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Abstract

In this paper, we consider the mathematical program with symmetric cone com-
plementarity constraints (MPSCCC) in a general form. It includes the mathematical
program with second-order-cone complementarity constraints (MPSOCCC) and the
mathematical program with complementarity constraints (MPCC). We present a
smoothing method which approximates the primal MPSCCC by means of the Chen-
Mangasarian class of smoothing functions. We show that a sequence of stationary
points of the approximate programs converges to a C(larke)-stationary point of the
primal MPSCCC under suitable conditions.
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1 Introduction

Let J be an n-dimensional real Euclidean space, A = (J, 〈·, ·〉, ◦) be a Euclidean Jordan
algebra, and K be a symmetric cone in A. In this paper, we consider the following
mathematical program with symmetric cone complementarity constraints (MPSCCC):

min f(x, y)
s.t. x ∈ X,

H(x, y) ∈ K, G(x, y) ∈ K,
〈H(x, y), G(x, y)〉 = 0,

(1.1)

where X ⊆ Rn, and f : Rn× J → R, H : Rn× J → J, G : Rn× J → J are continuously
differentiable functions.

When the lower level problem of a bilevel optimization problem includes the symmet-
ric cone constraints, we can formulate the problem as an MPSCCC under some suitable
conditions. We consider the following example:

min ψ(x, y)
s.t. x ∈ X,

y ∈ Y (x),
(1.2)

where X ⊆ Rn, ψ : Rn × J → R is a continuously differentiable function, Y (x) ⊆ J is
the solution set of the following symmetric cone program with parameter x:

min ϕ(x, y)
s.t. A(x)y + b(x) = 0,

y ∈ K,
(1.3)
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where the function ϕ : Rn × J → R is continuously differentiable, A(x) : J → Rm is a
linear operator and b(x) ∈ Rm. If ϕ(x, y) = 〈s, y〉 with s ∈ J , problem (1.3) is a linear
program over symmetric cone. Under some suitable conditions including the convexity
of ϕ(x, ·), problem (1.3) has an equivalent representation as follows:

∇yϕ(x, y)−A(x)∗ν − ξ = 0,
A(x)y + b(x) = 0,

y ∈ K, ξ ∈ K, 〈y, ξ〉 = 0,

where A(x)∗ is the adjoint of A(x), ν ∈ Rm and ξ ∈ J are Lagrange multipliers. Then
problem (1.2) can be reformulated as the MPSCCC:

min ψ(x, y)
s.t. x ∈ X,

∇yϕ(x, y)−A(x)∗ν − ξ = 0,
A(x)y + b(x) = 0,
y ∈ K, ξ ∈ K, 〈y, ξ〉 = 0.

The mathematical program with equilibrium constraints (MPEC) is an optimization
problem where the essential constraints are defined by a parametric variational inequality
or complementarity system [17]. It is a generalization of a bilevel program. In addition,
when the variational inequality in the lower level is rewritten as the KKT conditions,
the MPEC is formulated as the mathematical program with complementarity constraints
(MPCC), which is also an important subclass of the MPEC. Both problems are difficult
because of their unusual nature of the constraints. Nevertheless, they play an impor-
tant role in many practical problems, such as engineering design and economic modeling
[17]. There have been many approaches for solving these problems, such as sequential
quadratic programming approach [8, 12, 17], penalty function approach [11, 17, 21], im-
plicit programming approach [17], and reformulation approach [6, 9, 14, 15, 22].

In practice, we often face optimization problems involving uncertain data. Hence,
there have been many approaches that bring uncertainty into problem formulation.
Stochastic optimization starts by assuming that the uncertainty has a probabilistic de-
scription. For example, in [13, 16], the authors studied stochastic mathematical programs
with equilibrium constraints. Another more recent approach to optimization under un-
certainty is robust optimization, in which the uncertainty model is not stochastic, but
concerned with the worst-case scenario. Moreover, if the uncertain data set is ellipsoidal,
then the robust optimization problem can be represented as a second-order cone pro-
gramming (SOCP) problem [1]. Furthermore, if a bilevel program contains an SOCP
as its lower level problem, and the SOCP can be replaced by its KKT conditions, then
it yields the mathematical program with second-order cone complementarity constraints
(MPSOCCC) [5].

It is well known that when J = Rn with 〈x, y〉 = xT y, and K = Rn
+, the symmetric

cone complementarity problem (SCCP) reduces to the nonlinear complementarity prob-
lem (NCP). Therefore the MPSCCC contains the MPCC as a special case. On the other
hand, if K is the Cartesian product of second-order cones, i.e., K = Kn1 × · · · × Knl ,

where Kni = {(z1, z2) ∈ R×Rni−1 : ‖z2‖ ≤ z1}, with l, n1, · · · , nl ≥ 1 and
l∑

i=1
ni = n, then

the symmetric cone complementarity problem (SCCP) reduces to the second-order cone
complementarity problem (SOCCP), and hence the MPSCCC contains the MPSOCCC
as a special case. In consideration of these facts, the MPSCCC is a natural extension of
the MPCC and the MPSOCCC.
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The aim of this paper is to study a smoothing method for the MPSCCC. We par-
ticularly use the Chen-Mangasarian class of smoothing functions for a general form of
MPSCCC. We will show that the smoothing approximations to the MPSCCC are well
defined, and a sequence of stationary points of those problems converges to a C(larke)-
stationary point of the original MPSCCC under some conditions.

The analysis of the method will be based on knowledge of the Euclidean Jordan
algebra. So in Section 2, we review some basic concepts of the Euclidean Jordan algebra.
In Section 3, we derive a smoothing approximation of the MPSCCC and analyze the
properties of the feasible set. An algorithm based on smoothing approximation and its
convergence analysis are presented in Section 4. Section 5 concludes the paper.

In what follows, for vectors x, y ∈ J , we write x ºK y (respectively, x ÂK y) to mean
x − y ∈ K (respectively, x − y ∈ intK). Also, we write B Â C (respectively, B º C) to
mean B − C being positive definite (respectively, positive semidefinite) for linear opera-
tors B and C from J into itself. For a differentiable mapping G : J → J and a vector
z ∈ J , we denote by G′(z) the Jocobian of G at z, and ∇G(z) = G′(z)∗. Moreover, for
a differentiable mapping H defined on Rn × J , we denote by H ′

y(x, y) = ∇yH(x, y)∗ the
partial Jacobian with respect to the second argument y. If G is locally Lipschitz con-
tinuous, the Clarke generalized Jacobian [4] is defined by ∂G(z) = conv{∂BG(z)}, where
∂BG(z) = { lim

zk→z
zk∈DG

G′(zk)} with DG being the set of points at which G is differentiable,

and conv denotes the convex hull. In parallel, we denote ∂G(z)∗ = {V ∗ : V ∈ ∂G(z)}.
The gradient of a real-valued function g : J → R at z is denoted by ∇g(z) = g′(z)∗. For
a given z ∈ J and a set S ⊆ J , we denote d(z, S) = min{‖z − y‖ : y ∈ S} for all z ∈ J ,
where ‖ · ‖ is the norm on J induced by the inner product 〈·, ·〉, i.e., ‖x‖ =

√〈x, x〉.

2 Euclidean Jordan algebras and Löwner operators

In this section, we briefly describe the Euclidean Jordan algebra. For comprehensive
details, see [7].

Let J be an n-dimensional vector space over the field of real numbers, and (x, y) 7→ x◦y
be a bilinear mapping. Then (J, ◦) is called a Jordan algebra if

(1) x ◦ y = y ◦ x for all x, y ∈ J,

(2) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J, where x2 = x ◦ x.

A Jordan algebra (J, ◦) is said to be Euclidean and denoted as A = (J, ◦, 〈·, ·〉), if an
inner product 〈·, ·〉 is defined and satisfies

(3) 〈x ◦ y, z〉 = 〈x, y ◦ x〉 for all x, y, z ∈ J.

In general, a Jordan algebra is not associative, but it is power associative. A Jordan
algebra has the identity element if there exists a unique element e ∈ J such that x ◦ e =
e ◦ x = x for all x ∈ J .

For every x ∈ J , the Lyapunov transformation L(x) : J → J is defined by L(x)y = x◦y
for all y ∈ J . It is a symmetric operator such that 〈L(x)y, z〉 = 〈y, L(x)z〉 holds for
all y, z ∈ J . Especially, L(x)e = x and L(x)x = x2 hold for all x ∈ J . By means
of the Lyapunov transformation, the quadratic representation of x ∈ J is defined as
Q(x) = 2L2(x)− L(x2).

Given a Euclidean Jordan algebra A, the set K = {x2 : x ∈ J} is called the cone of
squares of A. Then K is a symmetric cone from Theorem III 2.1 in [7]. That is to say,
K is a self-dual closed convex cone and its automorphism group acts transitively on its
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interior, and for each x, y ∈ int(K), the interior of K, there is a linear transformation T
such that T (x) = y and T (K) = K.

Before stating the spectral decomposition theorem, we recall some concepts related
to Jordan algebra.

1. For any x ∈ J , let m(x) be the degree of x, which is defined as m(x) = min{k :
{e, x, x2, · · · , xk} are linearly dependent}. Then the rank of A is defined by r =
max{m(x) : x ∈ J}, which obviously does not exceed the dimension of J .

2. A nonzero element c ∈ J is called an idempotent if c2 = c. An idempotent c is said
to be primitive if it cannot be expressed as the sum of two other idempotents. A
set of primitive idempotents {c1, c2, · · · , ck} is called a Jordan frame if ci ◦ cj = 0

for all i 6= j and
k∑

i=1
ci = e.

Theorem 2.1 (Spectral Decomposition Theorem [7, Theorem III.1.2]) Let (J, ◦, 〈, ·, 〉)
be a Euclidean Jordan algebra with rank r. Then for any x ∈ J , there exist a Jordan

frame {c1, c2, · · · , cr} and real numbers λ1(x), λ2(x), · · · , λr(x) such that x =
r∑

i=1
λi(x)ci.

The numbers λi(x), i = 1, 2, · · · , r, are called the eigenvalues of x, which are uniquely
determined by x.

Note that the Jordan frame {c1, c2, · · · , cr} in the above theorem depends on x, but we
omit the dependence in order to simplify the notation. An eigenvalue λi(x) is continuous

with respect to x. The trace of x is defined as Tr(x) =
r∑

i=1
λi(x) and the determinant of

x is defined as Det(x) =
r∏

i=1
λi(x). Moreover, x ∈ K (respectively, x ∈ intK) if and only

if λi(x) ≥ 0 (respectively, λi(x) > 0) for all i = 1, 2, · · · , r.
We now recall the definition and some properties of Löwner operator [24].

Definition 2.1 Let x =
r∑

i=1
λi(x)ci and γ : R → R. The Löwner operator Γ : J → J

associated with γ is defined as

Γ(x) =
r∑

i=1

γ(λi(x))ci = γ(λ1(x))c1 + γ(λ2(x))c2 + · · ·+ γ(λr(x))cr. (2.4)

Suppose that γ : R → R is differentiable at τi, i = 1, 2, · · · , r. Define the first divided
difference γ[1](τ) of γ at τ = (τ1, τ2, · · · , τr)T as the r × r symmetric matrix with the
(i, j)th entry given by

[γ[1](τ)]ij = [τi, τj ]γ =

{
γ(τi)−γ(τj)

τi−τj
if τi 6= τj

γ′(τi) if τi = τj

i, j = 1, 2, · · · , r. (2.5)

Then we have the following theorem [19, 24].

Theorem 2.2 Let x =
r∑

i=1
λi(x)ci. Then the Löwner operator Γ associated with γ : R →

R is (continuously) differentiable at x if and only if γ is (continuously) differentiable at
λi(x) for each i ∈ {1, 2, · · · , r}. In this case, the Jacobian of Γ is given by

Γ′(x) = 2
r∑

i,j=1
i6=j

[λi(x), λj(x)]γL(ci)L(cj) +
r∑

i=1

γ′(λi(x))Q(ci).

Moreover, Γ′(x) is a linear and symmetric operator from J into itself.
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3 Smoothing formulation and the feasible set

Let us introduce two new variables u and v which will be equal to H(x, y) and G(x, y),
respectively, in (1.1). Corresponding to the symmetric cone K, let PK denote the metric
projection onto K. Then by Proposition 6 in [10], we have

v − PK(v − u) = 0 ⇐⇒ u ∈ K, v ∈ K, 〈u, v〉 = 0.

Define the function Ψ : Rn × J × J × J → J × J × J by

Ψ(x, y, u, v) =




H(x, y)− u
G(x, y)− v

v − PK(v − u)


 . (3.6)

Then MPSCCC (1.1) can be reformulated equivalently as

min f(x, y)
s.t. x ∈ X,

Ψ(x, y, u, v) = 0.
(3.7)

We will deal with this equivalent problem in the rest of the paper. Throughout we make
the following assumption on problem (3.7).

Assumption 1. (a) X ⊆ Rn is compact. (b) The feasible set of problem (3.7),
denoted by F , is nonempty. (c) For each x ∈ X, there exists a solution (y, u, v) of
Ψ(x, y, u, v) = 0.

We now introduce a smoothing approximation to problem (3.7). Let p : R → R be the
function defined by p(t) = (t)+ = max{t, 0}. Then, a continuously differentiable convex
function φ : R → R+ satisfying

lim
t→−∞φ(t) = 0, lim

t→∞(φ(t)− t) = 0 and 0 < φ′(t) < 1 for all t ∈ R (3.8)

is called the Chen-Mangasarian smoothing function of p [3, 25]. A special case of this
smoothing function is the CHKS function φ(t) =

√
t2+4+t

2 , which is proposed by Chen
and Harker [2], Kanzow [18], and Smale [23]. Another special case is the sigmoid function
φ(t) = ln(et + 1) used in neural networks [3]. Using the Chen-Mangasarian smoothing
function φ : R → R+, we define a smoothing function of the projection operator PK : J →
J as the Löwner operator Φ : J → J associated with φ. The class of such functions Φ is
denoted by CM. Now let µ 6= 0 be a real parameter and define the function ω : J×J → J
by

ωµ(u, v) = v − |µ|Φ(
v − u

|µ| ), (3.9)

where Φ ∈ CM. Let v − u =
r∑

i=1
λi(v − u)ci, where {c1, c2, · · · , cr} is a Jordan frame at

v − u. Then from (2.4), (3.9) can be rewritten as

ωµ(u, v) = v − |µ|
r∑

i=1

φ(
λi(v − u)

|µ| )ci. (3.10)

Recall [24] that the projection operator PK can be written as

PK(v − u) =
r∑

i=1

(λi(v − u))+ci. (3.11)
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Since the function φ in (3.8) is continuously differentiable, Löwner operator Φ is also
continuously differentiable by Theorem 2.2. Moreover, it is not difficult to deduce from
(3.8) that

lim
µ→0

|µ|φ(
λi(v − u)

|µ| ) = (λi(v − u))+. (3.12)

It yields the following proposition immediately.

Proposition 3.1 Let ωµ(u, v) be given by (3.9). Then for every µ 6= 0, the function ωµ

is continuously differentiable on J ×J . Moreover, we have lim
µ→0

ωµ(u, v) = v−PK(v−u).

Let us introduce another function Ψµ : Rn × J × J × J → J × J × J defined by

Ψµ(x, y, u, v) =




H(x, y)− u
G(x, y)− v

v − |µ|Φ(v−u
|µ| )


 . (3.13)

Combining the continuous differentiability of functions H and G with Proposition 3.1, we
can deduce the continuous differentiability of the function Ψµ(x, y, u, v). Let us consider
the following optimization problem:

min f(x, y)
s.t. x ∈ X,

Ψµ(x, y, u, v) = 0.
(3.14)

Then problem (3.14) is regarded as a smoothing approximation of problem (3.7).
For the sake of convenience, we define the function Λ : R× J → J by

Λ(µ, z) =

{
PK(z) µ = 0,
|µ|Φ( z

|µ|) µ 6= 0.
(3.15)

Then problem (3.7) and problem (3.14) can be unified as the following problem with
µ ∈ R treated as a parameter:

min f(x, y)
s.t. x ∈ X,

F (µ, x, y, u, v) = 0,
(3.16)

where

F (µ, x, y, u, v) =




H(x, y)− u
G(x, y)− v

v − Λ(µ, v − u)


 . (3.17)

Note that by (3.6) and (3.13), we have

F (µ, x, y, u, v) =

{
Ψ(x, y, u, v) µ = 0,
Ψµ(x, y, u, v) µ 6= 0.

We denote the feasible set of (3.16) by Fµ. Before discussing function Λ defined by (3.15),
we give the following lemma.

Lemma 3.1 Let x =
r∑

i=1
λi(x)ci and α be a constant. If αe ºK x ºKº 0 holds, then we

have ‖αe‖ ≥ ‖x‖.
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Proof: Since x =
r∑

i=1
λi(x)ci and e =

r∑
i=1

ci, we have αe−x =
r∑

i=1
(α−λi(x))ci. In addition,

it follows from αe ºK x ºKº 0 that αe− x ∈ K and x ∈ K. This implies α− λi(x) ≥ 0

and λi(x) ≥ 0 for all i = 1, · · · , r. Then 〈αe − x, x〉 =
r∑

i=1
(α − λi(x))λi(x)‖ci‖2 ≥ 0.

Consequently, we obtain

‖αe‖2 − ‖x‖2 = 〈αe, αe〉 − 〈x, x〉 = 〈αe− x, αe− x〉+ 〈αe− x, x〉+ 〈x, αe− x〉 ≥ 0.

This completes the proof. 2

Lemma 3.2 The function Λ(µ, z) defined by (3.15) is locally Lipschitz with respect to
(µ, z).

Proof: Let (µ1, z1) and (µ2, z2) be chosen arbitrarily. First, suppose µ1 > µ2 ≥ 0. Note
that

‖Λ(µ1, z1)− Λ(µ2, z2)‖ ≤ ‖Λ(µ1, z1)− Λ(µ1, z2)‖+ ‖Λ(µ1, z2)− Λ(µ2, z2)‖. (3.18)

Since Φ(·) is continuously differentiable, we have

‖Λ(µ1, z1)− Λ(µ1, z2)‖ ≤ sup
0≤t≤1

‖Φ′( z1

µ1
+ t(

z1

µ1
− z2

µ1
))‖‖z1 − z2‖. (3.19)

By Lemma 3.1 and Proposition 4.3 in [19], we obtain

‖Λ(µ1, z2)− Λ(µ2, z2)‖ ≤ |φ(0)|‖e‖|µ1 − µ2|. (3.20)

It then follows from (3.18),(3.19) and (3.20) that

‖Λ(µ1, z1)− Λ(µ2, z2)‖ ≤ (M1 + |φ(0)|‖e‖)‖(µ1, z1)− (µ2, z2)‖,
where M1 = sup

0≤t≤1
‖Φ′( z1

µ1
+ t( z1

µ1
− z2

µ1
))‖. By symmetry, the result also holds when

0 ≥ µ1 > µ2.
Next let µ1 = µ2 = 0. Since PK(z) is locally Lipschitz, there exists a constant M2 > 0

depending on z1 and z2 such that ‖Λ(0, z1)− Λ(0, z2)‖ ≤ M2‖z1 − z2‖.
Finally, let µ1 > 0 > µ2. By Lemma 3.1 and Proposition 4.3 in [19], we have

‖Λ(µ1, z1)− Λ(µ2, z2)‖
≤ ‖Λ(µ1, z1)− Λ(0, z1)‖+ ‖Λ(0, z1)− Λ(0, z2)‖+ ‖Λ(0, z2)− Λ(µ2, z2)‖
≤ |φ(0)|‖e‖|µ1|+ M2‖z1 − z2‖+ |φ(0)|‖e‖|µ2|
≤ (2|φ(0)|‖e‖+ M2)‖(µ1, z1)− (µ2, z2)‖.

Hence, we complete the proof. 2

Lemma 3.3 Assume that G′
y(x, y)∗H ′

y(x, y) is positive definite for any feasible point of
(3.16). Then the partial (Clark generalized) Jacobian of F with respect to (y, u, v) is
nonsingular.

Proof: If µ 6= 0, then F (µ, x, y, u, v) = Ψµ(x, y, u, v). Since the function Ψµ(x, y, u, v) is
continuously differentiable, its partial Jacobian with respect to (y, u, v) is given by

W1 =




H ′
y(x, y) −I 0

G′
y(x, y) 0 −I

0 Φ′(v−u
|µ| ) I − Φ′(v−u

|µ| )


 . (3.21)
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In order to prove the nonsingularity of W1, we will show that W1q = 0 implies q = 0,
where q = (q1, q2, q3) ∈ J × J × J . Using (3.21), we have

H ′
y(x, y)q1 − q2 = 0, (3.22)

G′
y(x, y)q1 − q3 = 0, (3.23)

Φ′(
v − u

|µ| )q2 + (I − Φ′(
v − u

|µ| ))q3 = 0. (3.24)

By (3.22) and (3.23), we have

〈q3, q2〉 = 〈q1, G
′
y(x, y)∗H ′

y(x, y)q1〉. (3.25)

From Proposition 4.4 in [19] and Theorem 2.2, Φ′(v−u
|µ| ) is symmetric positive definite

and 0 ≺ Φ′(v−u
|µ| ) ≺ I. Hence the matrix (Φ′(v−u

|µ| ))−1(I − Φ′(v−u
|µ| )) is positive definite.

Moreover, by (3.24), we have

〈q3, q2〉 = −〈q3, (Φ′(
v − u

|µ| ))−1(I − Φ′(
v − u

|µ| ))q3〉. (3.26)

Combining (3.25) and (3.26) yields

〈q1, G
′
y(x, y)∗H ′

y(x, y)q1〉 = −〈q3, (Φ′(
v − u

|µ| ))−1(I − Φ′(
v − u

|µ| ))q3〉. (3.27)

Then it is not difficult to deduce from (3.27) that q1 = 0 and q3 = 0, which in turn
implies q2 = 0. Consequently, W1 is nonsingular.

If µ = 0, then F (µ, x, y, u, v) = Ψ(x, y, u, v). An element of the Clarke generalized
Jacobian of Ψ with respect to (y, u, v) is given by the matrix

W2 =




H ′
y(x, y) −I 0

G′
y(x, y) 0 −I

0 V I − V


 ,

where V ∈ ∂PK(v − u) with the property that V is symmetric positive semidefinite and
0 ¹ V ¹ I [19].

For V ∈ ∂PK(v − u), there exists an orthogonal matrix Q and a diagonal matrix D
with diagonal element ai ∈ [0, 1] such that V = QDQ∗. Let

W̃2 =




I
I

Q∗


 W2




I
I

Q


 =




H ′
y(x, y) −I 0

G′
y(x, y) 0 −I

0 D I −D


 .

Then it is easy to show that W2 is nonsingular if and only if W̃2 is nonsingular. Assume
that W̃2q = 0 for some vector q = (q1, q2, q3) ∈ J × J × J . Then

H ′
y(x, y)q1 − q2 = 0, (3.28)

G′
y(x, y)q1 − q3 = 0, (3.29)

Dq2 + (I −D)q3 = 0. (3.30)

By (3.28) and (3.29), we have

〈q3, q2〉 = 〈q1, G
′
y(x, y)∗H ′

y(x, y)q1〉. (3.31)
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Recall that the elements ai of the diagonal matrix D are in [0, 1]. From (3.30), we have
aiq2i + (1 − ai)q3i = 0 for each i. Then it is easy to see that q3iq2i ≤ 0 for all i, which
implies 〈q3, q2〉 ≤ 0. Since G′

y(x, y)∗H ′
y(x, y) is positive definite, it follows from (3.31)

that q1 = 0. This in turn implies q2 = 0 from (3.28) and q3 = 0 from (3.29). Thus W̃2 is
nonsingular, and hence W2 is nonsingular as desired. 2

For a function M : J × J → J , let πy∂M(x, y) denote the set of all matrices P
such that, for some matrix U , the matrix (U,P ) belongs to ∂M(x, y). In order to apply
the implicit function theorem [4] in the following result, π(y,u,v)∂Ψ(x, y, u, v) needs to
consist of nonsingular matrices. However, this property seems to be difficult to verify.
On the other hand, the nonsingularity of ∂(y,u,v)Ψ(x, y, u, v) can be verified under some
conditions, as shown in Lemma 3.3. Hence, we make the following assumption.

Assumption 2. π(y,u,v)∂Ψ(x, y, u, v) ⊆ ∂(y,u,v)Ψ(x, y, u, v) for any (x, y, u, v) ∈ F .

Based on the foregoing arguments, we can obtain the result on the following feasible
set of (3.16).

Lemma 3.4 Assume that G′
y(x, y)∗H ′

y(x, y) is positive definite for any feasible point of
(3.7). Let x̄ ∈ X be given, and let Assumption 1(c) and Assumption 2 hold. Then for
every (µ, x) in a neighborhood of (0, x̄), there exists a unique vector (y, u, v) such that
F (µ, x, y, u, v) = 0.

Proof: First notice that Λ(µ, v − u) is locally Lipschitz with respect to (µ, u, v)
by Lemma 3.2. Hence, it follows from the continuous differentiability of H and G
that F (µ, x, y, u, v) is locally Lipschitz with respect to (µ, x, y, u, v). In addition, since
F (0, x, y, u, v) = Ψ(x, y, u, v), by Assumption 1(c), there exists a vector (ȳ, ū, v̄) such
that F (0, x̄, ȳ, ū, v̄) = 0. Moreover, from Assumption 2, we have π(y,u,v)∂F (0, x̄, ȳ, ū, v̄) ⊆
∂(y,u,v)F (0, x̄, ȳ, ū, v̄), which implies the nonsingularity of π(y,u,v)∂F (0, x̄, ȳ, ū, v̄) by Lemma
3.3. Therefore, the result follows from Clarke’s implicit function theorem [4]. 2

Theorem 3.3 Assume that G′
y(x, y)∗H ′

y(x, y) is positive definite for any feasible point
of (3.7). If Assumption 1 and Assumption 2 hold, then the feasible set Fµ of (3.16) is
nonempty and uniformly compact for µ ∈ [−µ̄, µ̄], where µ̄ > 0 is a sufficiently small
constant.

Proof: The nonemptiness follows from Lemma 3.4. We now prove that the feasible set
is uniformly compact. By Assumption 1(a), the x-component of any feasible solution of
(3.16) belongs to the compact set X. Then it is sufficient to prove that the (y, u, v)-
component is contained in a bounded set. Suppose this is not true, namely, there exist
sequences {(xk, yk, uk, vk)} and {µk} with µk ∈ [−µ̄, µ̄] such that (xk, yk, uk, vk) ∈ Fµk

for all k, and lim
k→∞

‖(yk, uk, vk)‖ = ∞. Without loss of generality, we assume that

µk → µ̃ ∈ [−µ̄, µ̄] and xk → x̃. Then it follows from Lemma 3.4 that there exists a
unique vector (ỹ, ũ, ṽ) such that F (µ̃, x̃, ỹ, ũ, ṽ) = 0. On the other hand, by Lemma 3.3,
the partial (Clark generalized) Jacobian of F (µ, x, y, u, v) with respect to (y, u, v) is non-
singular at (µ̃, x̃, ỹ, ũ, ṽ). Combining this property with the regularity of the continuously
differentiable function Ψµ when µ 6= 0 and Assumption 2 when µ = 0, we obtain that
every element of π(y,u,v)∂F (µ, x, y, u, v) is nonsingular at (µ̃, x̃, ỹ, ũ, ṽ). Therefore, by the
implicit function theorem [4, 20], there exists a neighborhood Ω of (x̃, µ̃) and a continuous
function (y(·, ·), u(·, ·), v(·, ·)) : Ω → J × J × J such that, for each (x, µ) ∈ Ω,

F (µ, x, y(x, µ), u(x, µ), v(x, µ)) = 0.
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Moreover, by the uniqueness, we have (yk, uk, vk) = (y(xk, µk), u(xk, µk), v(xk, µk)). Since
functions y(·, ·), u(·, ·), v(·, ·) are continuous and (µk, xk) → (µ̃, x̃), we must have that
(yk, uk, vk) converges to (ỹ, ũ, ṽ). This is a contradiction. Hence, Fµ is uniformly bounded
for µ ∈ [−µ, µ]. Moreover, by the fact that F (µ, x, y, u, v) is locally Lipschitz, Fµ is closed
for each µ ∈ [−µ, µ]. The proof is complete. 2

4 Algorithm and convergence analysis

In this section, we first present an algorithm that sequentially solves the smooth approx-
imation problems (3.14), and then consider the limiting behavior of a sequence of points
generated by the algorithm.

We define functionsH : Rn×J×J×J → J, G : Rn×J×J×J → J, P : Rn×J×J×J →
J, and Ξµ : Rn × J × J × J → J for any µ 6= 0 by

H(x, y, u, v) = H(x, y)− u, G(x, y, u, v) = G(x, y)− v,

P(x, y, u, v) = v − PK(v − u), Ξµ(x, y, u, v) = v − |µ|Φ(v−u
|µ| ).

Suppose that the set X is given by X = {x : g(x) ≤ 0, h(x) = 0}, where g : Rn → Rm

and h : Rn → Rl are continuously differentiable, and the following assumption holds.

Assumption 3. The set {g′i(x), h′j(x) : i ∈ Ig, j = 1, · · · , l}, where Ig = {i : gi(x) = 0},
is linearly independent for any x ∈ X.

We try to solve problem (3.7) by solving a sequence of smooth approximation problems
(3.14) with µ → 0. However, for the latter problems, we can only find their stationary
points by a standard optimization method. Taking into account this fact, we propose the
following algorithm.

Algorithm 1

Step 1. Choose an initial point w1 = (x1, y1, u1, v1) ∈ Rn × J × J × J , and a nonzero
sequence {µk} such that µk → 0. Set the stopping tolerance ε ≥ 0 and k = 1.

Step 2. Find a stationary point wk = (xk, yk, uk, vk) of problem (3.14) with µ = µk.

Step 3. If d(wk,F) ≤ ε, then stop; otherwise set k = k + 1, and go to step 2.

Let us consider the limiting behavior of a generated sequence {wk}. Unlike problem
(3.14) with µ 6= 0, problem (3.7) is a nonsmooth optimization problem. Hence, the
ordinary KKT conditions cannot be used directly. Here, we consider the Fritz-John
conditions shown in [4]. Namely, a necessary condition for a point (x, y, u, v) to be a
local optimal solution of problem (3.7) is that there exists a nonzero multiplier vector
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(η, θ, δ, σ, ζ, τ) ∈ R× J × J × J ×Rm ×Rl with η ≥ 0, ζ ≥ 0 such that

0 ∈ η




∇xf(x, y)
∇yf(x, y)

0
0


 +




∇xH(x, y)
∇yH(x, y)

−I
0


 θ +




∇xG(x, y)
∇yG(x, y)

0
−I


 δ

+ ∂P(x, y, u, v)∗σ +




∇g(x)
0
0
0


 ζ +




∇h(x)
0
0
0


 τ,

Ψ(x, y, u, v) = 0,
h(x) = 0,

g(x) ≤ 0, g(x)T ζ = 0.

(4.32)

In particular, if η 6= 0, in which case we can assume η = 1 without loss of generality,
then conditions (4.32) become the KKT conditions for problem (3.7). In the following
theorem, we show that η is actually not zero under some conditions.

Theorem 4.4 Assume that w = (x, y, u, v) is a Fritz-John stationary point of problem
(3.7), i.e, it together with some (η, θ, δ, σ, ζ, τ) satisfies conditions (4.32). If G′

y(x, y)∗H ′
y(x, y)

is positive definite for any feasible point of (3.7) and Assumption 3 holds, then η 6= 0 and
w is a KKT point of problem (3.7).

Proof: We prove the theorem by contradiction. Suppose that η = 0. Then (4.32)
implies

0 =




∇xH(x, y) ∇xG(x, y) 0 ∇g(x) ∇h(x)
∇yH(x, y) ∇yG(x, y) 0 0 0

−I 0 V 0 0
0 −I I − V 0 0







θ
δ
σ
ζ
τ




(4.33)

for some symmetric matrix V ∈ ∂PK(v − u) and 0 6= (θ, δ, σ, ζ, τ) with ζ ≥ 0 and
g(x)T ζ = 0. From the last three rows of equation (4.33), we obtain

0 =



∇yH(x, y) ∇yG(x, y) 0

−I 0 V
0 −I I − V







θ
δ
σ


 , (4.34)

which yields (θ, δ, σ) = 0 by Lemma 3.3. Again by the first row of equation (4.33) and
g(x)T ζ = 0, we have (ζ, τ) = 0 from Assumption 3. This contradicts (η, θ, δ, σ, ζ, τ) 6= 0,
and hence we must have η 6= 0. 2

Lemma 4.5 Let {zk} ⊆ J be convergent to z̄ and the nonzero sequence {µk} be conver-
gent to 0. Then we have lim

k→∞
Φ′( zk

|µk|) ∈ ∂PK(z̄).

Proof: Let zk =
r∑

i=1
λi(zk)ci(zk). Then from Theorem 2.2,

Φ′(
zk

|µk|) = 2
r∑

i,j=1
i6=j

aij(zk)L(ci(zk))L(cj(zk)) +
r∑

i=1

aii(zk)Q(ci(zk)),
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where aij(zk) are given by (2.5), i.e.,

aij(zk) =





φ(λi(zk)/|µk|)−φ(λj(zk)/|µk|)
λi(zk)/|µk|−λj(zk)/|µk| if λi(zk) 6= λj(zk),

φ′(λi(zk)/|µk|) if λi(zk) = λj(zk).

By the continuity of λi(·) and the property (3.12), {aij(zk)} are convergent to

bij =





max{λi(z̄),0}−max{λj(z̄),0}
λi(z̄)−λj(z̄) if λi(z̄) 6= λj(z̄),

φ−(λi(z̄)) if λi(z̄) = λj(z̄),

where

φ−(λi(z̄)) =





0 if λi(z̄) < 0,
φ′(0) ∈ (0, 1) if λi(z̄) = 0,
1 if λi(z̄) > 0.

Moreover, since L(·) and Q(·) are continuous, we have

lim
k→∞

Φ′(
zk

|µk|) = 2
r∑

i,j=1
i6=j

bijL(c̄i)L(c̄j) +
r∑

i=1

biiQ(c̄i),

where {c̄1, c̄2, · · · , c̄r} is a Jordan frame at z̄. By Theorem 2.4 in [19], we then obtain
lim

k→∞
Φ′( zk

|µk|) ∈ ∂PK(z̄). 2

Theorem 4.5 Let the sequence {wk} ⊆ Rn×J×J×J be generated by Algorithm 1, where
wk = (xk, yk, uk, vk). Assume that µ̄ = sup

k
|µk| is sufficiently small and G′

y(x, y)∗H ′
y(x, y)

is positive definite for any feasible point of (3.7). Moreover, let Assumption 1, Assumption
2 and Assumption 3 hold. Then we have the following statements:

(a) The sequence {wk} is bounded.

(b) If ε = 0 and w̄ = (x̄, ȳ, ū, v̄) is an accumulation point of the sequence {wk}, then w̄
is a KKT point of problem (3.7), i.e., (x̄, ȳ) is a C-stationary point of the MPSCCC.

Proof: (a) Since µ̄ = sup
k
|µk| is sufficiently small, the sequence {wk} is contained in

a compact set from Theorem 3.3.
(b) Suppose the stopping tolerance ε is zero and the algorithm generates an infinite

sequence {wk}. Since wk is a KKT point of problem (3.14), there exist multipliers
(θk, δk, σk, ζk, τk) ∈ J × J × J ×Rm ×Rl with ζk ≥ 0, g(xk)T ζk = 0 such that

0 =




∇xf(xk, yk)
∇yf(xk, yk)

0
0


 +




∇xH(xk, yk)
∇yH(xk, yk)

−I
0


 θk +




∇xG(xk, yk)
∇yG(xk, yk)

0
−I


 δk

+




∇xΞµk
(xk, yk, uk, vk)

∇yΞµk
(xk, yk, uk, vk)

∇uΞµk
(xk, yk, uk, vk)

∇vΞµk
(xk, yk, uk, vk)


 σk +




∇g(xk)
0
0
0


 ζk +




∇h(xk)
0
0
0


 τk.

(4.35)
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By the continuity, we have ∇f(xk, yk) → ∇f(x̄, ȳ),∇g(xk) → ∇g(x̄),∇h(xk) → ∇h(x̄),
∇H(xk, yk, uk, vk) → ∇H(x̄, ȳ, ū, v̄) and ∇G(xk, yk, uk, vk) → ∇G(x̄, ȳ, ū, v̄). Moreover,
Φ′(·) is symmetric by Theorem 2.2, we have

∇xΞµk
(xk, yk, uk, vk) = 0, ∇yΞµk

(xk, yk, uk, vk) = 0
∇uΞµk

(xk, yk, uk, vk) = Φ′(vk−uk
|µk| ), ∇vΞµk

(xk, yk, uk, vk) = I − Φ′(vk−uk
|µk| ).

It follows from Lemma 4.5 that∇Ξµk
(xk, yk, uk, vk) converges to an element in ∂P(x̄, ȳ, ū, v̄)∗.

Next, we prove that {(θk, δk, σk, ζk, τk)} is bounded. Suppose it is not true. We divide
(4.35) by ‖(θk, δk, σk, ζk, τk)‖ and let (θ̂k, δ̂k, σ̂k, ζ̂k, τ̂k) be the normalized vector of mul-
tipliers. Then, by taking a subsequence if necessary, we may assume that the latter
sequence converges to (θ̃, δ̃, σ̃, ζ̃, τ̃) and we obtain

0 ∈




∇xH(x̄, ȳ)
∇yH(x̄, ȳ)

−I
0


 θ̃ +




∇xG(x̄, ȳ)
∇yG(x̄, ȳ)

0
−I


 δ̃

+ ∂P(x̄, ȳ, ū, v̄)∗σ̃ +




∇g(x̄)
0
0
0


 ζ̃ +




∇h(x̄)
0
0
0


 τ̃ ,

which means that w̄ is a Fritz-John point with zero multiplier for the objective function
f(x, y). However, it contradicts Theorem 4.4. So {(θk, δk, σk, ζk, τk)} is bounded. With-
out loss of generality, we assume {(θk, δk, σk, ζk, τk)} converges to (θ̄, δ̄, σ̄, ζ̄, τ̄) and {wk}
converges to w̄. Then passing to the limit in (4.35), we have ζ̄ ≥ 0, g(x̄)T ζ̄ = 0 and

0 ∈




∇xf(x̄, ȳ)
∇yf(x̄, ȳ)

0
0


 +




∇xH(x̄, ȳ)
∇yH(x̄, ȳ)

−I
0


 θ̄ +




∇xG(x̄, ȳ)
∇yG(x̄, ȳ)

0
−I


 δ̄

+ ∂P(x̄, ȳ, ū, v̄)∗σ̄ +




∇g(x̄)
0
0
0


 ζ̄ +




∇h(x̄)
0
0
0


 τ̄ .

Moreover, since µk → 0, by the continuity of the constraint function of problem (3.14)
and Proposition 3.1, we have w̄ ∈ F . Consequently, w̄ is a KKT point of problem (3.7),
i.e., (x̄, ȳ) is a C-stationary point of the MPSCCC. 2

5 Conclusion

In this paper, we have presented a smoothing method for mathematical program with
symmetric cone complementarity constraints (MPSCCC). We have also discussed the
convergence of the method and shown that an accumulation point of the sequence gen-
erated by the smoothing method is a C(larke)-stationary point of the original MPSCCC
under some conditions.
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