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Abstract. We consider an optimization reformulation approach for the generalized Nash equi-
librium problem (GNEP) that uses the regularized gap function of a quasi-variational inequality
problem (QVIP). The regularized gap function for QVIP is in general not differentiable, but
only directionally differentiable. Moreover, a simple condition has yet to be established, under
which any stationary point of the regularized gap function solves the QVIP. We tackle these
issues for the GNEP in which the shared constraints are given by linear equalities, while the
individual constraints are given by convex inequalities. First, we formulate the minimization
problem involving the regularized gap function, and show the equivalence to GNEP. Next, we
establish the differentiability of the regularized gap function and show that any stationary point
of the minimization problem solves the original GNEP under some suitable assumptions. Then,
by using a barrier technique, we propose an algorithm that sequentially solves minimization
problems obtained from GNEPs with the shared equality constraints only. Further, we discuss
the case of shared inequality constraints and present an algorithm that utilizes the transforma-
tion of the inequality constraints to equality constraints by means of slack variables. We present
some results of numerical experiments to illustrate the proposed approach.
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1 Introduction

A multi-player non-cooperative game is called the Nash equilibrium problem (NEP), if the
goal is to find a solution in which no player has any incentive to change his/her own strategy
unilaterally. The generalized Nash equilibrium problem (GNEP) is a generalization of the NEP,
in which each player’s strategy set depends on the other players’ strategies as well. A solution of
the GNEP is called a generalized Nash equilibrium (GNE). The GNEP has many applications
such as electric power market models [16, 21] and river basin pollution games [13, 18, 19].

Recently, an increasing effort has been made to develop algorithms for computing GNEs [4].
Some of them are based on the well-known fact that a NEP can be reformulated as a variational
inequality problem (VIP) if each player’s problem is a convex programming problem [5, 10, 12].
Pang and Fukushima [21] proposed an approach for GNEP that solves a sequence of VIPs
corresponding to NEPs, which are obtained by approximating the original GNEP by means of
a penalty technique. Along a similar line, Facchinei and Pang [6] proposed to use an exact
penalty function. More recently, Fukushima [9] proposed a controlled penalty method to find a
particular GNE called a restricted GNE that contains a normalized equilibrium of Rosen [22] as
a special case.

Besides penalty methods, several algorithms have been proposed for GNEPs. Facchinei,
Fischer and Piccialli [3] studied Newton-type methods for finding a normalized equilibrium by
way of a VI reformulation of the GNEP with shared constraints, while von Heusinger, Kanzow
and Fukushima [15] proposed a generalized Newton method applied to a fixed point problem
derived from the original GNEP. Nabetani, Tseng and Fukushima [20] proposed parametrized VI
approaches to GNEP, with particular emphasis on finding GNEs as many as possible. Krawczyk
and Uryasev [19] and von Heusinger and Kanzow [14], among others, proposed Nikaido-Isoda
function-type approaches to compute GNEs.

Yet another approach is based on the link between a GNEP and a quasi-variational inequal-
ity problem (QVIP). It is known that a GNEP can be reformulated as a QVIP under some
assumptions [11, 21]. The relationship between the GNEP and QVIP in Hilbert space was stud-
ied by Bensoussan [2]. Harker [11] obtained some results for problems in a finite-dimensional
Euclidean space. However, compared with the VIP, the study of the QVIP is still in its infancy,
and only a few algorithms have been proposed to solve QVIPs numerically. Fukushima [8] de-
fined the regularized gap function for a QVIP, which is an extension of the one for a VIP [7],
and showed that the QVIP can be solved by minimizing the regularized gap function. However,
there still remain some difficulties with this approach. Unlike the case of VIP, the regularized
gap function for QVIP is in general not differentiable, but only directionally differentiable [8].
Moreover, for VIP, under some monotonicity assumption, it is proved that any stationary point
of the regularized gap function solves the VIP [8]. However, such a simple condition for the
QVIP has yet to be established.

In this paper, we focus on the GNEP in which the shared constraints are given by linear
equalities, while the individual constraints are given by convex inequalities. First, we formulate
the minimization problem with the regularized gap function, and show the equivalence between
this minimization problem and the GNEP. Next, we establish the differentiability of the reg-
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ularized gap function and show that any stationary point of the minimization problem solves
the original GNEP under suitable assumptions. Then, by using a barrier technique, we pro-
pose an algorithm that sequentially solves minimization problems obtained from GNEPs with
the shared equality constraints only. Further, we discuss the case of shared inequality con-
straints and present an algorithm that utilizes the transformation of inequality constraints to
equality constraints by means of slack variables. Finally, we present some results of numerical
experiments to illustrate the proposed approach.

We use the following notation throughout the paper. For vectors x, y ∈ Rn, the inner product
is denoted by 〈x, y〉 := x>y, where > denotes transposition. For a vector x ∈ Rn, the Euclidean
norm is denoted by ‖x‖ :=

√
〈x, x〉. For a transposed vector comprised of several subvectors,

we use a simplified notation (x1, x2, . . . , xN )> instead of ((x1)>, (x2)>, . . . , (xN )>)>.

2 Generalized Nash Equilibrium Problem

Consider an N -person non-cooperative game in which each player’s strategy set depends on the
other players’ strategies. Specifically, let each player ν solve the following optimization problem
for xν with x−ν treated as exogenous:

P ν(x−ν) :
minimize

xν
θν(xν , x−ν)

subject to xν ∈ Sν(x−ν) ⊆ Rnν ,

where

x := (xν)N
ν=1 ∈ Rn, x−ν := (xν′)N

ν′=1,ν′ 6=ν ∈ Rn−ν , n :=
N∑

ν=1

nν , n−ν := n− nν .

Here, xν ∈ Rnν denotes the strategy of player ν, and x−ν ∈ Rn−ν denotes the vector formed
by the strategies of all players except player ν. The objective function θν : Rnν × Rn−ν → R of
player ν is assumed to be a differentiable convex function for any fixed x−ν . Player ν’s strategy
set Sν(x−ν) ⊆ Rnν is a convex set, and depends on the other player’s strategies. Thus, each
player’s problem is a convex programming problem.

A GNE is then defined to be a tuple x∗ := (x∗,ν)N
ν=1 such that x∗,ν is an optimal solution of

the following optimization problem for each ν = 1, . . . , N :

P ν(x∗,−ν) :
minimize

xν
θν(xν , x∗,−ν)

subject to xν ∈ Sν(x∗,−ν).
(1)

This means that, when each player ν chooses the strategy x∗,ν , no player has any incentive to
change his/her strategy unilaterally.

In particular, if each player’s strategy set does not depend on the other players’ strategies,
then a GNE reduces to the classical Nash equilibrium.
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3 Reformulation of GNEP as QVIP

Define the vector-valued function F : Rn → Rn and the point-to-set mapping S : Rn ⇒ Rn by

F (x) := (F ν(x))N
ν=1 :=

(∇xνθν(xν , x−ν)
)N

ν=1
∈ Rn, (2)

S(x) :=
N∏

ν=1

Sν(x−ν) ⊆ Rn.

By assumption, problem (1) is a convex programming problem for each ν. Therefore, x∗,ν is an
optimal solution of (1) if and only if x∗,ν is a stationary point of the function θν(·, x∗,−ν) on the
set S(x∗,−ν), that is, x∗,ν satisfies

x∗,ν ∈ Sν(x∗,−ν)

and
〈∇xνθν(x∗,ν , x∗,−ν), xν − x∗,ν〉 ≥ 0, ∀xν ∈ S(x∗,−ν).

Thus, the GNEP defined in Section 2 is equivalent to finding a vector x∗ ∈ Rn such that
x∗ ∈ S(x∗) and

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ S(x∗). (3)

This type of problem is called a quasi-variational inequality problem (QVIP). In particular, if
S(x) = Ŝ for all x, where Ŝ is a nonempty closed convex set, then QVIP (3) reduces to a
variational inequality problem (VIP).

4 A Merit Function for QVIP

Generally, a merit function of an equilibrium problem refers to a nonnegative-valued function f

such that x is a solution of the problem if and only if f(x) = 0 and x satisfies the constraints
of the problem. The equilibrium problem can be reformulated as an equivalent optimization
problem by means of a merit function.

For VIPs, there have been several proposals of merit functions, such as the gap function [1]
and the regularized gap function [7], and the properties of those functions have been studied
extensively. Let F : Rn → Rn and Ŝ ⊆ Rn be a nonempty closed convex set. Consider the VIP
of finding a vector x∗ ∈ Ŝ such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ Ŝ. (4)

The regularized gap function f̂ : Rn → R for VIP (4) is defined by

f̂(x) := − inf
y

{
〈F (x), y − x〉+

1
2
〈y − x,H(y − x)〉

∣∣∣∣ y ∈ Ŝ

}
, (5)

where H is an n × n symmetric positive definite matrix. The minimization problem on the
right-hand side of (5) is a convex programming problem, and it has a unique optimal solution
for any given x. Denote this optimal solution by ŷ(x). The regularized gap function f̂ has the
following properties [7].
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Theorem 4.1. For each x ∈ Ŝ, we have f̂(x) ≥ 0. Moreover, x solves VIP (4) if and only if
f̂(x) = 0 and x ∈ Ŝ.

Therefore, VIP (4) can be reformulated as the following optimization problem:

minimize f̂(x)

subject to x ∈ Ŝ.
(6)

Moreover, the function f̂ possesses some favorable properties as shown in the next theorem [7].

Theorem 4.2. Suppose that the function F : Rn → Rn is continuous. Then the regularized gap
function f̂ : Rn → R defined by (5) is continuous. Moreover, if F is continuously differentiable,
then f̂ is also continuously differentiable, and the gradient of f̂ at x is given by

∇f̂(x) = F (x)− (∇F (x)−H)(ŷ(x)− x).

In particular, when ∇F (x) is positive definite for all x, any stationary point of the minimization
problem (6), i.e. any point that satisfies the first-order optimality condition, solves VIP (4).

For QVIP (3), an extension of the regularized gap function is proposed by Fukushima [8].
This function, also called the regularized gap function for the QVIP, is defined by

f(x) := − inf
y

{
〈F (x), y − x〉+

1
2
〈y − x,H(y − x)〉

∣∣∣∣ y ∈ S(x)
}

, (7)

where H is a symmetric positive definite matrix. Let the set X ⊆ Rn be defined by

X := {x ∈ Rn | x ∈ S(x)},
which is called the feasible set of QVIP (3). Similarly to VIP, for any x ∈ X, the minimization
problem on the right-hand side of (7) is a convex programming problem, and it has a unique
optimal solution for any x. We denote this optimal solution by y(x). Then the regularized gap
function f is written as

f(x) = −〈F (x), y(x)− x〉 − 1
2
〈y(x)− x,H(y(x)− x)〉.

The following result holds [8].

Theorem 4.3. For each x ∈ X, we have f(x) ≥ 0. Moreover, x solves QVIP (3) if and only if
f(x) = 0 and x ∈ X.

This theorem indicates that QVIP (3) can be reformulated as the following optimization problem:

Q :
minimize f(x)

subject to x ∈ X.

That is, the function f is a merit function of QVIP (3). Unfortunately, unlike the case of VIP,
the regularized gap function f for QVIP is in general not differentiable, but only directionally
differentiable when the function F is differentiable. Moreover, even if ∇F (x) is positive definite
at any stationary point x of problem Q, it does not imply that x solves the original QVIP. In the
next section, we will explore the possibility of avoiding these difficulties with the gap function
approach for a class of GNEPs.
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5 GNEP with Shared Equality Constraints and Barrier Method

Consider the GNEP with player ν’s problem:

minimize
xν

θν(xν , x−ν)

subject to 〈aν
i , x

ν〉 = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m,

hν
j (x

ν) ≤ 0, j = 1, . . . , lν .

(8)

Notice that the shared constraints are given by equalities, while the individual constraints are
given by inequalities. We denote this GNEP as P .

In the remainder of this paper, we make the following assumption:

Assumption 5.1. θν( · , x−ν) : Rnν → R is a twice continuously differentiable convex function
for any fixed x−ν ∈ Rn−ν , and hν

j : Rnν → R, j = 1, . . . , lν are twice continuously differentiable
convex functions.

We apply a barrier technique to the individual inequality constraints, thereby reformulating
the GNEP into another GNEP with the shared equality constraints only. We then develop an
optimization approach using the regularized gap function for the QVIP derived from the latter
GNEP. Note that the proposed barrier method incorporates each player’s individual constraints
in the objective function by using the barrier function. This is different from the common
approach where the penalty technique is applied to the shared constraints [6, 9, 21].

By adding the barrier term associated with the individual constraints to the objective func-
tion, problem (8) is approximated by the following problem:

minimize
xν

θν(xν , x−ν)− ρ

lν∑

j=1

log(−hν
j (x

ν))

subject to 〈aν
i , x

ν〉 = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m,

(9)

where ρ > 0 is a barrier parameter. Let Pρ denote the GNEP with each player’s problem given
by (9). Since problem (9) is a convex programming problem, GNEP Pρ can be reformulated as
the following QVIP: Find a vector x ∈ S0(x) ∩Σ0 such that

〈F (x)− ρE(x), y − x〉 ≥ 0, ∀y ∈ S0(x), (10)

where the function F is defined by (2), and Σ0 ⊆ Rn, E : Σ0 → Rn and S0 : Rn ⇒ Rn are defined
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by

Σ0 :=
N∏

ν=1

{
xν

∣∣ hν
j (x

ν) < 0, j = 1, . . . , lν
}

,

E(x) :=




lν∑

j=1

∇hν
j (x

ν)
hν

j (xν)




N

ν=1

, (11)

S0(x) :=
N∏

ν=1





yν

∣∣∣∣∣∣∣
〈aν

i , y
ν〉 = bi −

N∑

ν′=1
ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m





,

respectively. Then, the regularized gap function for this problem is defined by

fρ(x) := − inf
{
〈F (x)− ρE(x), y − x〉+

1
2
〈y − x,H(y − x)〉

∣∣∣∣ y ∈ S0(x)
}

. (12)

Note that the function fρ is defined only on the open set Σ0. By letting fρ(x) = +∞ ∀x 6∈ Σ0,
GNEP Pρ is reformulated as the minimization problem

Qρ :
minimize fρ(x)

subject to x ∈ X0,

where the set X0 ⊆ Rn is defined by

X0 :=

{
x

∣∣∣∣∣ bi −
N∑

ν=1

〈aν
i , x

ν〉 = 0, i = 1, . . . , m

}
.

This fact is formally stated as follows.

Theorem 5.1. For each x ∈ X0, we have fρ(x) ≥ 0. Moreover, x solves QVIP (10) if and only
if fρ(x) = 0 and x ∈ X0.

Now we consider the differentiability of the function fρ. Let y(x) denote the unique solution
of the optimization problem on the right-hand side of (12).

Lemma 5.1. If x ∈ X0, then y(x) ∈ X0.

Proof. Since y(x) ∈ S0(x), for each ν = 1, . . . , N , yν(x) satisfies

〈aν
i , y

ν(x)〉 = bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . ,m. (13)

Since x ∈ X0 by assumption, we have

bi −
N∑

ν=1

〈aν
i , x

ν〉 = 0, i = 1, . . . ,m. (14)

Hence, by (13) and (14), for each ν = 1, . . . , N , we obtain

〈aν
i , x

ν〉 = 〈aν
i , y

ν(x)〉, i = 1, . . . , m. (15)

7



Therefore, by (14) and (15), we have

0 = bi −
N∑

ν=1

〈aν
i , x

ν〉 = bi −
N∑

ν=1

〈aν
i , y

ν(x)〉, i = 1, . . . , m,

which implies y(x) ∈ X0. ¥

The following theorem shows that the function fρ is directionally differentiable in general;
moreover it is differentiable under suitable assumptions.

Theorem 5.2. The function fρ defined by (12) is directionally differentiable at every x ∈ Σ0

along any direction d ∈ Rn, and the directional derivative is given by

f ′ρ(x; d) = min
µ∈M(x)

{
〈(F (x)− ρE(x))− (∇F (x)− ρ∇E(x)−H)(y(x)− x), d〉

−
m∑

i=1

N∑

ν=1

µν
i 〈(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>, d〉

}
,

where M(x) ⊆ RNm consists of all vectors µ := ((µν
i )

m
i=1)

N
ν=1 ∈ RNm satisfying

F (x)− ρE(x) + H(y(x)− x) +
m∑

i=1

N∑

ν=1

µν
i (0, . . . , 0, aν

i , 0, . . . , 0)> = 0. (16)

In particular, if M(x) is a singleton, i.e.,

M(x) = {µ(x)},
then fρ is differentiable at x and the gradient of fρ at x is given by

∇fρ(x) = (F (x)− ρE(x))− (∇F (x)− ρ∇E(x)−H) (y(x)− x)

−
m∑

i=1

N∑

ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>.

Proof. The regularized gap function fρ is defined by substituting F (x) − ρE(x) for F (x) in
the definition (7) of the regularized gap function fρ. Since F (x) − ρE(x) is differentiable, the
assertion of this theorem immediately follows from [8, Theorem 3]. ¥

The next assumption ensures that the set M(x) is a singleton for any x.

Assumption 5.2. For each ν = 1, . . . , N , the vectors aν
i , i = 1, . . . , m are linearly independent.

Theorem 5.3. Let Assumption 5.2 hold. Then the function fρ is differentiable at any point
x ∈ Σ0, and its gradient is given by

∇fρ(x) = −(∇F (x)− ρ∇E(x))(y(x)− x)−
m∑

i=1

N∑

ν=1

µν
i (x)ai,

where ai := (a1
i , . . . , a

N
i )> ∈ Rn.
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Proof. By Assumption 5.2, the vectors aν
i , i = 1, . . . , m are linearly independent for each

ν = 1, . . . , N . Therefore, the vectors (0, . . . , 0, aν
i , 0, . . . , 0)> ∈ Rn, i = 1, . . . , m, ν = 1, . . . , N

are linearly independent, and M(x) has only one element µ(x). Hence, by Theorem 5.2, the
function fρ is differentiable at any point x ∈ Σ0.

Moreover, by Theorem 5.2, the gradient of fρ at x is given by

∇fρ(x) = (F (x)− ρE(x))− (∇F (x)− ρ∇E(x)−H) (y(x)− x)

−
m∑

i=1

N∑

ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>. (17)

The last term on the right-hand side of (17) is rewritten as

m∑

i=1

N∑

ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , 0, aν+1

i , . . . , aN
i )>

=
m∑

i=1

N∑

ν=1

µν
i (x)(a1

i , . . . , a
ν−1
i , aν

i , a
ν+1
i , . . . , aN

i )> −
m∑

i=1

N∑

ν=1

µν
i (x)(0, . . . , 0, aν

i , 0, . . . , 0)>

=
m∑

i=1

N∑

ν=1

µν
i (x)ai + F (x)− ρE(x) + H(y(x)− x), (18)

where the last equality follows from (16). By using (18), the formula (17) can be rewritten as

∇fρ(x) = −(∇F (x)− ρ∇E(x))(y(x)− x)−
m∑

i=1

N∑

ν=1

µν
i (x)ai.

¥

The following theorem gives a condition under which any point that satisfies the first-order
optimality condition for the optimization problem Qρ is a solution of GNEP Pρ.

Theorem 5.4. Suppose Assumption 5.2 holds. Let x ∈ X0 be a stationary point of problem Qρ,
and ∇F (x)−ρ∇E(x) be positive definite. Then x is a solution of QVIP (10), i.e., x is a solution
of GNEP Pρ.

Proof. First, note that x ∈ Σ0. By Theorem 5.2, the function fρ is differentiable at the point
x under the given assumptions. Thus, when x is a stationary point of problem Qρ, by making
use of the fact that the feasible set X0 is an affine set, we have

〈∇fρ(x), y − x〉 = 0, ∀y ∈ X0. (19)

Note that 〈ai, x〉 − bi = 0 holds by x ∈ X0. Moreover, we have y(x) ∈ X0 by Lemma 5.1, i.e.,

bi − 〈ai, y(x)〉 = 0, i = 1, . . . , m.

Hence, we have
〈ai, y(x)− x〉 = 0, i = 1, . . . ,m. (20)
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Thus, it follows from Theorem 5.3 together with (19) and (20) that

0 = 〈∇fρ(x), y(x)− x〉

= −〈(∇F (x)− ρ∇E(x))(y(x)− x) +
m∑

i=1

N∑

ν=1

µν
i (x)ai, y(x)− x〉

= −〈(∇F (x)− ρ∇E(x))(y(x)− x), y(x)− x〉 −
m∑

i=1

N∑

ν=1

µν
i (x)〈ai, y(x)− x〉

= −〈(∇F (x)− ρ∇E(x))(y(x)− x), y(x)− x〉. (21)

Moreover, since ∇F (x) − ρ∇E(x) is positive definite by assumption, we must have y(x) = x

from (21). Then, the definition (12) of fρ yields fρ(x) = 0, and x is a solution of QVIP (10)
according to Theorem 5.1. ¥

Corollary 5.1. Suppose Assumption 5.2 holds and ∇F (x) is positive definite at any point
x ∈ X0 ∩ Σ0. Then, for any ρ > 0, a stationary point x of problem Qρ is a solution of
GNEP Pρ.

Proof. By direct calculation, it follows from the definition (11) of E(x) that

∇E(x) = Diag




lν∑

j=1

(
∇2hν

j (x
ν)

hν
j (xν)

− ∇hν
j (x

ν)∇hν
j (x

ν)>

hν
j (xν)2

)


N

ν=1

,

where Diag[Bν ]Nν=1 denotes the block diagonal matrix whose block diagonal elements are Bν , ν =
1, . . . , N . Notice that each ∇2hν

j (x
ν) is positive semidefinite since hν

j is convex. This implies
that ∇E(x) is negative semidefinite for any x ∈ Σ0, since hν

j (x
ν) < 0.

Hence, ∇F (x)−ρ∇E(x) is positive definite at any x ∈ Σ0, whenever so is ∇F (x). Therefore,
Theorem 5.4 ensures that, for any ρ > 0, a stationary point of Qρ is a solution of GNEP Pρ. ¥

6 Convergence of the Barrier Method

In the previous section, we have shown that, for every fixed ρ > 0, a solution of GNEP Pρ can
be obtained by solving the minimization problem Qρ. Here we present an algorithm for solving
GNEP P by solving problems Qρ sequentially by letting the parameter ρ tend to zero.

Algorithm 6.1. Choose a positive sequence {ρk} ⊂ R tending to zero. For each k, find a
stationary point xk of the minimization problem

Qρk
:

minimize fρk
(x)

subject to x ∈ X0.

By imposing appropriate conditions, we can show that the sequence {xk} generated by
Algorithm 6.1 converges to a solution of GNEP P .
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Assumption 6.1. ∇F (x) is positive definite at any point x ∈ X0 ∩Σ0.

Theorem 6.1. Suppose that Assumptions 5.2 and 6.1 hold, and the set Σν := {xν ∈ Rnν |
hν(xν) ≤ 0} is bounded for each ν = 1, . . . , N . Let x∞ be any accumulating point of the
sequence {xk} generated by Algorithm 6.1. Suppose the following Mangasarian-Fromovotz con-
straint qualification (MFCQ) holds for each ν = 1, . . . , N :

∑

j∈γν∞

λν
j∇hν

j (x
ν
∞) +

m∑

i=1

µν
i a

ν
i = 0

λν
j ≥ 0, j ∈ γν∞

µν
i ∈ R, i = 1, . . . , m





=⇒
{

λν
j = 0, j ∈ γν∞

µν
i = 0, i = 1, . . . , m,

where γν∞ := {j | hν
j (x

ν∞) = 0} ⊆ {1, 2, . . . , lν}. Then x∞ is a solution of GNEP P .

Proof. From Corollary 5.1, xk is a solution of the following QVIP: Find x ∈ S0(x) such that

〈F (x)− ρkE(x), y − x〉 ≥ 0, ∀y ∈ S0(x). (22)

Let {xk}k∈κ be a convergent subsequence whose limit is x∞. By Assumption 5.2, the linear
independence constraint qualification holds for problem Pρk

. Thus, it follows from the Karush-
Kuhn-Tucker (KKT) condition for problem (22) that for any k there exist Lagrange multipliers(
µν

k,i

)m

i=1
such that

F ν(xk)− ρk

lν∑

j=1

1
hν

j (x
ν
k)
∇hν

j (x
ν
k) +

m∑

i=1

µν
k,ia

ν
i = 0, ν = 1, . . . , N. (23)

Put λν
k,j := −ρk/hν

j (x
ν
k) ≥ 0, j = 1, . . . , lν , and define the vectors

φν
k :=

(
λν

k

µν
k

)
,

where λν
k :=

(
λν

k,j

)lν
j=1

and µν
k :=

(
µν

k,i

)m

i=1
. Let us show that the sequence {φν

k}k∈κ is bounded
for each ν. In fact, if {φν

k}k∈κ is unbounded, then there exists a further subsequence {φν
k}k∈κ′

such that

lim
κ′3k→∞

‖φν
k‖ = ∞.

By dividing both sides of (23) by ‖φν
k‖, we have

1
‖φν

k‖
F ν(xk) +

lν∑

j=1

λν
k,j

‖φν
k‖
∇hν

j (x
ν
k) +

m∑

i=1

µν
k,i

‖φν
k‖

aν
i = 0, ν = 1, . . . , N.

Since {λν
k,j/‖φν

k‖}k∈κ′ and {µν
k,i/‖φν

k‖}k∈κ′ are bounded, these sequences have accumulation
points λ̄ν

j and µ̄ν
i , respectively. Therefore, we have

lν∑

j=1

λ̄ν
j∇hν

j (x
ν
∞) +

m∑

i=1

µ̄ν
i a

ν
i = 0, ν = 1, . . . , N. (24)
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Now notice that λ̄ν
j ≥ 0 for all j. In particular, since

lim sup
k→∞

hν
j (x

ν
k) < 0, ∀j 6∈ γν

∞,

we have λν
k,j = 0, for all k ∈ κ′ sufficient large, implying λ̄ν

j = 0 for all j 6∈ γν∞. Thus, it follows
from (24) that

∑

j∈γν∞

λ̄ν
j∇hν

j (x
ν
∞) +

m∑

i=1

µ̄ν
i a

ν
i = 0, ν = 1, . . . , N.

However, this along with the fact that

λ̄ν
j ≥ 0, ∀j ∈ γν

∞, and

∥∥∥∥∥

(
λ̄ν

µ̄ν

)∥∥∥∥∥ = 1

contradicts the assumed MFCQ. This implies that {φν
k} is bounded, and that {λν

k} and {µν
k}

have accumulation points λν∞ and µν∞, respectively. Therefore, x∞ satisfies

F ν(x∞) +
lν∑

j=1

λν
∞,j∇hν

j (x
ν
∞) +

m∑

i=1

µν
i a

ν
i = 0

hν
j (x

ν
∞) ≤ 0, λν

∞,j ≥ 0, λν
∞,jh

ν
j (x

ν
∞) = 0, j = 1, . . . , lν

〈aν
i , x

ν
∞〉+

∑

ν′ 6=ν

〈aν′
i , xν′

∞〉 − bi = 0, i = 1, . . . , m





, ν = 1, . . . , N.

This is nothing but the KKT condition for problem (3) with S(x) defined by the constraints in
problems (8). Consequently, x∞ is a solution of GNEP P . ¥

7 Extension to GNEP with Shared Inequality Constraints

The GNEP considered in the previous section assumes that each player’s shared constraints are
defined by equalities only. In practice, however, the shared constraints often contain inequalities.
In this section, we discuss the case of shared linear inequality constraints and present an approach
that relies on the transformation to the equality constraints by means of slack variables.

Suppose that, for each ν, player ν’s problem is given as

minimize
xν

θν(xν , x−ν)

subject to 〈aν
i , x

ν〉 ≤ bi −
∑

ν′ 6=ν

〈aν′
i , xν′〉, i = 1, . . . , m,

hν
j (x

ν) ≤ 0, j = 1, . . . , lν .

(25)

Denote this GNEP as P̂ . Introducing slack variables sν := (sν
1 , . . . , s

ν
m) as supplementary

variables for each player ν, problem (25) is rewritten as

minimize
xν ,sν

θν(xν , x−ν)

subject to 〈aν
i , x

ν〉+ sν
i = bi −

∑

ν′ 6=ν

(
〈aν′

i , xν′〉+ sν′
i

)
, i = 1, . . . ,m,

hν
j (x

ν) ≤ 0, j = 1, . . . , lν ,

sν
i ≥ 0, i = 1, . . . , m.

(26)

12



Denote this GNEP as P̌ . The vector consisting of all slack variables is denoted by s := (sν)N
ν=1 ∈

RNm. The next result shows that, under some conditions, a solution of GNEP P̌ is also a solution
of GNEP P̂ .

Theorem 7.1. Let (x, s) be a solution of GNEP P̌ . If the relation

sν
i = 0 for some ν =⇒ sν

i = 0 for all ν (27)

holds for all i = 1, . . . , m, then x is a solution of GNEP P̂ .

Proof. Define the Lagrangian for problem (26) by

Lν(xν , sν , λν , µν , ην) := θν(xν , x−ν) +
m∑

i=1

µν
i


〈aν

i , x
ν〉+ sν

i +
∑

ν′ 6=ν

〈aν′
i , xν′〉+

∑

ν′ 6=ν

sν′
i − bi




+
lν∑

j=1

λν
j h

ν
j (x

ν)−
m∑

i=1

ην
i sν

i .

A solution (x, s) of GNEP P̌ satisfies the following KKT conditions for all ν:

∇xνLν(xν , sν , λν , µν , ην) = ∇xνθν(xν , x−ν) +
m∑

i=1

µν
i a

ν
i +

lν∑

j=1

λν
j∇hν

j (x
ν) = 0, (28a)

∇sνLν(xν , sν , λν , µν , ην) = µν − ην = 0, (28b)

〈aν
i , x

ν〉+ sν
i +

∑

ν′ 6=ν

〈aν′
i , xν′〉+

∑

ν′ 6=ν

sν′
i − bi = 0, i = 1, . . . ,m, (28c)

λν
j ≥ 0, λν

j h
ν
j (x

ν) = 0, hν
j (x

ν) ≤ 0, j = 1, . . . , lν , (28d)

ην
i ≥ 0, ην

i sν
i = 0, sν

i ≥ 0, i = 1, . . . , m. (28e)

By the relation (27), we have for each i either (i) sν
i = 0 for all ν, or (ii) sν

i > 0 for all ν. Let us
consider these two cases separately.

(i) Suppose sν
i = 0 for all ν. By (28e), we have

ην
i ≥ 0.

Then it follows from (28b) and (28c) that

µν
i ≥ 0

and
〈aν

i , x
ν〉+

∑

ν′ 6=ν

〈aν′
i , xν′〉 − bi = 0

for all ν.

(ii) Suppose sν
i > 0 for all ν. Then, by (28e), we have

ην
i = 0.

13



Therefore, from (28b) and (28c), we obtain

µν
i = 0

and
〈aν

i , x
ν〉+

∑

ν′ 6=ν

〈aν′
i , xν′〉 − bi < 0

for all ν.

Hence, the following complementarity conditions hold for all i:

µν
i ≥ 0, µν

i

(
N∑

ν=1

〈aν
i , x

ν〉 − bi

)
= 0,

N∑

ν=1

〈aν
i , x

ν〉 − bi ≤ 0. (29)

Combining (28a), (28d) and (29), we have for all ν

∇xνθν(xν , x−ν) +
m∑

i=1

µν
i a

ν
i +

lν∑

j=1

λν
j∇hν

j (x
ν) = 0,

µν
i ≥ 0, µν

i

(
N∑

ν=1

〈aν
i , x

ν〉 − bi

)
= 0,

N∑

ν=1

〈aν
i , x

ν〉 − bi ≤ 0, i = 1, . . . ,m,

λν
j ≥ 0, λν

j h
ν
j (x

ν) = 0, hν
j (x

ν) ≤ 0, j = 1, . . . , lν .

This implies that for each ν, xν satisfies the KKT condition for problem (25) with given x−ν .
Thus, x = (xν)N

ν=1 is a solution of GNEP P̂ . ¥

By adding the barrier term associated with the individual constraints to the objective func-
tion, player ν’s problem (26) is approximated by the following problem:

minimize
xν ,sν

θν(xν , x−ν)− ρ




lν∑

j=1

log(−hν
j (x

ν)) +
m∑

i=1

log sν
i




subject to 〈aν
i , x

ν〉+ sν
i = bi −

∑

ν′ 6=ν

(
〈aν′

i , xν′〉+ sν′
i

)
, i = 1, . . . ,m.

(30)

Denote this GNEP as P̌ρ. Let the function F̌ : Rn+Nm → Rn+Nm be defined by

F̌ (x, s) :=

(
F (x)

0

)
∈ Rn+Nm,

where F (x) is given by (2). Define the function G : RNm → RNm by

G(s) := ((1/sν
i )

m
i=1)

N
ν=1 .

Moreover, let the function Ě : Rn+Nm → Rn+Nm be defined by

Ě(x, s) :=

(
E(x)
G(s)

)
∈ Rn+Nm,

14



where E(x) is given by (11).

Since problem (30) is a convex programming problem, GNEP P̌ρ can be reformulated as the
following QVIP: Find (x, s) ∈ Š0(x, s) ∩ Σ̌0 such that

〈
F̌ (x, s)− ρĚ(x, s), (y, t)− (x, s)

〉 ≥ 0, ∀(y, t) ∈ Š0(x, s), (31)

where Σ̌0 ⊆ Rn+Nm and Š0 : Rn+Nm ⇒ Rn+Nm are defined by

Σ̌0 :=
N∏

ν=1

{
(xν , sν)

∣∣ hν
j (x

ν) < 0, j = 1, . . . , lν , s
ν
i > 0, i = 1, . . . ,m

}
,

Š0(x, s) :=
N∏

ν=1



(yν , tν)

∣∣∣∣∣∣
〈aν

i , y
ν〉+ tνi = bi −

∑

ν′ 6=ν

〈aν′
i , xν′〉 −

∑

ν′ 6=ν

sν′
i , i = 1, . . . , m



 ,

respectively. Then, the regularized gap function for this problem is given by

f̌ρ(x, s) := − inf
{
〈F̌ (x, s)− ρĚ(x, s), (y, t)− (x, s)〉

+
1
2
〈(y, t)− (x, s), Ȟ((y, t)− (x, s))〉

∣∣∣∣ (y, t) ∈ Š0(x, s)
}

,

where Ȟ is a symmetric positive definite matrix. Note that the function f̌ρ is defined only on
the open set Σ̌0. By letting f̌ρ(x, s) := +∞ ∀(x, s) 6∈ Σ̌0, GNEP P̌ρ is reformulated as the
minimization problem

Q̌ρ :
minimize f̌ρ(x, s)

subject to (x, s) ∈ X̌0,

where the set X̌0 ⊆ Rn+Nm is defined by

X̌0 :=

{
(x, s)

∣∣∣∣∣ bi −
N∑

ν=1

〈aν
i , x

ν〉 −
N∑

ν=1

sν
i = 0, i = 1, . . . , m

}
.

This fact implies that for each ρ > 0, the set of optimum solutions of problem Q̌ρ equals the
set of solutions of GNEP P̌ρ. We will then show that any stationary point for problem Q̌ρ is a
solution of GNEP P̌ρ under some conditions.

Lemma 7.1. Suppose x ∈ Σ0, s > 0 and ρ > 0. Let ∇F (x) − ρ∇E(x) be positive definite.
Then, ∇F̌ (x, s)− ρ∇Ě(x, s) is also positive definite.

Proof. By direct calculation, we have

∇G(s) = diag
((−1/(sν

i )
2
)m

i=1

)N

ν=1
,

which is a negative definite matrix. Thus, by the given assumption, for all ξ ∈ Rn and σ ∈ RNm

such that (ξ, σ) 6= (0, 0), it follows that

(ξ, σ)>
(∇F̌ (x, s)− ρ∇Ě(x, s)

)
(ξ, σ) = (ξ, σ)>

((
∇F (x) 0

0 0

)
− ρ

(
∇E(x) 0

0 ∇G(s)

))
(ξ, σ)

= ξ>(∇F (x)− ρ∇E(x))ξ + σ> (−ρ∇G(s))σ

> 0

for ρ > 0. This completes the proof. ¥
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Theorem 7.2. Suppose Assumption 5.2 holds. Let (x, s) ∈ X̌0 be a stationary point of prob-
lem Q̌ρ, and ∇F (x)− ρ∇E(x) be positive definite for ρ > 0. Then the point (x, s) is a solution
of QVIP (31), i.e., (x, s) is a solution of GNEP P̌ρ.

Proof. By Assumption 5.2, the vectors aν
i , i = 1, . . . , m are linearly independent for each

ν = 1, . . . , N . Therefore, the vectors ((0, . . . , 0, aν
i , 0, . . . , 0)>, eν

i ) ∈ Rn+Nm, i = 1, . . . , m, ν =
1, . . . , N are linearly independent, where eν

i ∈ RNm denotes the unit vector whose element
corresponding to sν

i is one and the others are zero. Thus, the following set is a singleton:

M̌(x, s) :=

{
µ ∈ RNm

∣∣∣∣∣ F̌ (x, s)− ρĚ(x, s) + Ȟ((y(x, s), t(x, s))− (x, s))

+
m∑

i=1

N∑

ν=1

µν
i ((0, . . . , 0, aν

i , 0, . . . , 0)>, eν
i ) = 0

}
.

That is, M̌(x, s) has only one element µ(x, s). Hence, by Theorem 5.2, the function f̌ρ is
differentiable at any point (x, s) ∈ Σ̌0.

Since ∇F (x) − ρ∇E(x) is positive definite, we have that ∇F̌ (x, s) − ρ∇Ě(x, s) is positive
definite by Lemma 7.1. Therefore, Theorem 7.2 ensures that any stationary point (x, s) of
problem Q̌ρ solves QVIP (31), which means (x, s) is a solution of GNEP P̌ρ. ¥

To solve the minimization problem Q̌ρ, we apply a descent-type iterative method using the
gradient information of the objective function f̌ρ. We may expect that such a method generates
a sequence converging to a stationary point of problem Q̌ρ, which turns out to be a solution of
GNEP P̌ρ under the conditions given in Theorem 7.2.

To find a solution of GNEP P̂ , we sequentially solve problems Q̌ρk
with a positive sequence

{ρk} decreasing to zero. Then we may expect that a sequence of solutions to GNEPs Q̌ρk
tends

to a solution of GNEP P̌ . From Theorem 7.1, however, we have to require condition (27) to
hold in the limit, in order that a solution of GNEP P̌ yields a solution of GNEP P̂ . To this
end, we introduce a correction phase that enforces the slack variables s = ((sν

i )
m
i=1)

N
ν=1 to satisfy

condition (27) after problem Q̌ρ is solved for each ρ. Specifically, let ε > 0 be a small constant
chosen a priori. Once a solution (x, s) of problem Q̌ρ is obtained, do the following for every i:

If sν
i < ε for some ν, then put sν

i :=
1
N

N∑

ν=1

sν
i for all ν. (32)

Note that this modification does not change the value of the sum
∑N

ν=1 sν
i for each i, and hence

all the equality constraints

bi −
N∑

ν=1

〈aν
i , x

ν〉 −
N∑

ν=1

sν
i = 0, i = 1, . . . ,m

remain to be satisfied.

A sequential minimization algorithm for solving GNEP P̂ is now stated as follows:
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Algorithm 7.1. Choose a positive sequence {ρk} ⊆ R tending to zero. For each k, solve the
minimization problem Q̌ρk

, apply the correction (32) if necessary, and proceed to the next step
by increasing k by one.

8 Numerical Results

In this section, we report our numerical experience with Algorithm 7.1 for some examples. The
matrix Ȟ in the definition of the function f̌ρ is chosen to be the identity matrix. Algorithn 7.1
is terminated when the barrier parameter ρk becomes less than 10−15. To solve minimization
problems Q̌ρk

, we use the fmincon solver in Matlab, based on the Sequential Quadratic Pro-
gramming (SQP) method for constrained optimization problems.

Example 1. We consider Harker’s example [11]. In this game, there are two players who solve
the following problems:

P1(x2) :

minimize
x1

(x1)2 + (8/3)x1x2 − 34x1

subject to 0 ≤ x1 ≤ 10,

x1 + x2 ≤ 15.

P2(x1) :

minimize
x2

(x2)2 + (5/4)x1x2 − 24.25x2

subject to 0 ≤ x2 ≤ 10,

x1 + x2 ≤ 15.

The solution set of this GNEP is known to be
{(

5
9

)}
∪

{(
t

15− t

)∣∣∣∣∣ 9 ≤ t ≤ 10

}
.

We have tried various starting points and barrier parameters in implementing Algorithm 7.1, and
then observed that a generated sequence always converged to the particular GNE x = (5, 9)>.

Example 2. We consider the three-person river basin pollution game [19]. In this game, the
problem of each player ν ∈ {1, 2, 3} is given by

P ν(x−ν) :

minimize (c1ν + c2νx
ν)xν − (

d1 − d2(x1 + x2 + x3)
)
xν

subject to
3∑

ν=1

uνleνx
ν ≤ Kl, l = 1, 2

xν ≥ 0,

where d1 = 3.0, d2 = 0.01, Kl = 100, l = 1, 2, and the other constants are shown in Table 1.

We implemented Algorithm 7.1 by using 10000 starting points randomly generated in the
feasible set, and found many different GNEs as shown in Figure 1.
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Table 1: Problem data for the river basin pollution game.

Player ν c1ν c2ν eν uν1 uν2

1 0.10 0.01 0.50 6.5 4.583
2 0.12 0.05 0.25 5.0 6.250
3 0.15 0.01 0.75 5.5 3.750
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Figure 1: GNEs of the river basin pollution game found by Algorithm 7.1.

Example 3. We consider the internet switching model [17]. In this game, the problem of each
player ν ∈ {1, . . . , N} is given by

P ν(x−ν) :

minimize θν(xν , x−ν) =
xν

B
− xν

∑N
ν=1 xν

subject to
N∑

ν=1

xν ≤ B,

xν ≥ 0.01.

We set N = 10 and B = 1. Using 100 starting points randomly generated in the set Σ0 :=
{x | ∑N

ν=1 xν < B, xν > 0.01, ν = 1, . . . , N}, we implemented Algorithm 7.1 and always
obtained the point x = (0.09, 0.09, . . . , 0.09)>, which is the unique solution of the GNEP [17].

9 Conclusion

We have proposed a gap function approach to the GNEP in which the shared constraints are
given by linear equalities, while the individual constraints are given by convex inequalities.
We apply a barrier technique to individual inequality constraints and transform each player’s
problem into a problem involving the shared equality constraints only. Further, we have shown
that the proposed approach can be extended to GNEPs with shared linear inequality constraints
by means of slack variables. Finally, we have implemented the proposed sequential minimization
method on some examples and confirmed that the method can find a solution of those problems.
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