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Abstract

We consider the problem of pricing American options with uncertain volatility and propose
two deterministic formulations based on the expected value method and the expected residual
minimization method for a stochastic complementarity problem. We give sufficient conditions
that ensure the existence of a solution of those deterministic formulations. Furthermore we show
numerical results and discuss the usefulness of the proposed approach.
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1 Introduction

A derivative is a financial instrument whose value depends on the value of underlying assets
such as stock, bond, currency and rate of interest [16]. Derivatives may be used for speculation
purpose, but they are usually used for hedging the risk of fluctuation of a commodity or an
exchange. Option is a kind of derivatives; it is the right to buy or sell the underlying assets by
a certain date for a certain price. A call option is the right to buy an asset for a certain price.
A put option is the right to sell an asset for a certain price, and the price at which the asset
can be bought or sold in an option contract is called the strike price. A European option can be
exercised only at the end of its life. An American option can be exercised at any time during its
life, and the end of a contract is called the expiration date. Using the Black-Scholes model [3],
we can compute the prices of European options explicitly under some assumptions. On the other
hand, since an American option is permitted to exercise at any time of its life, we have to decide
whether or not to exercise it and need to compute its boundary. Hence, pricing American options
is more complicated than pricing European options. In particular, we cannot express the prices of
American options explicitly and hence we can obtain the prices only by numerical computation.
The binomial lattice model, finite difference approximation, and Monte Carlo simulation are
used for pricing American options. In the binomial lattice model, we divide the time from now
to the expiration date and create a binomial lattice representation of the asset price. Then,



by backward induction on the lattice, we compute the prices of American options [10]. In
the finite difference approximation method, we approximate the partial differential equation or
partial differential inequality that the asset follows, and formulate pricing options as a linear
complementarity problem [5, 15]. In Monte Carlo simulation, by sampling random paths of
the process of the asset, we calculate the mean of the sample payoff and discount the expected
payoff [4, 20].

The prices of European options and American options are dependent on the asset price, the
strike price, the expiration date, the risk-free rate, and the volatility of the asset price. The
Black-Scholes model [3] assumes that these values are constant. Since we know the asset price
and the strike price correctly and the contractor can decide the expiration date, these values are
absolutely constant. Moreover, we can expect the risk-free rate easily by seeing the interest rate
of the bank deposits or the national bonds. However, it is practically difficult to set the volatility
as a constant value, because each expert has his own view for the volatility. Besides, even if we
adopt a historical volatility, it may fluctuate according to the chosen period. In practice, traders
work with what are known as implied volatility. The implied volatility is the value calculated
backward using the asset price, the strike price, the expiration date, the risk-free rate, and the
price of option observed in the real market. Traders buy options if the implied volatility is
comparatively low and sell options if it is comparatively high.

Recently, there have been a number of works on pricing options which suppose the volatility
is not a constant value in order to remedy the shortcoming of the Black-Scholes model. In most
of those works, the volatility of the asset is assumed to be stochastic and its variance is assumed
to follow a mean-reverting process that indicates its tendency to return to a long-term average.
Such a model is called the stochastic volatility model. The stochastic volatility model [14] gives a
closed-form formula for the prices of the corresponding European options. For American options
with varying volatility, their prices are obtained by using Heston model [14] via Monte Carlo
simulation [8, 22]. However, the stochastic volatility model assumes that the volatility varies
with time. So this model may not suit the situation where the volatility is constant until the
expiration time but uncertain at the present time.

In this paper, we assume that the volatility itself follows some probability distribution such
as normal distribution and propose the formulation for pricing American options through a
stochastic linear complementarity model. The stochastic complementarity problem is the prob-
lem whose coefficients are random variables. Since there is in general no solution that satisfies
the complementarity conditions for all realizations of the coefficient values simultaneously, some
deterministic formulations are constructed. We propose two deterministic formulations for pric-
ing American options with uncertain volatility through the expected value method [13] and the
expected residual minimization method [6]. Moreover, by analyzing numerical results based on
some criteria, we show the usefulness of the proposed approach.

This paper is organized as follows: In Section 2, we recall the Black-Scholes partial differential
equation and formulate pricing American options as a linear complementarity problem. In
Section 3, we describe the expected value method and the expected residual minimization method
for stochastic complementarity problems. In Section 4, we present two formulations for pricing
American options with uncertain volatility by means of the expected value method and the
expected residual minimization method. In Section 5, we discuss conditions that ensure the
existence of a solution of those formulations. Numerical results are reported and discussed in
Section 6. Finally, Section 7 concludes the paper.
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2 Pricing American options using linear complementarity mod-
els

In this section, after reviewing the Black-Scholes partial differential equation [21], we describe
a linear complementarity formulation for pricing American options [15].

First we specify the model of asset prices. Let S denote the asset price at time t. Consider
a small time interval dt, during which S changes to S + dS. We can write the corresponding
return on the asset as dS/S. The common model decomposes this return into two parts. One
is a deterministic return like the return on money invested in a risk-free bank. It gives the
contribution

µdt (2.1)

to the return dS/S, where µ is a measure of the average rate of growth of the asset price. In
this paper, µ is taken to be a constant. The second part is a random change in the asset price
in response to external effects such as unexpected news. It adds the term

σdX (2.2)

to the return dS/S. Here σ is the standard deviation of returns, called the volatility, and dX is
a Wiener process. The Wiener process has the following properties:

• dX has a normal distribution,

• the mean of dX is zero,

• the variance of dX is dt.

Putting (2.1) and (2.2) together, we obtain the stochastic differential equation

dS

S
= µdt + σdX.

By multiplying both sides of the equation by S, we get the following equation:

dS = µSdt + σSdX. (2.3)

Now we recall the Black-Scholes partial differential equation, which is used for pricing Eu-
ropean options. Throughout the paper, we make the following assumptions:

• The asset price follows the stochastic differential equation (2.3).

• There are no arbitrage possibilities. This means that there is no opportunity to make an
instantaneous risk-free profit.

• Trading of the asset can take place continuously.

• Short selling is permitted and the asset is divisible. This means that we may sell assets
that we do not own, and we can buy and sell any number (not necessarily an integer) of
the asset.
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Let V (S, t) denote the option price when the asset price is S and the time is t. Then we can
derive the following partial differential equation that V (S, t) satisfies:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.4)

This is called the Black-Scholes partial differential equation.
In the remainder of this section, we describe the linear complementarity model for pricing

American options, as formulated by Huang and Pang [15]. Since we can exercise American
options at any time during the life of the option, we have to determine not only option prices
but also, for each value of S, whether or not it should be exercised. This is what is known
as a free boundary problem. Since it is difficult to deal with free boundary, we reformulate
the problem in such a way as to eliminate any explicit dependence on the free boundary. We
describe a linear complementarity formulation for American option pricing.

Since a holder of American options may miss the optimal exercise price, there are cases
where the portfolio consisting of American options cannot bring as high profit as the money
invested in a bank. Moreover, by the assumption of no arbitrage possibilities, we cannot make
a guaranteed riskless profit by borrowing money from the bank and investing in the portfolio.
These observations yield, instead of the Black-Scholes partial differential equation, the following
Black-Scholes partial differential inequality:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0. (2.5)

Let Λ(S, t) denote the payoff function when the asset price is S and the time is t. Payoff
means the amount of money earned by exercising the right of options. For a call option, the
payoff function is given by Λ(S, t) = max(S(t) − E, 0), where E is the strike price. For a put
option, the payoff function is given by Λ(S, t) = max(E − S(t), 0). If the price of an American
option is less than the payoff, then an investor can earn the riskless profit by buying the option
and immediately exercising it. Therefore, we must have

V (S, t) ≥ Λ(S, t). (2.6)

In addition, we have two choices for American options; we exercise the right of options or not. If
we exercise, the price of an American option is equal to the payoff. If not, American options are
essentially the same as European options. This means that the Black-Scholes partial differential
equation (2.4) is valid. Thus, we obtain

(
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)
(V (S, t)− Λ(S, t)) = 0. (2.7)

Putting (2.5), (2.6) and (2.7) together, we conclude that the prices of American options satisfy
the partial differential complementarity condition:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV ≤ 0

V (S, t)− Λ(S, t) ≥ 0(
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV

)
(V (S, t)− Λ(S, t)) = 0.

(2.8)
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Now we derive the (finite-dimensional) linear complementarity problem by discretizing the
asset price and time. We divide the time interval [0, T ] into L subintervals of equal length and
denote

tl = lδt, l = 0, 1, 2, · · · , L; δt =
T

L
, (2.9)

where T is the expiration date. The range of the asset price is [0,∞) in principle, but we assume
that the actual asset price does not exceed a large positive number Smax. We divide the interval
[0, Smax] into N subintervals of equal length and denote

Sn = nδS, n = 1, 2, · · · , N ; δS =
Smax

N
. (2.10)

We write the discretized option prices and payoff values as follows:
{

V l
n ≡ V (Sn, tl)

Λl
n ≡ Λ(Sn, tl)

1 ≤ n ≤ N, 0 ≤ l ≤ L. (2.11)

The partial differential complementarity problem (2.8) is then approximated on a regular
grid with step-sizes δt and δS. For the first partial derivative with respect to the time, we use
the following forward difference approximation:

∂V

∂t
=

V (S, t + δt)− V (S, t)
δt

+ O(δt). (2.12)

For the first partial derivative with respect to the asset price, we use the following θ1-weighted
central difference approximation:

∂V

∂S
= θ1

V (S + δS, t)− V (S − δS, t)
2δS

+ (1− θ1)
V (S + δS, t + δt)− V (S − δS, t + δt)

2δS
+ O(δS2),

(2.13)

where θ1 ∈ [0, 1] is a given parameter. When θ1 = 0, this approximation is called an explicit
method. When θ1 = 1, this approximation is called an implicit method. When θ1 = 1/2,
this approximation is called the Crank-Nicolson method. For the second partial derivative with
respect to the asset price, we use the following θ2-weighted central difference approximation:

∂2V

∂S2
= θ2

V (S + δS, t)− 2V (S, t) + V (S − δS, t)
(δS)2

+ (1− θ2)
V (S + δS, t + δt)− 2V (S, t + δt) + V (S − δS, t + δt)

(δS)2
+ O(δS2),

(2.14)

where θ2 ∈ [0, 1] is a given parameter whose role is similar to that of θ1.
Using the difference approximations (2.12), (2.13) and (2.14), the left-hand side of the Black-

Scholes partial differential inequality can be approximated as follows:
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−∂V

∂t
− rS

∂V

∂S
+ rV − 1

2
σ2S2 ∂2V

∂S2
≈ V (S + δS, t)

(
−rSθ1

1
2δS

− 1
2
σ2S2θ2

1
(δS)2

)

+ V (S, t)
(

1
δt

+ r + σ2S2θ2
1

(δS)2

)

+ V (S − δS, t)
(
−1

2
σ2S2θ2

1
(δS)2

+ rSθ1
1

2δS

)

+ V (S + δS, t + δt)
(
−rS(1− θ1)

1
2δS

− 1
2
σ2S2(1− θ2)

1
(δS)2

)

+ V (S, t + δt)
(
− 1

δt
+ σ2S2(1− θ2)

1
(δS)2

)

+ V (S − δS, t + δt)
(
−1

2
σ2S2(1− θ2)

1
(δS)2

+ rS(1− θ1)
1

2δS

)
.

With the above finite difference approximations, the system (2.8) leads to the following finite-
dimensional linear complementarity problem:

0 ≤ (Vl −Λl) ⊥ (MVl + M′Vl+1) ≥ 0, l = L− 1, L− 2, · · · , 1, 0, (2.15)

where the perp symbol ⊥ denotes the orthogonality of two vectors, i.e., x ⊥ y means xT y = 0,
Vl and Λl are N -vectors defined by

Vl ≡




V l
1
...

V l
N


 , Λl ≡




Λl
1
...

Λl
N


 ,

M is the N ×N matrix

M ≡




b1 c1 0 0 0 0 · · · 0
a2 b2 c2 0 0 0 · · · 0
0 a3 b3 c3 0 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 0 aN−1 bN−1 cN−1

0 0 · · · 0 0 0 aN bN




with entries given by

an = −1
2
σ2n2θ2 +

rnθ1

2
, n = 2, · · · , N

bn = r +
1
δt

+ σ2n2θ2, n = 1, · · · , N

cn = −rnθ1

2
− 1

2
σ2n2θ2, n = 1, · · · , N − 1,

and M′ is the N ×N matrix, formed in the same way as M, with entries given by

a′n = −1
2
σ2n2(1− θ2) +

rn(1− θ1)
2

, n = 2, · · · , N

b′n = − 1
δt

+ σ2n2(1− θ2), n = 1, · · · , N

c′n = −rn(1− θ1)
2

− 1
2
σ2n2(1− θ2), n = 1, · · · , N − 1.
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On the expiration date, we cannot hold American options any more. So we have to exercise
the right of options or discard it. This means that, on the expiration date, the price of an
American option is equal to the payoff value, that is to say, VL = ΛL. Since VL is known,
we can solve the linear complementarity problems (2.15) for l = L − 1, L − 2, · · · , 1, 0, by
proceeding backward in time. Thus, we can obtain a set of discrete option prices at t = 0 as
V 0

n , n = 1, · · · , N .

3 Deterministic formulations for the stochastic complementar-
ity problem

In this section, we consider the general stochastic complementarity problem and describe the
expected value method [13] and the expected residual minimization method [6] which give de-
terministic formulations for the stochastic complementarity problem.

The stochastic complementarity problem in standard form is to find a vector x ∈ <n
+ such

that
0 ≤ x ⊥ F (x, ω) ≥ 0, ω ∈ Ω, (3.1)

where F : <n×Ω → <n is a vector-valued function, (Ω,F , P ) is a probability space with Ω ⊆ <m.
In general, there is no vector x ∈ <n

+ satisfying (3.1) for all ω ∈ Ω simultaneously. Therefore, it
is necessary to consider a deterministic formulation for (3.1) which provides an optimal solution
of the stochastic complementarity problem in some sense.

3.1 Expected value method

The expected value method [13] considers the deterministic formulation which is to find a vector
x ∈ <n

+ such that
0 ≤ x ⊥ F∞(x) ≥ 0, (3.2)

where F∞(x) := E[F (x, ω)] is the expectation function of the random function F (x, ω). Since it
is usually difficult to evaluate the expectation function F∞(x) exactly, we use a finite number
of samples {ωj , j = 1, · · · , k} and construct an approximating function Fk(x) as

Fk(x) :=
1
k

k∑

j=1

F (x, ωj).

By using the approximating function Fk(x), the complementarity problem (3.2) is rewritten as

0 ≤ x ⊥ Fk(x) ≥ 0. (3.3)

3.2 Expected residual minimization method

We consider a function ψ : <2 → <, called an NCP function, which satisfies

ψ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

There are various NCP functions for solving complementarity problems [12]. In this paper we
concentrate on two popular NCP functions; the min function

ψ(a, b) = min(a, νb) (3.4)
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and the Fischer-Burmeister (FB) function

ψ(a, b) = a + νb−
√

a2 + (νb)2, (3.5)

where ν is a positive parameter. Then, we can easily verify that (3.1) is equivalent to the
following equation:

Ψ(x, ω) = 0, ω ∈ Ω, (3.6)

where Ψ : <n × Ω → <n is defined by

Ψ(x, ω) :=




ψ(F1(x, ω), x1)
...

ψ(Fn(x, ω), xn)


 .

As mentioned above, there is usually no x ∈ <n
+ satisfying (3.6) for all ω ∈ Ω simultaneously. In

[6], the expected residual minimization method is proposed to give the following deterministic
formulation for the stochastic complementarity problem:

min
x

E
[||Ψ(x, ω)||2]

s.t. x ∈ <n
+,

(3.7)

where ‖ ·‖ denotes the Euclidean norm. Like the expected value method, it is usually difficult to
evaluate the expectation E

[||Ψ(x, ω)||2] exactly. So we use a finite number of samples {ωj , j =
1, · · · , k} and construct an approximating function of E

[||Ψ(x, ω)||2] as

fk(x) :=
1
k

k∑

j=1

||Ψ(x, ωj)||2.

By using the approximating function, problem (3.7) is rewritten as

min
x

fk(x)

s.t. x ∈ <n
+.

(3.8)

This approach may be regarded as an extension of the least-squares method for an overdeter-
mined system of equations.

We note that, if Ω has only one realization, then we get the same solution by using the
expected value method (3.2) and the expected residual minimization method (3.7) as long as
the original complementarity problem has a solution, and the solubility of the expected residual
minimization method (3.7) does not depend on the choice of NCP functions. It should be
noted, however, that we usually get different solutions by using the expected value method and
the expected residual minimization method if Ω has more than one realization. Moreover, the
solubility of the expected residual minimization method (3.7) is dependent on the choice of NCP
functions [6]. In other words, a solution of the stochastic complementarity problem depends on
the choice of deterministic formulations. Besides, there are cases where the solution set is empty
or there are many solutions. In Section 5, we discuss conditions that ensure the existence of a
solution in deterministic formulations for the stochastic linear complementarity problem derived
from the model for pricing American options.
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4 Pricing American options with uncertain volatility

In this section, we present two deterministic formulations for pricing American options with
uncertain volatility, which are based on the expected value method and the expected residual
minimization method for the stochastic complementarity problem discussed in Section 3. Since
the entries of the matrices M and M′ defined in Section 2 are dependent on the volatility σ, we
write M(σ) and M′(σ).

If we regard the volatility σ as a random variable, pricing American options with uncertain
volatility is formulated as the following stochastic linear complementarity problem:

0 ≤ (Vl −Λl) ⊥
(
M(σ)Vl + M′(σ)Vl+1

)
≥ 0, l = L− 1, L− 2, · · · , 1, 0. (4.1)

As mentioned in Section 3, there are usually no V l, l = 0, 1, · · · , L− 1 satisfying (4.1) for all σ

simultaneously. So we apply the expected value method and the expected residual minimization
method to the stochastic linear complementarity problem (4.1).

First, we give the formulation based on the expected value method. In the expected value
method, we substitute the expected values E[M(σ)] and E[M′(σ)] for M(σ) and M′(σ), respec-
tively. Then we have the following linear complementarity problem:

0 ≤ (Vl −Λl) ⊥
(
E [M(σ)]Vl + E

[
M′(σ)

]
Vl+1

)
≥ 0, l = L− 1, L− 2, · · · , 1, 0. (4.2)

Using discrete samples {σj , j = 1, · · · , k}, the expected values E[M(σ)] and E[M′(σ)] can be

approximated by 1
k

k∑
j=1

M(σj) and 1
k

k∑
j=1

M′(σj), respectively. So (4.2) can be rewritten as

0 ≤ (Vl −Λl) ⊥

1

k

k∑

j=1

M(σj)Vl +
1
k

k∑

j=1

M′(σj)Vl+1


 ≥ 0, l = L− 1, L− 2, · · · , 1, 0. (4.3)

Like pricing American options with constant volatility, the price of an option on the expira-
tion date is equal to the payoff value, that is VL = ΛL. By solving (4.3) backward in time, we
can obtain a set of discrete option prices at t = 0 as V 0

n , n = 1, · · · , N .
Next, we give the formulation based on the expected residual minimization method. Using

the equality VL = ΛL, the stochastic linear complementarity problem (4.1) can be rewritten as
the following stochastic linear complementarity problem:

0 ≤




V0 −Λ0

V1 −Λ1

...

VL−2 −ΛL−2

VL−1 −ΛL−1




⊥




M(σ) M′(σ) 0 0 · · · 0
0 M(σ) M′(σ) 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 M(σ) M′(σ)
0 0 · · · 0 0 M(σ)







V0

V1

...

VL−2

VL−1




+




0
0

...

0
M′(σ)ΛL




≥ 0,

(4.4)
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where Vl, l = 0, 1, · · · , L− 1 are the variables. We define V and Ψ(V, σ) as

V =




V0

V1

...

VL−2

VL−1




, Ψ(V, σ) =




ψ
(
V 0

1 − Λ0
1,

(
M(σ)V0 + M′(σ)V1

)
1

)
...

ψ
(
V 0

N − Λ0
N ,

(
M(σ)V0 + M′(σ)V1

)
N

)
ψ

(
V 1

1 − Λ1
1,

(
M(σ)V1 + M′(σ)V2

)
1

)
...

ψ
(
V 1

N − Λ1
N ,

(
M(σ)V1 + M′(σ)V2

)
N

)

...

ψ
(
V L−1

1 − ΛL−1
1 ,

(
M(σ)VL−1 + M′(σ)VL

)
1

)

...
ψ

(
V L−1

N − ΛL−1
N ,

(
M(σ)VL−1 + M′(σ)VL

)
N

)




,

where ψ is an NCP function and
(
M(σ)Vl + M′(σ)Vl+1

)
n

denotes the nth component of the
vector M(σ)Vl + M′(σ)Vl+1.

Using the expected residual minimization method, pricing American options with uncertain
volatility is formulated as the following optimization problem:

min
V

E
[||Ψ(V, σ)||2]

s.t. Vl ≥ Λl, l = 0, 1, · · · , L− 1,

VL = ΛL.

(4.5)

Adopting the min function as the NCP function ψ, (4.5) can be rewritten as

min
V

E

[
L−1∑

l=0

N∑

n=1

{
min

(
V l

n − Λl
n, ν

(
M(σ)Vl + M′(σ)Vl+1

)
n

)}2
]

s.t. Vl ≥ Λl, l = 0, 1, · · · , L− 1,

VL = ΛL.

(4.6)

Moreover, by using discrete samples {σj , j = 1, · · · , k}, (4.6) can be approximated as follows:

min
V

1
k

k∑

j=1

L−1∑

l=0

N∑

n=1

{
min

(
V l

n − Λl
n, ν

(
M(σj)Vl + M′(σj)Vl+1

)
n

)}2

s.t. Vl ≥ Λl, l = 0, 1, · · · , L− 1,

VL = ΛL.

(4.7)

5 Choice of step-size parameter and existence of a solution

In this section, we give conditions that ensure the existence of a solution in the formulation
by the expected value method (4.3) and the formulation by the expected residual minimization
method (4.3) for pricing American options with uncertain volatility. Recall that we can take the
step-size parameter δt arbitrarily for a certain positive integer L satisfying (2.9). So we mainly
examine conditions for the parameter δt that ensure the existence of a solution.
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5.1 Existence of a solution in the expected value method

We denote the discrete samples of σ as {σj , j = 1, · · · , k}. Then, the coefficient matrix of the
linear complementarity problem in the expected value method (4.3) is written as

M̃ ≡




b̃1 c̃1 0 0 0 0 · · · 0
ã2 b̃2 c̃2 0 0 0 · · · 0
0 ã3 b̃3 c̃3 0 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 0 ãN−1 b̃N−1 c̃N−1

0 0 · · · 0 0 0 ãN b̃N




with entries given by

ãn = −n2θ2

2k

k∑

j=1

σ2
j +

rnθ1

2
, n = 2, · · · , N

b̃n = r +
1
δt

+
n2θ2

k

k∑

j=1

σ2
j , n = 1, · · · , N

c̃n = −rnθ1

2
− n2θ2

2k

k∑

j=1

σ2
j , n = 1, · · · , N − 1.

For a square matrix A ∈ <n×n, the following results are known [19].

Lemma 1. If a square matrix A is a strictly row diagonally dominant matrix with positive
diagonal elements, then A is a P-matrix.

Recall that A = (aij) is said to be strictly row diagonally dominant if

|aii| >
∑

j 6=i

|aij |, i = 1, · · · , n.

A square matrix is said to be a P-matrix if all its principal minors are positive. About a
P-matrix, the following results are known [9].

Lemma 2. Let A ∈ <n×n. Then the following statement are equivalent:

(a) A is a P-matrix.

(b) Matrix A reverses the sign of no vector, i.e.,

xi(Ax)i ≤ 0, ∀i ⇒ x = 0.

(c) the linear complementarity problem

0 ≤ x ⊥ Ax + q ≥ 0

has a unique solution for any vector q ∈ <n.

Concerning the choice of δt, we can establish the following proposition.

11



Proposition 1. If we choose δt such that

1
δt

>
kr2θ2

1

4θ2
∑k

j=1 σ2
j

− r, (5.1)

then the linear complementarity problem (4.3) in the expected value method has a unique solution.

Proof. Clearly, all diagonal elements of M̃ are positive. We will prove that M̃ is a strictly row
diagonally dominant matrix. Note that M̃ is a strictly row diagonally dominant if and only if

|b̃1| > |c̃1|,
|b̃n| > |ãn|+ |c̃n|, n = 2, · · · , N − 1,

|b̃N | > |ãN |.
(5.2)

Since b̃n, n = 1, · · · , N are positive and c̃n, n = 1, · · · , N − 1 are negative, we can write

|b̃1| − |c̃1| = r +
1
δt

+
θ2

k

k∑

j=1

σ2
j −

rθ1

2
− θ2

2k

k∑

j=1

σ2
j ,

|b̃n| − |ãn| − |c̃n| = r +
1
δt

+
n2θ2

k

k∑

j=1

σ2
j −

∣∣∣∣∣∣
−n2θ2

2k

k∑

j=1

σ2
j +

rnθ1

2

∣∣∣∣∣∣

− rnθ1

2
− n2θ2

2k

k∑

j=1

σ2
j , n = 2, · · · , N − 1,

|b̃N | − |ãN | = r +
1
δt

+
N2θ2

k

k∑

j=1

σ2
j −

∣∣∣∣∣∣
−N2θ2

2k

k∑

j=1

σ2
j +

rNθ1

2

∣∣∣∣∣∣
.

We only consider the cases of n = 2, · · · , N − 1, because the cases n = 1 and n = N can be
treated similarly. First, suppose an ≥ 0. Then we can write

|b̃n| − |ãn| − |c̃n| = r +
1
δt

+
n2θ2

k

k∑

j=1

σ2
j − rnθ1, n = 2, · · · , N − 1. (5.3)

Note that the right-hand of (5.3) can be rewritten as

θ2

k

k∑

j=1

σ2
j

(
n− krθ1

2θ2
∑k

j=1 σ2
j

)2

+
1
δt
− kr2θ2

1

4θ2
∑k

j=1 σ2
j

+ r, n = 2, · · · , N − 1. (5.4)

Hence if δt satisfies (5.1), we have (5.2).
Next, suppose an < 0. Then we can write

|b̃n| − |ãn| − |c̃n| = r +
1
δt

, n = 2, · · · , N − 1.

Since r ≥ 0 and δt > 0, we have (5.2).
Therefore, if δt is chosen to satisfy (5.1), then M̃ is a strictly row diagonally dominant

matrix. By Lemma 1, this implies that M̃ is a P-matrix. Then the assertion of the proposition
follows from Lemma 2. ¥

12



5.2 Existence of a solution in the expected residual minimization method

Next, we examine conditions that ensure the existence of a solution in the expected residual
minimization method. We denote the discrete samples of σ as {σj , j = 1, · · · , k}. For each σj ,
the coefficient matrix (4.4) is written as

G(σj) =




M̂(σj) M̂
′
(σj) 0 0 · · · 0

0 M̂(σj) M̂
′
(σj) 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 M̂(σj) M̂
′
(σj)

0 0 · · · 0 0 M̂(σj)




, (5.5)

where M̂(σj) is the N ×N matrix

M̂(σj) =




b̂1 ĉ1 0 0 0 0 · · · 0
â2 b̂2 ĉ2 0 0 0 · · · 0
0 â3 b̂3 ĉ3 0 0 · · · 0

...
. . . . . . . . .

...

0 0 · · · 0 0 âN−1 b̂N−1 ĉN−1

0 0 · · · 0 0 0 âN b̂N




with entries given by

ân = −1
2
σ2

j n
2θ2 +

rnθ1

2
, n = 2, · · · , N

b̂n = r +
1
δt

+ σ2
j n

2θ2, n = 1, · · · , N

ĉn = −rnθ1

2
− 1

2
σ2

j n
2θ2, n = 1, · · · , N − 1,

and M̂
′
(σj) is the N ×N matrix, formed in the same way as M̂(σj), with entries given by

â′n = −1
2
σ2

j n
2(1− θ2) +

rn(1− θ1)
2

, n = 2, · · · , N

b̂′n = − 1
δt

+ σ2
j n

2(1− θ2), n = 1, · · · , N

ĉ′n = −rn(1− θ1)
2

− 1
2
σ2

j n
2(1− θ2), n = 1, · · · , N − 1.

Recall that a square matrix H is called an R0 matrix if

xT Hx = 0, Hx ≥ 0, x ≥ 0 ⇒ x = 0.

In particular, any P-matrix is an R0 matrix [9]. The following existence result has been estab-
lished for the expected residual minimization method [6].

Lemma 3. If G(σj) is an R0 matrix for some j ∈ {1, · · · , k}, then the solution set of the
optimization problem (4.7) is nonempty and bounded.
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Considering the choice of the parameter δt, we have the following proposition.

Proposition 2. If we choose δt such that

1
δt

>
r2θ2

1

4θ2σ2
j

− r, (5.6)

for some j ∈ {1, · · · , k}, then the solution set of the optimization problem (4.7) in the expected
residual minimization method is nonempty and bounded.

Proof. In a similar manner to the proof of Proposition 1, we can verify that all diagonal elements
of M̂(σj) are positive and M̂(σj) is a strictly row diagonally dominant matrix, whenever δt

satisfies (2). Therefore, M̂(σj) is a P-matrix. Below we will show that G(σj) ∈ <N2×N2
is a

P-matrix. From Lemma 2, G(σj) is a P-matrix if and only if, for any x ∈ <N2
,

xi (G(σj)x)i ≤ 0, ∀i ⇒ x = 0. (5.7)

Let us denote

x =




x1

x2

...
xN


 ,

where xp ∈ <N , p = 1, 2, · · · , N . Then, we can write

G(σj)x =




M̂(σj)x1 + M̂
′
(σj)x2

M̂(σj)x2 + M̂
′
(σj)x3

...

M̂(σj)xN−1 + M̂
′
(σj)xN

M̂(σj)xN




. (5.8)

Assume
xi (G(σj)x)i ≤ 0, ∀i. (5.9)

First, we show xN = 0. By Lemma 2, since M̂(σj) is a P-matrix, we have

yi

(
M̂(σj)y

)
i
≤ 0, ∀i ⇒ y = 0 (5.10)

for any y ∈ <N . It then follows from (5.8), (5.9) and (5.10) that xN = 0.
Next, notice that the (N −1)th block of the vector G(σj)x equals M̂(σj)xN−1 since xN = 0.

Hence, by the same reasoning as above, we have xN−1 = 0. Repeating similar arguments,
we deduce xN−2 = xN−3 = · · · = x1 = 0, implying (5.7) hold. Thus, G(σj) is a P-matrix.
Since every P-matrix is an R0 matrix [9], it follows from Lemma 3 that the solution set of the
optimization problem (4.7) is nonempty and bounded. ¥

From Proposition 1 and Proposition 2, if we choose the step-size parameter δt small enough
to satisfy the conditions (5.1) and (5.6), respectively, then we can ensure that the linear com-
plementarity problem (4.3) in the expected value method and the optimization problem (4.7)
in the expected residual minimization method have a solution. However, when δt is small,
the size of problem (4.3) or (4.7) becomes large, which may make the problem more expensive
computationally.
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6 Numerical experiments

In this section, we describe numerical experiments. All computations were carried out using
Matlab on a PC. We use put options whose underlying asset is S&P100. S&P100 is a market
value weighted index consisting of 100 leading United States stocks. First, we state how to set
the parameters of the stochastic linear complementarity problem (4.1). Next, we describe some
criteria used to compare the results. Finally, we show and discuss the computational results.

6.1 Parameter setting

In this subsection, we describe how to set the parameters to derive the stochastic complemen-
tarity problem (4.1).

We set the parameters in the finite difference approximation as θ1 = 1/2 and θ2 = 1/2. We
set L = 4 to divide the time interval [0, T ], where T is the expiration date. From (2.9), the length
of each subinterval is δt = T/4. We assume that the underlying asset does not exceed a large
positive number Smax = 900. Then the interval [0, Smax] is divided into N subintervals of equal
length, where we set N = 30. From (2.10), the length of each subinterval is δS = Smax/N = 30.
The payoff Λ(S, t) is discretized for the asset price and the time. Since we consider put options,
the elements of Λl, l = 0, 1, · · · , L can be written as

Λl
n =

{
E − nδS 1 ≤ n ≤ E/δS
0 E/δS < n ≤ N ; 0 ≤ l ≤ L.

(6.1)

We obtained the data listed in Appendix from the Wall Street Journal’s homepage1. Here,
we use the interest rate of 6 month U.S. government bond obtained from the same page as the
risk-free rate r. From the data, we give the risk-free rate r and, noting that the expiration date
is the third Friday of the expiration month, calculate the expiration date T . Then, using the
strike price E, we calculate the payoff Λl, l = 0, 1, · · · , L from (6.1).

For example, for the option whose expiration month is January, 2010 and whose strike
price is 360 on November 30, 2009, the risk-free rate is r = 0.00242 and the expiration date
is T = 46/365, since there are 46 days from November 30 to January 15 (the third Friday of
January, 2010). Since the strike price is E = 360 and we set δS = 30, N = 30 and L = 4, we
have E/δS = 360/30 = 12 and, from (6.1), we have

Λl
n =

{
360− 30n 1 ≤ n ≤ 12
0 12 < n ≤ 30 ; 0 ≤ l ≤ 4.

Now we describe how to estimate the volatility of the rate of return of S&P100. From the
Yahoo! finance homepage2, we obtain the historical data S0, · · · , S180, where St is the asset
price observed t days ago. From the historical data, we calculate the continuously compounded
rates of return of S&P100 as

ut = ln
(

St−1

St

)
, t = 1, · · · , 180.

Using the continuously compounded rates of return u1, · · · , u180, we obtain the average of the
continuously compounded rate of return in the most recent 60 days, the average rate of the

1http://asia.wsj.com/home-page
2http://finance.yahoo.com
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return in the next 60 days, and the average rate of the return in the remaining 60 days, denoted
as u1, u2 and u3, respectively, by the following formulas:

u1 =
1
60

60∑

t=1

ut, u2 =
1
60

120∑

t=61

ut, u3 =
1
60

180∑

t=121

ut.

Similarly, we compute the volatilities of the continuously compounded rate of return in the
above-mentioned three periods by

σ1 =

√√√√250
59

60∑

t=1

(
ut − u1

)2
, σ2 =

√√√√250
59

120∑

t=61

(
ut − u2

)2
, σ3 =

√√√√250
59

180∑

t=121

(
ut − u3

)2
. (6.2)

We regard these values as realizations of the volatility and set P{σ = σj} = 1/3, j = 1, 2, 3.
Since there are 250 business days in a year, the right-hand side of (6.2) contains the factor

√
250

to convert the day rate of the volatility into the annual rate of the volatility. Since we adopt the
unbiased variance, the right-hand side of (6.2) contains the factor 1/

√
59 rather than 1/

√
60.

We use these parameter values to calculate the coefficients in the stochastic linear comple-
mentarity problem (4.1). Then, we obtain the deterministic formulations based on the expected
value method (4.3) and the expected residual minimization method (4.7). We let VEV and
VERM denote the solutions obtained by the expected value method and the expected residual
minimization method, respectively. In the expected residual minimization method, we adopt
the min function (3.4) and the FB function (3.5) as an NCP function and set the parameter ν

in (3.4) and (3.5) as ν = 0.1, 1, 10. We use the PATH solver [11] to solve the linear complemen-
tarity problem (4.3) and use the fmincon solver in the Matlab Toolbox to solve the optimization
problem (4.7).

6.2 Criteria for comparing solutions

In this subsection, we describe two criteria used to compare solutions obtained by different
formulations. As a standard for comparison, we use the simple average of the solutions Vj

obtained by solving the linear complementarity problems (4.1) for σj , j = 1, · · · , k:

Vavg =
1
k

k∑

j=1

Vj . (6.3)

6.2.1 Estimation error

One criterion is to analyze the prices obtained from each method against the prices observed in
the real market.

First, we describe how the prices of options corresponding to the current asset price can be
estimated from the solutions VEV, VERM and Vavg. Note that the vector V can be written as

V =




V0

V1

...
Vl

...
VL−2

VL−1




with Vl =




V l
1
...

V l
n
...

V l
N




, l = 0, 1, · · · , L− 1.
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From (2.11), V l
n is the price corresponding to time tl and asset price Sn, where tl and Sn are

given by (2.9) and (2.10), respectively. Recall that we want to obtain the prices of options
corresponding to the asset price “at present”, i.e., t = 0. We can get the prices of options at
t = 0 by taking the first block component of the solution V, i.e., V0.

Notice that the solution V gives us only the prices corresponding to N asset prices Sn, n =
1, · · · , N . We want to obtain the prices of options corresponding to the given asset price at
t = 0. This can be obtained by the following procedure: Suppose that the given asset price lies
in the interval [nδS, (n + 1)δS] for some integer n > 0, i.e., it is represented as nδS + a, where
a is a positive number such that 0 ≤ a < δS. Then we can obtain the corresponding price of
options by interpolating the value of the nth element of V0 and the (n + 1)th element of V0.
Specifically, we calculate the prices of options by the formula:

(
1− a

δS

)
V 0

n +
a

δS
V 0

n+1.

For example, look at the data on November 30, 2009. The current asset price is $511. If we set
δS = 30, then 511 is in between 510 (=17δS) and 540 (=18δS). So we use the values of V 0

17 and
V 0

18 in the solution V. Since we can write 511=17δS+1, we obtain the corresponding price of
options by computing (

1− 1
30

)
V 0

17 +
1
30

V 0
18.

Let Z be the number of options used for numerical experiments. Then, for the zth option
(z = 1, 2, · · · , Z), its prices corresponding to the given asset price at t = 0 obtained by the
expected value method, the expected residual minimization method, and the simple average
method as V z

EV, V z
ERM and V z

avg, respectively. We get the prices of options observed in the real
market from the data listed in the appendix and denote it as V z

mkt. For example, the price of the
option whose expiration date is January, 2010 and strike price is $360 on November 30, 2009 is
$0.35.

Using these values, we calculate the root mean squared error rate (RMSER)

RMSERi =

√√√√ 1
Z

Z∑

z=1

(
V z

i − V z
mkt

V z
mkt

)2

, i = avg, EV, ERM

in order to compare the preciseness of estimation. We also calculate the mean error rate (MER)

MERi =
1
Z

Z∑

z=1

(
V z

i − V z
mkt

V z
mkt

)
, i = avg, EV,ERM

in order to compare the bias of the price obtained by each method relative to the price observed
in the real market.

6.2.2 Measures of feasibility and optimality

Another criterion is to compare the solutions obtained by each method in terms of some measures
of feasibility and optimality, as was done in [7]. For any ω ∈ Ω, the complementarity problem

0 ≤ x ⊥ F (x, ω) ≥ 0 (6.4)
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is equivalent to the optimization problem

min xT F (x, ω)

s.t. x ≥ 0, F (x, ω) ≥ 0
(6.5)

in the sense that an optimal solution of (6.5) with zero objective value coincides with a solution
of (6.4). We denote the discrete samples of ω as {ωj , j = 1, · · · , k} and denote the solution
obtained by the expected value method (3.3) or the expected residual minimization method
(3.8) as x∗.

Using the ideas from the literature on stochastic programming [2, 17, 18], we evaluate the
violation of the inequality condition F (x, ω) ≥ 0 in problem (6.5) by

γfeas(x∗, ω) = ‖min(0, F (x∗, ω))‖, (6.6)

and evaluate the loss in the objective function of (6.5) by

γopt(x∗, ω) = x∗ T max (0, F (x∗, ω)) . (6.7)

Here min(0, F (x∗, ω)) and max(0, F (x∗, ω)) denote the vectors with components min(0, Fi(x∗, ω))
and max(0, Fi(x∗, ω)), respectively, where Fi(x∗, ω) is the ith element of F (x∗, ω). We apply
these measures to the stochastic linear complementarity problem (4.4) derived from the model
for pricing American options with uncertain volatility. As in Subsection 6.1, we denote the
solution from the expected value method (4.3), the expected residual minimization method, and
the simple average method as VEV, VERM and Vavg, respectively. Then, (6.6) and (6.7) are
written as

γfeas(Vi, σ) =

√√√√
L−1∑

l=0

∥∥∥min
(
0,M(σ)Vl

i + M′(σ)Vl+1
i

)∥∥∥
2
, i = avg,EV,ERM,

γopt(Vi, σ) =
L−1∑

l=0

(
Vl

i −Λl
)T

max
(
0,M(σ)Vl

i + M′(σ)Vl+1
i

)
, i = avg, EV, ERM,

respectively. We denote the discrete samples of σ as {σj , j = 1, · · · , k}. For the zth option and
σ = σj , we denote the values of γfeas(Vi, σ) and γopt(Vi, σ) as γfeas(Vz

i , σj) and γopt(Vz
i , σj),

respectively. We calculate the average values of γfeas(Vz
i , σj) and γopt(Vz

i , σj) for σj , j = 1, · · · , k

and z = 1, · · · , Z by the following formulas:

Γfeas
i =

1
kZ

Z∑

z=1

k∑

j=1

γfeas(Vz
i , σj), i = avg, EV, ERM,

Γopt
i =

1
kZ

Z∑

z=1

k∑

j=1

γopt(Vz
i , σj), i = avg, EV, ERM,

where Z is the total number of options used for numerical experiments. We use Γfeas
i and Γopt

i

to compare solutions obtained by the different methods.
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moneyness category
1.2 < S/E deep-out-of-the-money(DOTM)

1.04 < S/E ≤ 1.2 out-of-the-money(OTM)
0.98 ≤ S/E ≤ 1.04 at-the-money(ATM)

S/E < 0.98 in-the-money(ITM)

Table 1: The classification according to moneyness

6.3 Numerical results

In this subsection, we show the numerical results. First, we show the values of RMSER and
MER in Table 2 and Table 3, respectively. In both tables, we classify options into 4 categories
according to their moneyness [1] which is the asset price S divided by the strike price E, as shown
in Tables 1. The numbers of options used in the numerical experiments are 88 for DOTM, 148
for OTM, 66 for ATM, and 47 for ITM.

In terms of RMSER, the most precise estimate of the prices of options observed in the real
market is given by the expected residual minimization method using the FB function (3.5) with
parameter ν = 1. If we focus on ATM and ITM, the expected residual minimization method
using the FB function (3.5) with parameter ν = 0.1 estimates most precisely the prices of options
observed in the real market. Regarding the positive parameter ν, the best choice to estimate the
prices observed in the real market is ν = 1 for both the min function and the FB function. If we
set ν = 10, the values of RMSER become large, that is to say, the method fails to estimate the
prices observed in the real market. So we may conclude that ν = 1 or even a smaller value is an
appropriate choice. In terms of MER, all the prices Vavg, VEV and VERM, except those obtained
by the expected residual minimization method using the min function with parameter ν = 10
and the FB function with parameter ν = 10, tend to be much lower than the prices observed in
the real market.

We show the values of Γfeas defined in Subsection 6.2.2 in Table 4. Table 5 shows the values
Γopt divided by 100. The solution VERM by the expected residual minimization method has
smaller Γfeas values and larger Γopt values than the other solutions. Recall that the inequality
(2.5) is derived from the no arbitrage assumption and Γfeas represents the violation of this
inequality. Thus, the expected residual minimization method (4.7) produces a solution which
tends to satisfy no arbitrage assumption, which is one of the most important assumptions in
the theory of options. Regarding the positive parameter ν in (3.4) and (3.5), the larger ν we
set, the smaller Γfeas values the solution has, that is to say, the stronger tendency to satisfy the
no arbitrage assumption the solution has. However, the formulation with a large ν may yield a
solution with a large Γopt value.
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ERM
avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM 0.95 0.97 0.97 0.84 13.25 0.94 0.78 18.99
OTM 0.65 0.67 0.65 0.47 2.54 0.56 0.46 8.87
ATM 0.18 0.17 0.16 0.22 0.34 0.16 0.21 0.40
ITM 0.07 0.07 0.07 0.08 0.11 0.06 0.08 0.38
total 0.64 0.66 0.65 0.53 6.86 0.60 0.50 11.15

Table 2: Comparison of RMSER

ERM
avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM -0.95 -0.97 -0.97 -0.82 3.48 -0.94 -0.76 6.17
OTM -0.67 -0.68 -0.66 -0.41 0.51 -0.55 -0.41 1.40
ATM -0.18 -0.17 -0.13 0.08 0.15 -0.04 0.07 0.21
ITM -0.04 -0.04 -0.03 0.03 0.04 -0.01 0.02 0.10
total -0.56 -0.57 -0.56 -0.36 1.13 -0.48 -0.35 2.20

Table 3: Comparison of MER

ERM
avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM 24.15 22.63 19.99 2.17 0.11 11.22 1.00 0.07
OTM 27.63 25.94 22.32 2.54 0.11 12.42 1.09 0.08
ATM 32.40 30.31 25.71 2.49 0.08 13.98 1.16 0.07
ITM 31.66 29.68 25.65 3.43 0.06 14.55 1.31 0.07
total 28.20 26.44 22.82 2.56 0.10 12.70 1.11 0.07

Table 4: Comparison of Γfeas

ERM
avg EV min FB

ν=0.1 ν=1 ν=10 ν=0.1 ν=1 ν=10
DOTM 2.39 2.85 3.45 11.50 267.84 5.84 10.95 170.07
OTM 3.07 3.63 4.47 14.76 344.31 7.45 13.00 392.87
ATM 3.86 4.57 5.76 18.29 116.77 9.61 16.28 111.62
ITM 4.26 5.02 6.17 21.92 49.42 10.10 18.79 346.91
total 3.21 3.80 4.69 15.57 242.29 7.81 13.88 277.31

Table 5: Comparison of Γopt
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7 Conclusion

In this paper, we have proposed two deterministic formulations for pricing American options with
uncertain volatility based on the expected value method and the expected residual minimization
method for stochastic linear complementarity problems. We have shown sufficient conditions
that guarantee the formulations by the expected value method and the expected residual min-
imization method to have solutions. The numerical results indicate that the expected residual
minimization method yield solutions that tend to satisfy the no arbitrage assumption than the
expected value method.
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A Data for numerical experiments

Nov 30, 2009 Asset price : 511 Dec 8, 2009 Asset price : 507 Dec 11, 2009 Asset price : 514
Risk-free rate r: 0.152％ Risk-free rate r : 0.147％ Risk-free rate r : 0.157％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Jan 360 0.35 Jan 390 0.4 Jan 420 0.6
Jan 390 0.55 Jan 420 0.9 Jan 450 1.31
Jan 420 1.33 Jan 450 2.06 Jan 480 3.26
Jan 450 2.8 Jan 480 5.5 Feb 480 8.4
Jan 510 17.1 Feb 300 0.15 Mar 420 3.73
Jan 540 38.2 Feb 390 1.5 Mar 480 12.33
Feb 360 0.9 Feb 420 2.85
Feb 450 6.4 Feb 450 5.5
Mar 420 5.6 Feb 480 10.9
Mar 480 15.28 Feb 510 21.64

Mar 360 1.45
Mar 480 15.1

Dec 15, 2009 Asset price : 512 Dec 16, 2009 Asset price : 506 Dec 18, 2009 Asset price : 509
Risk-free rate r : 0.164％ Risk-free rate r : 0.152％ Risk-free rate r : 0.152％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 300 0.05 Jan 420 0.55 Jan 360 0.1
Feb 390 0.9 Jan 450 1.4 Jan 420 0.53
Feb 420 1.75 Jan 480 3.8 Jan 450 1.2
Feb 510 16.45 Jan 510 12.2 Jan 510 11
Mar 360 0.85 Feb 420 1.75 Feb 480 8.5
Mar 420 3.3 Feb 450 4.11 Mar 420 3.7
Mar 480 11.5 Feb 480 9 Mar 540 41.8

Feb 510 19.52
Mar 420 3.8

Dec 21, 2009 Asset price : 514 Dec 22, 2009 Asset price : 515 Dec 23, 2009 Asset price : 515
Risk-free rate r : 0.165％ Risk-free rate r : 0.172％ Risk-free rate r : 0.172％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Jan 450 0.6 Jan 480 1.4 Jan 390 0.1
Feb 450 2.8 Jan 510 6.5 Jan 450 0.5
Feb 480 6.1 Jan 420 1.05 Jan 510 6
Feb 510 14.39 Feb 480 5.8 Feb 390 0.45
Mar 480 10 Feb 510 13.3 Feb 450 2.25
Mar 510 18.7 Mar 480 9 Feb 480 5.4
Mar 540 35.9 Mar 510 18.4 Feb 510 13.17

Mar 420 2.25
Mar 540 34.9
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Dec 24, 2009 Asset price : 518 Jan 4, 2010 Asset price : 523 Jan 5, 2010 Asset price : 525
Risk-free rate r : 0.168％ Risk-free rate r : 0.172％ Risk-free rate r : 0.165％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Jan 420 0.2 Feb 420 0.7 Feb 450 1.15
Jan 450 0.45 Feb 450 1.34 Feb 480 2.7
Jan 480 1.14 Feb 480 3.25 Feb 510 8.4
Jan 510 5 Feb 510 8.8 Feb 540 23.9
Feb 420 0.89 Feb 570 50 Mar 420 1.35
Feb 480 4.8 Mar 420 1.55 Mar 450 3.1
Mar 420 2 Mar 480 6.5 Mar 510 13.25
Mar 450 4 Mar 510 13.6 Apr 300 0.25
Mar 540 32.9 Mar 540 28.6 Apr 480 9.45

Apr 480 9.53

Jan 6, 2010 Asset price : 524 Jan 7, 2010 Asset price : 526 Jan 8, 2010 Asset price : 528
Risk-free rate r : 0.157％ Risk-free rate r : 0.162％ Risk-free rate r : 0.149％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 390 0.25 Feb 390 0.2 Feb 450 0.65
Feb 450 0.95 Feb 480 2.18 Feb 480 2
Feb 480 2.47 Feb 510 6.5 Feb 510 5.7
Feb 510 7 Mar 390 0.6 Mar 450 2.1
Mar 420 1.2 Mar 420 1.2 Mar 480 4.3
Mar 450 2.7 Apr 420 2.1 Apr 360 0.55
Mar 480 5.6 Apr 420 2.11
Apr 420 2.45
Apr 480 8.5

Jan 11, 2010 Asset price : 529 Jan 12, 2010 Asset price : 524 Jan 13, 2010 Asset price : 528
Risk-free rate r : 0.13％ Risk-free rate r : 0.137％ Risk-free rate r : 0.152％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 420 0.31 Feb 420 0.35 Feb 450 0.75
Feb 450 0.65 Feb 450 0.9 Feb 480 1.72
Feb 480 1.55 Feb 480 2.2 Feb 510 5
Feb 510 5.45 Feb 510 7.2 Feb 540 17.4
Feb 570 43.8 Mar 480 5.4 Mar 360 0.35
Mar 360 0.15 Mar 510 11.68 Mar 420 1.2
Mar 420 0.9 Mar 540 23.2
Mar 450 1.8
Mar 480 4.2
Mar 510 9.82
Mar 570 43.8
Apr 360 0.5

24



Jan 14, 2010 Asset price : 530 Jan 15, 2010 Asset price : 524 Jan 19, 2010 Asset price : 530
Risk-free rate r : 0.137％ Risk-free rate r : 0.149％ Risk-free rate r : 0.137％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 450 0.7 Feb 420 0.4 Feb 420 0.21
Feb 480 1.4 Feb 450 0.75 Feb 450 0.45
Feb 510 4.6 Feb 480 1.9 Feb 480 1.15
Feb 540 16.4 Feb 510 5.7 Feb 510 3.7
Mar 330 0.15 Feb 540 20.5 Mar 420 1
Mar 360 0.2 Mar 420 0.8 Mar 480 3.3
Mar 420 0.9 Mar 450 2.3 Mar 510 8.1
Mar 450 1.85 Mar 480 4.7 Mar 540 19.9
Mar 480 3.83 Mar 510 10.5 Apr 510 11.91
Mar 510 8.4 Mar 540 26.05 May 300 0.25
Mar 540 21 Apr 480 7.5 May 420 3.4
Apr 480 6.2 Apr 540 29.2

Jan 20, 2010 Asset price : 525 Jan 21, 2010 Asset price : 514 Jan 22, 2010 Asset price : 502
Risk-free rate r: 0.14％ Risk-free rate r : 0.13％ Risk-free rate r : 0.124％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 300 0.05 Feb 360 0.08 Feb 390 0.4
Feb 450 0.55 Feb 450 1.25 Feb 420 1.4
Feb 480 1.45 Feb 480 3.1 Feb 450 2.8
Feb 510 4.8 Feb 510 9.6 Feb 480 6.2
Feb 540 19.6 Mar 300 0.1 Feb 510 15.9
Feb 600 80.34 Mar 420 1.17 Feb 540 38
Mar 390 0.55 Mar 450 2.9 Mar 300 0.1
Mar 420 0.98 Mar 480 6.5 Mar 360 0.85
Mar 450 1.85 Mar 510 15.4 Mar 390 1.6
Mar 480 4.5 Mar 540 29.5 Mar 420 3
Mar 510 9.7 Apr 360 0.7 Mar 450 5.6
Mar 540 25.28 Apr 390 1.3 Mar 480 10.3

Apr 420 2.6 Mar 510 21.9
Apr 450 4.1 Mar 540 39.4
Apr 480 6.62 Mar 570 60.37
May 480 13.2 Apr 420 4.6

Apr 450 7.11
Apr 480 13.1
Apr 510 25.7
Apr 540 38.3
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Jan 25, 2010 Asset price : 505 Jan 26, 2010 Asset price : 503 Jan 27, 2010 Asset price : 506
Risk-free rate r : 0.134％ Risk-free rate r : 0.142％ Risk-free rate r : 0.157％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 420 0.95 Feb 420 1.05 Feb 420 0.35
Feb 450 1.9 Feb 450 1.35 Feb 450 1
Feb 480 4.8 Feb 480 4.7 Feb 480 3.4
Feb 510 14 Mar 420 1.7 Feb 510 12.6
Feb 540 34.86 Mar 450 4.2 Feb 540 39.4
Mar 330 0.15 Mar 480 9.16 Mar 330 0.2
Mar 420 2.5 Mar 510 20.9 Mar 420 1.9
Mar 450 4.47 Mar 540 42 Mar 450 4.1
Mar 480 9.2 Mar 570 67.29 Mar 480 7.8
Mar 510 19.6 Apr 360 0.9 Mar 510 19.3
Mar 540 40.2 Apr 450 6.7 Mar 540 41.7
Apr 420 3.7 Apr 480 13 Apr 480 11.25
Apr 480 11.6 Apr 510 24

Apr 540 44.1

Jan 28, 2010 Asset price : 500 Jan 29, 2010 Asset price : 495 Feb 01, 2010 Asset price : 501
Risk-free rate r : 0.145％ Risk-free rate r : 0.142％ Risk-free rate r : 0.157％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Feb 420 0.55 Feb 420 0.25 Mar 420 1.35
Feb 450 1.3 Feb 450 1.6 Mar 450 3.1
Feb 480 4.5 Feb 480 5.2 Mar 480 8.1
Feb 510 16 Feb 510 20.4 Mar 510 19.8
Mar 360 0.3 Feb 540 42.8 Apr 420 3.2
Mar 420 1.8 Mar 360 0.3 Apr 510 24
Mar 450 4.6 Mar 420 1.5 May 420 4.7
Mar 480 9.2 Mar 450 3.3 May 480 16.5
Mar 510 20.6 Mar 480 10.9
Mar 540 42 Mar 510 25.6
Apr 420 3.2 Mar 540 41
Apr 480 13.5 Apr 420 3.3
Apr 510 23 Apr 480 14.6
May 480 17.6 Apr 510 27.1

Apr 540 49.5
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Feb 02, 2010 Asset price : 508 Feb 03, 2010 Asset price : 505 Feb 04, 2010 Asset price : 490
Risk-free rate r : 0.165％ Risk-free rate r : 0.165％ Risk-free rate r : 0.152％

Expiration Strike Price Expiration Strike Price Expiration Strike Price
Mar 300 0.05 Mar 420 0.75 Mar 360 0.35
Mar 420 1.15 Mar 450 2.1 Mar 420 1.84
Mar 450 2.14 Mar 480 6 Mar 450 4.83
Mar 480 5.8 Mar 510 16.02 Mar 480 11.8
Mar 510 15.09 Apr 360 0.55 Mar 510 27
Mar 540 37.6 Apr 450 4.7 Mar 540 49.4
Apr 480 9.24 Apr 510 20.5 Mar 570 80.7
Apr 510 19.5 May 480 14 Apr 420 3.3
Apr 540 39.8 Apr 450 7.33

Apr 480 15.8
Apr 510 29.2
Apr 540 51.6
May 480 20.5

Feb 05, 2010 Asset price : 491
Risk-free rate r : 0.152％

Expiration Strike Price
Mar 360 0.35
Mar 420 3.1
Mar 450 6.7
Mar 480 11.4
Mar 510 26.8
Mar 570 89.2
Apr 420 4.3
Apr 450 10.55
Apr 480 17.2
May 420 6.6
May 480 21.6
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