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Abstract

In this paper, we investigate a global complexity bound of the Levenberg-Marquardt method (LMM)
for the nonlinear least squares problem. The global complexity bound for an iterative method solving
unconstrained minimization of ¢ is an upper bound on the number of iterations required to get an
approximate solution such that ||[Vé(z)|| < e. We show that the global complexity bound of the
LMM is O(e™?).
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1 Introduction

In this paper, we consider the nonlinear least squares problem of finding a local minimizer of

8(z) = SIF @I, (11)

where F': R — R™ is a continuously differentiable mapping.
The Levenberg-Marquardt method (LMM) is one of the solution methods for (1.1) [1, 5, 6, 10]. For
a current point ¥, the LMM adopts a search direction d* () given by

d* () = —(J (@) I (@") + D)~ T (") TF (), (1.2)

where J(z*) is the Jacobian of F' at x* and ju is a positive parameter. Taking ur — oo, we have
1d*(ue) | = 0 and d* () /1A (ue)| = J(@*)TF(a*)/|lJ(@*) F(a*)|l. Therefore, ¢(a* + d*(m)) <
#(x*) for py sufficiently large, and hence the LMM converges globally if ju is appropriately updated.
In this paper, we call uj the scale parameter of the search direction.

In order to guarantee a global convergence of the LMM, many updating rules of the scale parameter
ux, have been proposed [5, 6, 10]. Moré [5] proposed the updating rule based on the idea of the trust-
region method [4]. A search direction d*(uy) of his proposal is given as a solution of a subproblem

imize F(2" k
minimize |E(z") + J(z™)d]],
subject to ||d|| < Ag,

and the scale parameter py corresponds to the Lagrange multiplier of the Karush-Kuhn-Tucker condi-
tions of the subproblem. Then, instead of directly updating ug, Ag is controlled for global convergence.
Thus, the LMM with his updating rule requires to solve the subproblem at each iteration. On the other
hand, Osborne [6] proposed a simple and direct updating rule of u, and showed the global convergence
of the LMM with the rule. Since uy is directly given, d*(us) is a solution of the linear equations which
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is much easier to solve than the above subproblem. The details of his proposal is presented in Section
2.

Recently, global complexity bounds have been vigorously discussed for solution methods of uncon-
strained minimization problems [2, 3, 7, 8, 9, 11, 13]. The global complexity bound of an iterative
method for unconstrained minimization of f is an upper bound on the number of iterations required to
get an approximate solution such that ||V f(z)|| < €, where € is a given positive constant. The bound
is useful when we solve large-scale problems and we want to estimate the worst computational time
for a given accuracy of a solution in advance. Until now, some bounds for a steepest descent method
and Newton-type methods have been presented [2, 3, 7, 8, 9, 11, 13]. Thus, if we apply the steepest
descent method or the Newton-type methods to the least squares problem (1.1), then we can estimate
the worst computational time in advance. However, since these method are not specialized to nonlin-
ear least squares problems, they are not efficient. In fact, the Newton-type methods [2, 3, 7, 8, 9, 13]
require the second derivative of F', and have to solve nonconvex subproblems at each iteration. More-
over, although the steepest descent method requires only the Jacobian of F', its convergence is slow
in general. Thus, it is worth investigating a global complexity bound for methods specified for (1.1).
Recently, Nesterov [12] proposed a modified Gauss-Newton method for solving a system of nonlinear
equations and gave interesting results. However, the modified Gauss-Newton method also has to solve
computationally expensive subproblems. To the authors’ knowledge, the global complexity bound for
the LMM remains unknown.

In this paper, we investigate the global complexity bound for the LMM with the Osborne’s simple
updating rule of the scale parameter. In particular, we show that the global complexity bound is O(e~2)
without assuming the nonsingularity of J(z)T J(z).

Throughout the paper, we use the following notations. For a vector z € R", ||z|| denotes the
Euclidean norm defined by ||z|| := VzTxz. For a symmetric matrix M € ]R”X" we denote the maximum
eigenvalue and the minimum eigenvalue of M as Apax(M) and Apin (M), respectlvely For a matrix
M e R**™, ||M|| denotes the ¢5 norm of M defined by |[|M]| := \/Amax(MTM). If M is symmetric
positive semidefinite matrix, then ||M|| = Amax(M). B(z,r) denotes the closed sphere with center
and radius r, i.e., B(z,r) :={y € R" | |ly — z|| < r}. For sets S; C R™ and Sy C R”, Sy + S denotes
the sum of Sy and S, defined by S1 + Sz :={z+y € R" |z € S1,y € Sa}.

2 The global complexity bound of the LMM

First, we explain the updating rule of the scale parameter u proposed by Osborne [6]. Then, we give
a global complexity bound of the LMM with the rule. In what follows, we denote the LMM with the
Osborne’s updating rule as the LMM for simplicity. Moreover, ¥ denotes the k-th iterative point, and
F}, and J;, denotes F(z*) and J(z*), respectively.

The LMM adopts a search direction d*(uy,) defined by (1.2), and controls ju, directly as follows. Let
Y1, : R” x R = R be a model function of ¢ at z* defined by

1 1
Yi(d, p) = 5|1 Fi + Jd||” + §u||d||2- (2.1)

Note that d*(ju) is a global minimizer of (-, uz). Let pr, : R* x R — R be the ratio of the reduction
of the objective function value to that of the model function value, i.e.,

¢(z*) — p(z* +d)
P(z*) — Yr(d, p)
If pr(d*(pr), pr) is large, then we adopt d*(ju) and decrease the parameter py,. On the other hand, if

pr(d¥ (ur), ux) is small, then we increase yy and compute d*(uy) once again.
The precise description of the LMM is as follows.

Pk (d7 /1') =

(2.2)

The Levenberg-Marquardt Method




Step 0 : Choose parameters €, i, 8,71, 2, 71,2 such that
0<e<l,up>0,6>20,711<1<y, 0<ng <n <1
Choose a starting point z°. Set k := 0.
Step 1 : If [|JL F}|| < e, then terminate. Otherwise, go to Step 2.

Step 2 : Step 2.0 : Set I, :=1 and iy, = p-
Step 2.1 : Compute
d* () = = (J{ T + 1)~ T P

Step 2.2 : Compute
¢(z*) — ¢(z* + d* ()
¢(mk) - ¢k(dk(ﬂlk)7 p’lk) .

If pk(dk(ﬂlk))ﬂlk) <M, then update B +1 7= Y2y, set Iy =1 + 1, and go to
Step 2.1. Otherwise, go to Step 3.

Pk (dk (ﬂhe)) ﬂlk) =

Step 3 : I ny > pi(d” (fur, ), fu,) > m, then update fur1 == fi,.
If pi(d* (), i) > 12, then update g y1 == y1 i, -
Update z**t! = 2% + d*(f;,). Set k:= k+ 1, and go to Step 1.

Osborne [6] showed that the LMM has a global convergence property under appropriate conditions.

Next, we discuss the global complexity bound of the LMM. In what follows, for simplicity, we denote
I, and fiy, of the last iteration in the inner loops of Steps 2.0-2.2 at each k as [} and pj, respectively.

Let Koyuter be the total number of outer iterations when the algorithm terminates. If there does not
exist such Kgyuter, we define Koyger := 00. Moreover, let Kiota1 be the total number of inner iterations
such that k < Kyuger, i-€.,

Kouter—1

Ktotal = Z l;:;

k=0

Note that we cannot estimate the total computational time from Koyter. In contrast, Kiota means the
total number of solving linear equations. Therefore, the main task of the paper is to investigate Kiotal-
To this end, we firstly make the following assumption.

Assumption 1. The level set of ¢ at the initial point z° is compact, i.e., Q := {x € R" | ¢(z) < ¢(z°)}
15 compact.

Since {¢(z*)} is monotonically decreasing, the sequence {z*} is included in the compact set Q.
Moreover, since F' is continuously differentiable, there exist positive constants Ur and Uy such that

IF(2)|l < Up, max(Il7(@)Il,[7()7])) <Us, Yz €. (2.3)

Now, we give bounds of eigenvalues of (Ji Ji, + pI) .

Lemma 2.1. Suppose that Assumption 1 holds. Then, for any p € (0,00),

AmaX((Jng + ,UI)il) <

I~

Amin ((JE nHYy> —.
D+ mD ™ >



Proof. Since J[ J; is positive semidefinite, we have

1
Amin(Jng + ,UI)

AmaX((Jng + UI)il) = <

1
s
On the other hand, we have from (2.3) that

1 1 1

Ain ((JTT NN~ = = > .
(et D)) = S i) ~ P 5 = T2+ p

This completes the proof. O
The next lemma indicates that ||d*(u)|| is bounded above when u € [, 00).
Lemma 2.2. Suppose that Assumption 1 holds. Then, for any p € [uo, 00),

12" ()lI < Ua,

where Uy := —U’;([)JJ .

Proof. We have from (1.2) that
" ()| = (T T + uI) = T Fy |
<K T+ uD) 7NN - E
gmmmm«£h+wrﬁ
< UrUs

— )

Mo

where the second inequality follows from (2.3), and the last inequality follows from Lemma 2.1 and
B2 Ho- g

In what follows, we further assume that J is Lipschitz continuous on the compact set Q + B(0,Uy),
where Uy is the constant given in Lemma 2.2.

Assumption 2. There ezists L > 0 such that
I7(z) = J()Il < Lllz — yll, Va,y € @+ B(0,Uaq).

Note that if F' is twice continuously differentiable, then Assumption 2 holds.
Next, we show that the scale parameter uy is bounded above.

Lemma 2.3. Suppose that Assumptions 1 and 2 hold. Then,
i < Uy,
where Uy, := v max(po, 2(Up + UsUq)L + L2U3).

Proof. Since F' is continuously differentiable, we have
1
F(z* + d*(n)) = Fr + Jpd" (p) + / (J(z* + rd* () — Ji)d* (p)dr. (2.4)
0

Since x + 7d* (1) € Q + B(0,Uy) for all u € [ug,o0) and 7 € [0,1], it then follows from Assumption 2
that for p > o,

17(2" +7d* () = T(@*)|| < Lr||d*(w)]] < LIld*(w)]]. (2.5)
Moreover, we have from (2.3) and Lemma 2.2 that for p > po,

1Fe + Jid® (| < 1Fell + (17611 - |4 ()| < Up + UsUa. (2.6)



Now we suppose that p > po. It then follows from (1.1), (2.1) and (2.4) that

B + ¥ () — a(d (), 1) = SIIF G + A @)~ SIF -+ Ted ) — Sulld ()P
1
|

1 1
= S+ Ted* ()] = Sl () P

2

ﬂ+mmwf/uw+mmm—mﬁww

= (B + )" [ (et 47 () = T (e

w3 | ) - dodkar| - Gl olP

< (1B + chd'“(u)ll/0 1 (2" +7d* () = Jill - [|d" ()| dr

1/t 1
+ 5/0 T (" + 7d" (1)) — Je||* - [|ld" (w)||*dr — §ulld’“(u)ll2

IN

1 1
(Ur + UyUa) L d* (w)|I* + SL2UZ N () I* = Spelld ()]

2(Up + U U)L + L2U3 — 1

= 5 1" ()17, (2.7)

where the second inequality follows from (2.5), (2.6) and Lemma 2.2.
We further suppose that g > max(uo,2(Ur + UyUs)L + L2U3). It then follows from (2.7) that

o(z* + d*(n)) < Ye(d (), 1),

and hence

olat) = oot +d* () | |
Ok — ould (). ) =

Thus, if i, > max(uo,2(Up + UsUg)L + L?U?), then inner loops of Step 2 must terminate. Therefore,
if @ > max(po,2(Up + UsUq)L + L?U3) at the k-th iteration, then uj = fi;. On the other hand, if
fn < max(po, 2(Up + U Uq)L + L?U?), then pf must satisfy uf < v max(po, 2(Up + U Uq)L + L2U?).
Otherwise, fi;: —1 > max(uo, 2(Ur + U;Uq) L + L?U}), which contradicts pk(dk(ﬂlzfl),ﬂlzfl) <m <1
Consequently, we have from the updating rule of y that

pr(d* (), p) =

py, < max(fiy, Yapto, ¥2(2(Ur + UsUa) L + L*U}))
< max(pj_1,v2p0,72(2(Ur + UsUg) L + L?UJ))
< --- <max(po, Y2pi0,V2(2(Ur + UsUs) L + L*UY))
= o max(pg, 2(Ur + UsUs)L + L*U3).
This completes the proof. O

By using the above lemma, we give a lower bound of the reduction of the objective function when
k < Kouter-

Lemma 2.4. Suppose that Assumptions 1 and 2 hold. Then, for all k such that k < Kuter,
$(z") — p(z"h) > pe’.

R 71
where p := IEETE



Proof. First note that ||/ Fy|| > € for k¥ < Kouger- We have from Lemmas 2.1 and 2.3 that

1

)\min((J,;TJk +MZ[)_1) Z m
J n

(2.8)

Since pg(d*(u}), uf) > mu from the definition of u}, we have

¢(z") = p(@"*) > m(d(e®) — vu(d* (i), i)
It then follows from (1.1) and (2.1) that

p(z*) — p(z*) > 77—21(||Fk||2 — 1B + Jed" (ui)I1> = pilld® (i) II?)
* 1 * * *
= (—F] Jed"(uf) — §d’“(uk)T(Jz?Jk + pp)d* (i)
= %Fng(Jng +ui )~ I Fy

n . —
> Dwin (T i+ 1) ) |IE B2
n 2
> 573 6
203+ U

where the second equality follows from (1.2), and the last inequality follows from (2.8) and [|.J] F|| >
€. |

Now, we give the global complexity bound Kyyuger-

Theorem 2.1. Suppose that Assumptions 1 and 2 hold. Then,

Kouter < ’7@62 + 1—‘ .
p

Proof. Let K be [(¢(z°)e=2/p) + 1]. Suppose the contrary, i.e., Kouter > K. Then, we have from
Lemma 2.4 that

=
=
i)

¢(2°) > ¢(a°) — p(x™) = Y (p(a7) — p(@’F1)) > Y pe® = pe’K. (2.9)
J
On the other hand, we have from the definition of K that

pK = pe K‘z’;fs)) + 1} > ¢(z0).

This contradicts (2.9), and hence we obtain the result of the theorem. O

I
=)
<.

I
=)

By using Theorem 2.2, we show the main theorem of the paper.

Theorem 2.2. Suppose that Assumptions 1 and 2 hold. Then,

U Kouter
Ktotal S IOg'yz % +1 ’
Moy
and hence Kiopa = O(e72).

Proof. Suppose the contrary, i.e., Kiotal > [logw(UN72K°““//L07{(°““) + 1]. The number of satisfying

pr(dr (g, fig,) < mi is Zf:"}‘)‘“_l(l,’; —1). Moreover, the number of satisfying pr(d* (fir, ), iz, ) > 02 is

at most Koyter- Thus, we have from the updating rule of uy that

ZKouter —1=
* k=0 (lk_l) Kouter
KK e —1 = HOY2 T

Kiotal ., —Kouter » Kouter

= Ho7Ys V2 e

K
> 1075 071 ,Yz—Kouter,YlKouter
=U,,



where the last inequality follows from the assumption that Kiogar > [logﬂyz(UH%K"“ter / uofle"“t“) +17.
This contradicts Lemma 2.3. Therefore, we have from Theorem 2.1 that

i U Kouter
Ktotal S 10g,¥2 % + 1
HoY1

= {Kouter(l —log., m)+ log., U, —log,, po + 1]

$(2°) _, _ —
< p e “+1|(1-log,, 1) +log,, U, —log,, o +1},

and hence Kot = O(e2). O

Note that the theorem does not assume the nonsigurality of J(z)TJ(x) or J(z)J(z)T. Note also
that since J(z)T F(x) = 0 does not imply F(z) = 0, the theorem does not provide a global complexity
bound of ||Fy|| < € for some positive constant ¢. Now, by assuming the nonsingularity of .J(x).J(z)T, we

give such a bound as a direct application of Theorem 2.2.

Corollary 2.1. Suppose that there exists a positive constant o such that Amin (J(x).J(2)T) > o for all
x € Q. Suppose also that Assumptions 1 and 2 hold. Let € be a positive constant, and let the termination
criterion in Step 1 be replaced with ||Fy|| < é. Then, Kiotal = O(¢72), where Kiotal is the total number
of inner iterations of the modified LMM.

Proof. Now, we consider the original LMM with € = y/gé€. Since Apin (J J,?) > o by the assumption,
we have ||JTFy|| > /@||F||, and hence ||JTFy|| < v/@é implies ||Fy|| < é&. Thus, Ky is less than

or equal to the total number of inner iterations of the original LMM. From Theorem 2.1 we have
Ktotal S Ktotal = O((\/Eé)_Q) = O(é_ ) O
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