo methods for solving (3.36) are considered in [38]. In addition, as an appli-

cation of the SVIP with additional constraints, a supply chain network with random demands

treated in [12] is further considered in [38]. The main difference between [12] and [38] is that

Luo and Lin [38] discuss the case where the outputs are limited by the production scale or raw

materials supply and hence the equilibrium conditions for the model in [38] are formulated as an

SVIP in the form of (3.34)–(3.35), whereas the SVIP formulation established in [12] is essentially

an SNCP.

4 Stochastic Mathematical Programs with Equilibrium Con-
straints

An SMPEC can be formulated as

min E[f(x, y, ω)]

s.t. (x, y) ∈ Z ⊆ <n+m, (4.1)

y solves VI(C(x, ω), F (x, ·, ω)), ω ∈ Ω a.s.

corresponding to (1.1), or

min E[f(x, y, ω)]

s.t. (x, y) ∈ Z ⊆ <n+m, (4.2)

y ≥ 0, F (x, y, ω) ≥ 0, yT F (x, y, ω) = 0, ω ∈ Ω a.s.

corresponding to (1.2). In what follows, we restrict ourselves to the SMPEC of the form (4.2).

Problem (4.1) may be dealt with in a similar manner by replacing the SVIP constraints by

its Karush-Kuhn-Tucker representation [13]. Since an MPEC is already very hard to handle,

SMPECs are generally more difficult to deal with because the number of elements in the sample

space is usually very large or even infinite in practice.

Note that problem (4.2) has no feasible solution in general, and hence it is not a well-defined

problem yet. Therefore, as in the study of SVIP and SNCP, the first task is to develop an

appropriate deterministic formulation for (4.2). Two kinds of SMPECs are introduced in the

unpublished paper [28] (see also [30]): One is called a “here-and-now” model, in which both the

upper-level decision x and the lower-level decision y are required to be made before a random

event is observed. The other is an “upper-level here-and-now and lower-level wait-and-see”

model, in which the upper-level decision x is made at once and the lower-level decision y may

be made after a random event is observed. For brevity, this model will simply be called a
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“lower-level wait-and-see” model. The difference between a here-and-now model and a lower-

level wait-and see model is illustrated at the end of Example 2.2 in Section 2. We next review

some recent developments for these models individually.

4.1 Here-and-now model with recourse

In the here-and-now case, for a given upper-level decision x, the lower-level decision y is required

to satisfy the complementarity constraints for almost all ω in Ω. However, such a vector y does

not exist in general. In order to get a reasonable resolution, Lin et al. [28, 30] introduce recourse

variables z(ω) ≥ 0, ω ∈ Ω, and present a here-and-now model with recourse as follows:

min
x,y,z(·)

E[f(x, y, ω) + dT z(ω)]

s.t. (x, y) ∈ Z,

y ≥ 0, F (x, y, ω) + z(ω) ≥ 0, (4.3)

yT (F (x, y, ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.s.,

where d ∈ <m is a weight vector with positive components. The SMPEC formulation (3.14) for

SNCP is obviously a special case of the here-and-now model with recourse. Note that, although

the feasibility issue is resolved, problem (4.3) is still not easy to deal with, because of the recourse

variables in addition to the stochastic equilibrium constraints.

Lin et al. [30] focus on the here-and-now model with stochastic linear complementarity

constraints

min
x,y,z(·)

E[f(x, y, ω) + dT z(ω)]

s.t. g(x) ≤ 0, h(x) = 0,

y ≥ 0, N(ω)x + M(ω)y + q(ω) + z(ω) ≥ 0, (4.4)

yT (N(ω)x + M(ω)y + q(ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.s.

First, suppose that the sample space is a finite set, i.e., Ω = {ω1, ω2, . . . , ωL}, and that, for each

ωl ∈ Ω, its probability pl is known and positive. Then, by letting

N :=
L∑

l=1

N(ωl), M :=
L∑

l=1

M(ωl), q :=
L∑

l=1

q(ωl),
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problem (4.4) is rewritten as

min
x,y,z(ω1),...,z(ωL)

L∑

l=1

pl

(
f(x, y, ωl) + dT z(ωl)

)

s.t. g(x) ≤ 0, h(x) = 0, z(ωl) ≥ 0,

N(ωl)x + M(ωl)y + q(ωl) + z(ωl) ≥ 0, l = 1, . . . , L, (4.5)

u = Nx + My + q +
∑L

j=1z(ωj),

φFB(yi, ui) = 0, i = 1, . . . , m,

where φFB is the Fischer-Burmeister function defined in (3.4). As pointed out in [30], problem

(4.5) fails to satisfy the MPEC-linear independence constraint qualification (MPEC-LICQ),

which is often assumed in the literature on MPEC. Hence, besides the intractability due to a

large number of variables, problem (4.5) is in some sense more difficult than an ordinary MPEC.

A combined smoothing implicit programming and penalty method presented in [30] for solving

the ill-posed MPEC (4.5) is described as follows: Suppose that M is a P0 matrix, that is, all the

principal minors are nonnegative. Then, for any µ > 0, the matrix M + µI is a P matrix, that

is, all the principal minors are positive; see [11, 13] for details about P0 and P matrices. As a

result, for any µ > 0 and any fixed (x, z(ω1), . . . , z(ωL)), the following system of equations has

a unique solution:

u = Nx + (M + µI)y + q +
∑L

j=1z(ωj), (4.6)

φµ
FB(yi, ui) = 0, i = 1, . . . ,m, (4.7)

where φµ
FB denotes the smoothed Fischer-Burmeister function defined by

φµ
FB(a, b) := a + b−

√
a2 + b2 + 2µ2. (4.8)

Let (yµ(x,
∑L

j=1z(ωj)), uµ(x,
∑L

j=1z(ωj))) be the unique solution of (4.6)–(4.7). Note that it is

continuously differentiable with respect to (x, z(ω1), . . . , z(ωL)). Applying a penalty technique,

we obtain the following approximation problem of (4.5):

min
x,z(ω1),...,z(ωL)

L∑

l=1

pl

(
f(x, yµ(x,

∑L
j=1z(ωj)), ωl) + dT z(ωl)

)

+ ρ
L∑

l=1

ϕ(−(N(ωl)x + M(ωl)yµ(x,
∑L

j=1z(ωj)) + q(ωl) + z(ωl))) (4.9)

s.t. g(x) ≤ 0, h(x) = 0, z(ωl) ≥ 0, l = 1, . . . , L,

where ρ is a positive parameter and ϕ : <m → [0, +∞) is a smooth penalty function. Problem

(4.9) is a standard smooth nonlinear programming problem and, under some suitable conditions,

it is a convex program. Therefore, problem (4.9) may be relatively easy to solve, provided that

20



the evaluation of the implicit function yµ(x,
∑L

j=1z(ωj)) is not very expensive. It is shown in

[30] that, under suitable conditions, every accumulation point of the sequence of local optimal

solutions (or stationary points) of the approximation problems (4.9) is a local optimal solution

(or a C-stationary point) of the MPEC (4.5).

In [30], problem (4.4) with continuous random variables is also studied. For this case,

the quasi-Monte Carlo methods for numerical integration [41] are employed to discretize (4.4).

Comprehensive convergence analysis is established as well.

Lin and Fukushima [31, 32] consider the following here-and-now model with recourse:

min
x,y,z(·)

f(x, y) + E[dT z(ω)]

s.t. g(x, y) ≤ 0, h(x, y) = 0,

y ≥ 0, N(ω)x + M(ω)y + q(ω) + z(ω) ≥ 0, (4.10)

yT (N(ω)x + M(ω)y + q(ω) + z(ω)) = 0,

z(ω) ≥ 0, ω ∈ Ω a.s.

In [31], by making use of the duality theorem in nonlinear programming theory, the recourse

variables are removed from problem (4.10). As a result, the following problem equivalent to

(4.10) is obtained:

min
x,y

f(x, y) + E[Q(x, y, ω)] (4.11)

s.t. g(x, y) ≤ 0, h(x, y) = 0, y ≥ 0,

where Q : <n+m × Ω → [0,+∞] is defined by

Q(x, y, ω) := sup
u+ty≤d, u≥0, t≤0

−(u + ty)T (N(ω)x + M(ω)y + q(ω)).

Since the function Q may not be finite-valued everywhere, it is further shown that (4.11) is

equivalent to

min
x,y

f(x, y) + E[dT (−F (x, y, ω))+]

s.t. g(x, y) ≤ 0, h(x, y) = 0, y ≥ 0, (4.12)

y ◦ F (x, y, ω) ≤ 0, ω ∈ Ω a.s.

In [31], the sample space Ω is assumed to be a finite set {ω1, ω2, . . . , ωL}. Noticing that the

objective function in (4.12) is not differentiable everywhere and the problem has a great many

constraints because L is usually very large in practice, the function 1
2(
√

t2 + ε2 + t) with a small

ε > 0 is used to approximate the function (t)+ := max(t, 0) and a penalty technique is employed
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to deal with the constraints. Then, a smoothing penalty method is presented for solving (4.12).

See [31] for details about convergence of the method.

Subsequently, Lin and Fukushima [32] study the equivalent problem (4.11) of (4.10) from

another viewpoint. Note that, for any fixed ω ∈ Ω, the function Q(·, ·, ω) may be neither finite-

valued nor differentiable everywhere. To construct an appropriate smooth approximation of

this function, one may define the function Qε(·, ·, ω) : <n × <m → [0, +∞) for a given positive

parameter ε and fixed ω ∈ Ω as follows:

Qε(x, y, ω) := max
u+ty≤d, u≥0, t≤0

{
− (u + ty)T (N(ω)x + M(ω)y + q(ω))− ε

2
(t2 + ‖u‖2)

}
.

By the convex programming theory, any Karush-Kuhn-Tucker point of the problem

min
u,t

(u + ty)T (N(ω)x + M(ω)y + q(ω)) +
ε

2
(t2 + ‖u‖2) (4.13)

s.t. u + ty ≤ d, u ≥ 0, t ≤ 0

must be an optimal solution and, since ε > 0, problem (4.13) indeed has a unique optimal

solution. This indicates that the function Qε(·, ·, ω) is well-defined for each ω ∈ Ω. It is further

shown that Qε(·, ·, ω) is differentiable everywhere and

∇(x,y)Q
ε(x, y, ω) = −[ N(ω),M(ω) ]T (uε(x, y, ω) + tε(x, y, ω)y)

− tε(x, y, ω)
(

0
N(ω)x + M(ω)y + q(ω) + ζε(x, y, ω)

)
,

where (uε(x, y, ω), tε(x, y, ω)) is the unique solution of problem (4.13) and ζε(x, y, ω) is a corre-

sponding Lagrangian multiplier vector. Thus, the problem

min
x,y

f(x, y) + E[Qε(x, y, ω)]

s.t. g(x, y) ≤ 0, h(x, y) = 0, y ≥ 0

is a smooth approximation of problem (4.11). A regularization method based on the above idea

is proposed. See [32] for more details.

4.2 Here-and-now models without recourse

Birbil et al. [2] present another here-and-now model

min
x,y

E[f(x, y, ω)]

s.t. (x, y) ∈ Z, (4.14)

y ≥ 0, E[F (x, y, ω)] ≥ 0, yTE[F (x, y, ω)] = 0,
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in which the lower-level decisions y are made so as to satisfy the complementarity constraints

‘on average’. A sample-path method similar to the one given in [18] for dealing with SVIP is

suggested to solve problem (4.14). Specifically, possibly by using Monte Carlo methods, some

sequences {fk} and {F k} of functions are generated so that they converge almost surely to the

functions E[f(·, ·, ω)] and E[F (·, ·, ω)], respectively. Then, a sequence of deterministic problems

min fk(x, y)

s.t. (x, y) ∈ Z, (4.15)

y ≥ 0, F k(x, y) ≥ 0, yT F k(x, y) = 0

is solved to get an estimate of the true solution of problem (4.14). As usual, sensitivity analysis

related to the deterministic approximation problems plays an important role in convergence

analysis of the sample-path methods. In [2], in order to provide theoretical support for the

convergence of the proposed sample-path method, some sufficient conditions are given under

which the approximation problems (4.15) have solutions almost surely and the corresponding

approximate solutions are close to the true solution of (4.14) when the simulation run length is

sufficiently large. An application related to toll pricing in a transportation network is discussed

as well.

Meng and Xu [40] consider the following problem:

min E[f(z, ω)]

s.t. z ∈ Z, (4.16)

E[F (z, ω)] ≥ 0, E[G(z, ω)] ≥ 0, E[F (z, ω)]TE[G(z, ω)] = 0,

which is a generalization of the here-and-now model (4.14). A sample average approxima-

tion method, which is similar to the sample-path method given in [2], is proposed to solve

problem (4.16). Specifically, taking independently and identically distributed random samples

{ω1, ω2, . . . , ωk} from Ω, the problem

min
1
k

k∑

j=1

f(z, ωj)

s.t. z ∈ Z, (4.17)

1
k

k∑

j=1

F (z, ωj) ≥ 0,
1
k

k∑

j=1

G(z, ωj) ≥ 0,

[
1
k

k∑

j=1

F (z, ωj)
]T [

1
k

k∑

j=1

G(z, ωj)
]

= 0

is solved to get a weak stationary point; see [48] for various stationarity concepts for MPEC.

It is shown in [40] that, under suitable conditions, the generated sequence converges to a weak

stationary point of (4.16) with probability approaching one at exponential rate as the sample

size tends to infinity.

23



Lin et al. [34] study the penalty-based Monte Carlo approach for the here-and-now model

(4.14). The smoothed Fischer-Burmeister function defined in (4.8) and a penalty technique are

used to deal with the complementarity constraints. Then a Monte Carlo method is employed to

approximate the expectations. The approximation problem is given by

min
1
k

k∑

j=1

f(x, y, ωj) + ρk

m∑

i=1

φµk
FB

(
yi,

1
k

k∑
j=1

Fi(x, y, ωj)
)

(4.18)

s.t. (x, y) ∈ Z,

where ρk and µk are positive penalty and smoothing parameters, respectively. Note that problem

(4.18) does no longer contain any equilibrium constraint, whereas the approximation problems

(4.15) and (4.17) are still MPECs. Strategies for selection of the parameters ρk and µk in (4.18)

are discussed for the case where F is affine with respect to (x, y). Convergence of the proposed

approach is established in [34]. Furthermore, since quasi-Monte Carlo methods are generally

faster than Monte Carlo methods, a penalty-based quasi-Monte Carlo approach is considered as

well.

Lin et al. [29] deal with SMPEC (4.2) in a different manner. Let ψ be a given nonnegative-

valued restricted NCP function defined as in (3.12). Then problem (4.2) becomes

min E[f(x, y, ω)]

s.t. (x, y) ∈ Z, y ≥ 0,

ψ(yi, Fi(x, y, ω)) = 0, ω ∈ Ω a.s., i = 1, . . . , m.

Recall that the above problem is not well-defined because its feasible region is generally empty.

Therefore, a penalty technique is employed to present a deterministic formulation as follows:

min E
[
f(x, y, ω) + ρ

m∑

i=1

ψ(yi, Fi(x, y, ω))
]

(4.19)

s.t. (x, y) ∈ Z, y ≥ 0,

where ρ > 0 is a penalty parameter. Unlike the here-and-now models presented in [28, 30]

and [2], problem (4.19) is no longer an MPEC and hence it may be relatively easy to deal with.

Algorithms based on sample average approximations can be developed to solve (4.19). Moreover,

when x and f are not present and Z is the whole space, problem (4.19) reduces to the ERM

formulation (3.13) for SNCP.
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4.3 Lower-level wait-and-see model

The lower-level wait-and-see model can be formulated as follows:

min
x,y(·)

E[f(x, y(ω), ω)]

s.t. (x, y(ω)) ∈ Z, (4.20)

y(ω) ≥ 0, F (x, y(ω), ω) ≥ 0,

y(ω)T F (x, y(ω), ω) = 0, ω ∈ Ω a.s.

This model is discussed in Patriksson and Wynter [44], where the existence of a solution of

the model (4.20) is studied and some results on convexity and directional differentiability of

the implicit upper-level objective function are given. The links between (4.20) and two-stage

stochastic programs with recourse are discussed and some suggestions on algorithms for solving

(4.20) are made.

For the case of a finite sample space Ω = {ω1, . . . , ωL}, Lin et al. [28] deal with the problem

min
x,y(ω1),...,y(ωL)

L∑

l=1

plf(x, y(ωl), ωl)

s.t. g(x) ≤ 0, h(x) = 0, (4.21)

y(ωl) ≥ 0, N(ωl)x + M(ωl)y + q(ωl) ≥ 0,

y(ωl)T (N(ωl)x + M(ωl)y + q(ωl)) = 0, l = 1, . . . , L,

in a similar manner to [30] for the here-and-now model (4.4) described in Subsection 4.1. Specif-

ically, by using the Fischer-Burmeister function φFB, problem (4.21) is rewritten as

min
x,y(ω1),...,y(ωL)

L∑

l=1

plf(x, y(ωl), ωl)

s.t. g(x) ≤ 0, h(x) = 0, (4.22)

φFB(yi(ωl), [N(ωl)x + M(ωl)y(ωl) + q(ωl)]i) = 0,

i = 1, . . . , m, l = 1, . . . , L.

Suppose that pl is positive and M(ωl) is a P0-matrix for each l, and let µ > 0 be a smoothing

parameter. Then the system of equations

φµ
FB(yi(ωl), [N(ωl)x + (M(ωl) + µI)y(ωl) + q(ωl)]i) = 0, i = 1, . . . , m,

where φµ
FB is the smoothed Fischer-Burmeister function defined in (4.8), has a unique solution

yl
µ(x) for each fixed x. Moreover, yl

µ(·) is a continuously differentiable function. Applying to
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(4.22), one obtains the following approximation problem:

min
x

L∑

l=1

plf(x, yl
µ(x), ωl) (4.23)

s.t. g(x) ≤ 0, h(x) = 0.

Note that, unlike the method given in [30] for problem (4.4), penalty techniques are not required

in dealing with problem (4.21). Convergence of the proposed method is established.

Xu [53] studies a supply side oligopoly market consisting of a leader and several follow-

ers with random demands. Such a game is known as a stochastic Stackelberg-Nash-Cournot

game. Suppose that the demand is not realized at the time when the leader makes his decision.

Then the leader’s purpose is to maximize his expected profit based on his knowledge of the

distribution of demand and the followers’ reactions in each scenario. The Stackelberg-Nash-

Cournot equilibrium, in which the leader chooses an optimal supply to maximize his expected

profit and the followers react to the leader’s choice to reach a Nash-Cournot equilibrium, of the

market can be formulated as a stochastic bilevel programming problem. By reformulating the

lower-level problem as a stochastic complementarity problem, the stochastic Stackelberg-Nash-

Cournot equilibrium problem is transformed into an SMPEC in the form of (4.20). Properties

of the followers’ Nash-Cournot equilibrium and existence of the stochastic Stackelberg-Nash-

Cournot equilibrium are investigated. Furthermore, for the discrete case, a smoothing approach

based on the smoothed Fischer-Burmeister function is suggested and, for the continuous case,

a discretization approach based on implicit numerical integration is proposed. In addition, a

stochastic Stackelberg-Nash-Cournot equilibrium problem with two leaders is discussed as well.

Xu [54] considers the following special case of the model (4.20):

min
x,y(·)

E[f(x, y(ω), ω)]

s.t. x ∈ X, (4.24)

y(ω) ≥ 0, F (x, y(ω), ω) ≥ 0,

y(ω)T F (x, y(ω), ω) = 0, ω ∈ Ω a.s.

The approach suggested in [54] may be regarded as an extension of [28] from the discrete and

linear case to the continuous and nonlinear case. The Fischer-Burmeister function φFB is used

to rewrite problem (4.24) as follows:

min
x,y(·)

E[f(x, y(ω), ω)]

s.t. x ∈ X, (4.25)

φFB(yi(ω), Fi(x, y(ω), ω)) = 0, i = 1, . . . , m.
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Under the assumption that the function F (x, y, ω) is uniformly strongly monotone in y and

uniformly locally Lipschitz continuous in x, it is shown that the system of equations

φFB(yi(ω), Fi(x, y(ω), ω)) = 0, i = 1, . . . ,m,

defines an implicit function y(x, ω) that is piecewise smooth in x, whereas the system of equations

φµ
FB(yi(ω), Fi(x, y(ω), ω)) = 0, i = 1, . . . ,m,

defines an implicit function yµ(x, ω) that is smooth in x. Here, µ > 0 and φµ
FB is the smoothed

Fischer-Burmeister function. Based on the above results, two implicit programming models

min
x

E[f(x, y(x, ω), ω)] (4.26)

s.t. x ∈ X,

which is equivalent to problem (4.25), and

min
x

E[f(x, yµ(x, ω), ω)]

s.t. x ∈ X,

which is a smooth approximation of problem (4.25), are investigated. In addition, a deterministic

discretization method, in which a set of grid points is chosen from the support set of ω and the

stochastic complementarity constraints are replaced by a set of complementarity constraints

with ω taking values at these grid points, is presented. Limiting behavior of Clarke stationary

points of the approximation problems is also discussed.

Shapiro [49] considers a class of SMPECs of the form4

min
x

E[ϑ(x, ω)] (4.27)

s.t. x ∈ X.

Here ϑ(x, ω) is the optimal value of the following optimization problem with x and ω fixed:

min
y

f(x, y, ω) (4.28)

s.t. 0 ∈ H(x, y, ω) +NC(x,ω)(y),

where f : <n×<m×Ω → <, H : <n×<m×Ω → <s, C : <n×Ω → 2<m
, and NC(x,ω)(y) denotes

the normal cone to the set C(x, ω) at y. The constraints of (4.28) is a so-called generalized

equation, which is essentially equivalent to a VIP, provided that C(x, ω) ≡ K with K being a
4In [49], problem (4.27) is referred to as a ‘here-and-now’ type problem. According to the categorization in the

present paper, however, this problem is actually a ‘lower-level wait-and-see’ model, since the lower-level decision
y is determined as a solution of problem (4.28) that depends not only x but also ω.
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closed convex set. In [49], the measurability of the function ϑ(x, ·) and the continuity of the

objective function of (4.27) are studied.

Even a crude discretization of the sample space yields an exponential number of scenarios

with respect to its dimension, and hence the discretized problems can easily become unmanage-

able when the number of random parameters increases. Shapiro and Xu [50] study the sample

average approximation approach, which uses the Monte Carlo sampling techniques to reduce

the set of considered scenarios to a manageable level, for solving problem (4.27)–(4.28) with

C(x, ω) ≡ K for a closed convex set K. Under the assumption that the optimization problem

(4.28) has a unique solution y(x, ω) for every x in X and almost all ω in Ω, problem (4.27)–(4.28)

is rewritten as

min
x

E[f(x, y(x, ω), ω)] (4.29)

s.t. x ∈ X.

Then, by taking independently and identically distributed random samples {ω1, ω2, . . . , ωk} ⊆ Ω,

the following sample average approximation of problem (4.29) is obtained:

min
x

1
k

k∑

j=1

f(x, y(x, ωj), ωj) (4.30)

s.t. x ∈ X.

Convergence properties of the sample average approximation method is investigated in [50].

In particular, it is shown that, under some reasonable assumptions, stationary points of the

approximation problems (4.30) almost surely converge to stationary points of problem (4.29).

Furthermore, based on the large deviation theory, uniform exponential convergence of the sample

average approximations is shown under additional assumptions.

5 Concluding Remarks

In principle, any problem involving uncertain or stochastic data can hardly be of practical use

unless it is formulated as a deterministic problem, and it is where a variety of ideas come into

play. In stochastic programming [3, 22], two-stage stochastic programming with recourse and

chance-constrained programming are, among others, popular vehicles for constructing determin-

istic models, for which rich theory and many practical algorithms have been developed for half

a century. For CP and VIP, the study on their stochastic counterparts is much more recent

and much less abundant than stochastic programming. Moreover, although SMPEC certainly

constitutes a subclass of stochastic programming problems, it is much more complicated struc-

turally than the standard stochastic programming problem since its deterministic counterpart is
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already of bilevel nature. As we have seen in the previous sections, several formulations and so-

lution methods have been proposed to deal with those problems. However, the results obtained

so far are by no means satisfactory and there remains much room to be done. It should be em-

phasized that, in general, different deterministic formulations may yield different solutions and

hence have different implications. Therefore, it would be particularly important to clarify the

characteristics of each formulation from various aspects, so that one can find the most suitable

formulation for a practical application at hand.
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