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Abstract. Consider the N -person non-cooperative game in which each player’s cost function and the
opponents’ strategies are uncertain. For such an incomplete information game, the new solution concept
called a robust Nash equilibrium has attracted much attention over the past several years. The robust Nash
equilibrium results from each player’s decision-making based on the robust optimization policy. In this paper,
we focus on the robust Nash equilibrium problem in which each player’s cost function is quadratic, and the
uncertainty sets for the opponents’ strategies and the cost matrices are represented by means of Euclidean
and Frobenius norms, respectively. Then, we show that the robust Nash equilibrium problem can be
reformulated as a semidefinite complementarity problem (SDCP), by utilizing the semidefinite programming
(SDP) reformulation technique in robust optimization. We also give some numerical example to illustrate
the behavior of robust Nash equilibria.
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1 Introduction

In the field of game theory, there have been plenty of studies on games with uncertain data. Particularly,
Harsanyi’s stochastic-based model [11, 12, 13] for incomplete information games is one of the most popular
contributions, which assumes so-called Bayesian hypothesis and formulates the Bayesian game that can be
treated as a complete information game essentially. On the other hand, the robust Nash equilibrium [1, 15,
16, 17, 18] is a new solution concept based on the worst-case analysis of a distribution-free model. In such
a model, each player decides his or her strategy according to the criterion of robust optimization [5, 6, 7].
Therefore, a robust Nash equilibrium is also called a robust optimization equilibrium.

Originally, the notion of a robust Nash equilibrium was proposed by Hayashi, Yamashita and
Fukushima [15] and Aghassi and Bertsimas [1] independently. Aghassi and Bertsimas [1] considered a
robust Nash equilibrium for N -person games in which each player solves a linear programming (LP)
problem. Moreover, they proposed a method for solving the robust Nash equilibrium problem with
polyhedral uncertainty sets. Hayashi et al. [15] defined the concept of robust Nash equilibria for bimatrix
games in which the uncertainty is contained in the opponents’ strategies as well as the players’ cost
matrices, while Aghassi and Bertsimas [1] considered the uncertainty in the cost matrices only. Hayashi et
al. [15] also showed that the robust Nash equilibrium problem can be reformulated as a second-order cone
complementarity problem (SOCCP) [10, 14] under the assumption that either the opponents’ strategies
or the players’ cost matrices belong to Euclidean uncertainty sets.*1 Recently, Luo, An and Xia [16] and
Luo and Li [17] extended the SOCCP reformulation technique in [15] to problems with different types of
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uncertainty sets. Nishimura, Hayashi and Fukushima [18] extended the definition of robust Nash equilibria
in [1] and [15] to N -person non-cooperative games with nonlinear cost functions, and provided an SOCCP
reformulation for the case where each player’s cost function is quadratic.

In the existing results for the SOCCP reformulation, it was always assumed that either the opponents’
strategies or the players’ cost matrices could be observed certainly. Therefore, it has been an open problem
whether or not the robust Nash equilibrium problem can be reformulated as a tractable problem such as an
SOCCP, when both the opponents’ strategies and the players’ cost matrices are contained in Euclidean un-
certainty sets. In this paper, we show that such a robust Nash equilibrium problem reduces to a semidefinite
complementarity problem (SDCP) [9, 20] rather than an SOCCP. To this end, we utilize the semidefinite
programming (SDP) reformulation technique [19] for a class of robust optimization problems, which is based
on the duality theory in nonconvex quadratic programming [4].

This paper is organized as follows. In Section 2, we formally state the robust Nash equilibrium problem
and describe the SDP reformulation technique for robust linear programming (LP) problems. Especially,
the latter technique plays an important role in reformulating the robust Nash equilibrium problem as an
SDCP. In Section 3, we show that the robust Nash equilibrium problem reduces to an SDCP under the
Euclidean uncertainty assumption. In Section 4, we give a numerical example to observe the behavior of
robust Nash equilibria. In Section 5, we conclude the paper with some remarks.

Throughout the paper, we use the following notations. Rn
+ denotes the nonnegative orthant in Rn, that

is, Rn
+ := {x ∈ Rn | xi ≥ 0 (i = 1, . . . , n)}. Sn denotes the set of n × n real symmetric matrices. Sn

+

denotes the cone of positive semidefinite matrices in Sn. For a vector x ∈ Rn, ‖x‖ denotes the Euclidean
norm defined by ‖x‖ :=

√
x>x. For a matrix M = (Mij) ∈ Rm×n, ‖M‖F is the Frobenius norm defined

by ‖M‖F := (
∑m

i=1

∑n
j=1(Mij)2)1/2, and kerM denotes the kernel of matrix M , i.e., kerM := {x ∈ Rn |

Mx = 0}. For two matrices M ∈ Rm×n and N ∈ Rk×l, M ⊗ N ∈ Rmk×nl denotes the Kronecker product,
and 〈M,N〉 := tr(M>N) denotes the inner product when m = k and n = l.

2 Preliminaries

2.1 Definition of robust Nash equilibrium

In this subsection, we recall the definition of a robust Nash equilibrium and some related properties.
Consider an N -person non-cooperative game in which each player tries to minimize his own cost. Let
xi ∈ Rmi , Si ⊆ Rmi , and fi : Rm1 × · · · × RmN → R be player i’s strategy, strategy set, and cost function,
respectively, where mi are positive integers. Moreover, denote

I := {1, . . . , N}, I−i := I \ {i}, m :=
∑
j∈I

mj , m−i :=
∑

j∈I−i

mj ,

x := (xj)j∈I ∈ Rm, x−i := (xj)j∈I−i ∈ Rm−i ,

S :=
∏
j∈I

Sj ⊆ Rm, S−i :=
∏

j∈I−i

Sj ⊆ Rm−i .

When the complete information is assumed, each player i ∈ I decides his own strategy by solving the
following optimization problem with the opponents’ strategies x−i ∈ Rm−i fixed:

minimize
xi

fi(xi, x−i)

subject to xi ∈ Si.
(2.1)

A tuple (x1, x2, . . . , xN ) ∈ Rm1 × Rm2 × · · · × RmN such that xi ∈ argminxi∈Si
fi(xi, x−i) for each i ∈ I

is called a Nash equilibrium. In other words, if each player i chooses the strategy xi, then no player has
an incentive to change his own strategy unilaterally. The Nash equilibrium is well-defined only when each
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player can estimate his opponents’ strategies and can evaluate his own cost exactly. In the real situation,
however, any information may contain uncertainty such as observation errors or estimation errors.

To deal with such uncertainty, we introduce the uncertainty sets Ui and Xi(x−i), and assume the
following situations for each player i ∈ I:

(A) Player i’s cost function involves a parameter ûi ∈ Rsi , where si is a positive integer, and is denoted as
f ûi

i : Rmi × Rm−i → R. Although player i does not know the exact value of ûi itself, he can estimate
that it belongs to a given nonempty set Ui ⊆ Rsi .

(B) When player i perceives his opponents’ strategies as x−i, his actual cost is evaluated with x−i replaced
by x̂−i := x−i + δx−i, where δx−i is a certain error or noise. Player i cannot know the exact value of
x̂−i. However, he can estimate that x̂−i belongs to a certain nonempty set Xi(x−i) ⊆ Rm−i .

Under these assumptions, each player encounters the difficulty of addressing the following family of
problems involving uncertain parameters ûi and x̂−i:

minimize
xi

f ûi

i (xi, x̂−i)

subject to xi ∈ Si,
(2.2)

where ûi ∈ Ui and x̂−i ∈ Xi(x−i). To overcome the difficulty, we further assume that each player chooses
his strategy according to the following criterion of rationality:

(C) Player i tries to minimize his worst cost under assumptions (A) and (B).

From assumption (C), each player considers the worst cost function f̃i : Rmi × Rm−i → (−∞, +∞] defined
by

f̃i(xi, x−i) := sup{f ûi

i (xi, x̂−i) | ûi ∈ Ui, x̂
−i ∈ Xi(x−i)}, (2.3)

and then solves the following worst cost minimization problem:

minimize
xi

f̃i(xi, x−i)

subject to xi ∈ Si.
(2.4)

Note that, for fixed x−i, problem (2.4) corresponds to the robust counterpart of the uncertain cost mini-
mization problem (2.2). Also, (2.4) can be regarded as a complete information game with cost functions
f̃i (i ∈ I). Based on the above discussions, we define the robust Nash equilibrium.

Definition 2.1. Let f̃i be defined by (2.3) for i ∈ I. Then a tuple (xi)i∈I is called a robust Nash equilibrium
of game (2.2) if xi ∈ argminxi∈Si

f̃i(xi, x−i) for all i ∈ I, i.e., a Nash equilibrium of game (2.4). The problem
of finding a robust Nash equilibrium is called a robust Nash equilibrium problem.

Finally, we give sufficient conditions for existence of a robust Nash equilibrium. Since the following
theorem follows directly from the Nash equilibrium existence theorem [2, Theorem 9.1.1], we omit the
proof.

Theorem 2.2. Suppose that, for every player i ∈ I, (i) the strategy set Si is nonempty, convex and
compact, (ii) the worst cost function f̃i : Rmi × Rm−i → R is continuous, and (iii) f̃i(·, x−i) is convex for
any x−i ∈ S−i. Then, game (2.4) has at least one Nash equilibrium, i.e., game (2.2) has at least one robust
Nash equilibrium.
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2.2 SDP reformulation of a robust linear programming problem

In this subsection, we describe the SDP reformulation technique for a class of robust LPs discussed in
[19]. This technique is based on Beck and Eldar’s duality theory [4] in nonconvex quadratic programming,
and will play an essential role in deriving the SDCP reformulation of the robust Nash equilibrium problem
in the next section.

Consider the following uncertain LP:

minimize
x

(γ̂0)>(Â0x + b̂0)

subject to (γ̂i)>(Âix + b̂i) ≤ 0 (i = 1, . . . ,K)
x ∈ Ω,

(2.5)

where γ̂i ∈ Rmi and (Âi, b̂i) ∈ Rmi×(n+1) are uncertain vectors and matrices, respectively, and Ω is a given
closed convex set with no uncertainty. Let Ui ⊆ Rmi and Vi ⊆ Rmi×(n+1) be the uncertainty sets for γ̂i and
(Âi, b̂i), respectively, which satisfy the following assumption.

Assumption A. For i = 0, 1, . . . ,K, the uncertainty sets Ui and Vi are expressed as

Ui :=

 (Âi, b̂i) (Âi, b̂i) = (Ai0, bi0) +
si∑

j=1

ui
j(A

ij , bij), (ui)>ui ≤ 1

 ,

Vi :=

 γ̂ γ̂ = γi0 +
ti∑

j=1

vi
jγ

ij , (vi)>vi ≤ 1

 ,

respectively, where Aij ∈ Rmi×n, bij ∈ Rmi (j = 0, 1, . . . , si) and γij ∈ Rmi (j = 1, . . . , ti) are given matrices
and vectors, and si and ti are given positive integers.

Then, the robust counterpart (RC) for (2.5) can be written as

minimize
x

sup
(Â0,b̂0)∈U0, γ̂0∈V0

(γ̂0)>(Â0x + b̂0)

subject to (γ̂i)>(Âix + b̂i) ≤ 0 ∀(Âi, b̂i) ∈ Ui, ∀γ̂i ∈ Vi (i = 1, . . . ,K)
x ∈ Ω.

(2.6)

Now, by means of the reformulation technique in [19], we introduce the following SDP associated with
RC (2.6):

minimize
x,α,β,λ0

− λ0

subject to
[

P 0
0 (x) q0(x)

q0(x)> r0(x) − λ0

]
º α0

[
P 0

1 0
0 1

]
+ β0

[
P 0

2 0
0 1

]
,[

P i
0(x) qi(x)

qi(x)> ri(x)

]
º αi

[
P i

1 0
0 1

]
+ βi

[
P i

2 0
0 1

]
(i = 1, . . . ,K),

α := (α0, α1, . . . , αK) ∈ RK+1
+ , β := (β0, β1, . . . , βK) ∈ RK+1

+ ,

λ0 ∈ R, x ∈ Ω,

(2.7)
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where the problem data are defined by

P i
0(x) := −1

2

[
0 (Γ>

i Φi(x))>

Γ>
i Φi(x) 0

]
, qi(x) := −1

2

[
Φi(x)>γi

Γ>
i (Ai0x + bi0)

]
,

ri(x) := −(γi)>(Ai0x + bi0), P i
1 :=

[
−Isi 0

0 0

]
, P i

2 :=
[
0 0
0 −Iti

]
,

Γi :=
[
γi1 · · · γit

]
, Φi(x) :=

[
Ai1x + bi1 · · · Aisix + bisi

]
.

(2.8)

Then, we can show that the optimum of SDP (2.7) also solves RC (2.6) under a certain nonsingularity
assumption.

Theorem 2.3. [19, Theorem 3.1] Suppose that Assumption A holds and z∗ := (x∗, α∗, β∗, λ∗
0) is an optimum

of SDP (2.7). Then, x∗ is feasible in RC (2.6), and −λ∗
0 serves as an upper bound of the optimal value of

(2.6). Moreover, if there exists an ε > 0 such that

dim(ker(P i
0(x) − αiP

i
1 − βiP

i
2)) 6= 1 (i = 0, 1, . . . ,K) (2.9)

for all (x, α, β, λ∗
0) ∈ B(z∗, ε), then x∗ solves RC (2.6).

In general, it is difficult to judge whether or not the condition (2.9) holds, since we have to check all the
functional values around the optimum z∗. However, if the uncertainty sets Ui and Vi are spherical, then
(2.9) holds automatically [19]. We thus make the following assumption.

Assumption B. The uncertainty sets Ui and Vi are expressed as in Assumption A. Moreover, for each
i = 0, 1, . . . ,K, matrices (Aij , bij) (j = 1, . . . ,mi(n + 1)) and vectors γij (j = 1, . . . , ti) (ti ≥ 2) satisfy the
following conditions:

• For each (k, l) ∈ {1, . . . ,mi} × {1, . . . , n + 1},

(Aij , bij) = ρie
(mi)
k (e(n+1)

l )> with j := mil + k,

where ρi is a given nonnegative constant, and e
(p)
r is a p-dimensional unit vector with 1 at the r-th

component and 0 elsewhere.
• For each (k, l) ∈ {1, . . . , ti} × {1, . . . , ti},

(γik)>γil = σ2
i δkl,

where σi is a given nonnegative constant, and δkl denotes Kronecker’s delta, i.e., δkl = 0 for k 6= l

and δkl = 1 for k = l.

Note that Assumption B claims that Ui is an mi(n+1)-dimensional sphere with radius ρi in the mi(n+1)-
dimensional space and Vi is a ti-dimensional sphere with radius σi in the mi-dimensional space, i.e.,

Ui =
{
(Âi, b̂i)

∣∣ (Âi, b̂i) = (Ai0, bi0) + (δAi, δbi), ‖(δAi, δbi)‖F ≤ ρi

}
⊂ Rmi(n+1),

Vi =
{
γ̂i

∣∣ γ̂i = γi0 + δγi, ‖δγi‖ ≤ σi, δγ
i ∈ span {γik}ti

k=1

}
⊂ Rmi .

Under this assumption, we have the following theorem.

Theorem 2.4. [19, Theorem 3.4] Suppose Assumption B holds. Then, x∗ solves RC (2.6) if and only if
there exists (α∗, β∗, λ∗

0) such that (x∗, α∗, β∗, λ∗
0) is an optimal solution of SDP (2.7).
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3 SDCP reformulation of robust Nash equilibrium problems

In this subsection, we focus on the game in which each player takes a mixed strategy and minimizes a
convex quadratic cost function with respect to his own strategy. We show that each player’s optimization
problem can be reformulated as an SDP, and the robust Nash equilibrium problem reduces to an SDCP.

Originally, the SDCP is to find, for a given mapping F : Sn ×Sn ×Rm → Sn ×Rm, a triple (X,Y, z) ∈
Sn × Sn × Rm such that

Sn
+ 3 X ⊥ Y ∈ Sn

+, F (X,Y, z) = 0,

where X ⊥ Y means 〈X,Y 〉 := tr(X>Y ) = 0. An SDCP can be solved by using Newton type algorithms
based on the merit function reformulation [9, 20].

Throughout this section, the cost functions and the strategy sets of all players satisfy the following
conditions:

(i) Player i’s cost function f ûi

i is defined by*2

f ũi

i (xi, x̂−i) =
1
2
(xi)>Âiix

i +
∑

j∈I−i

(xi)>Âij x̂
j , (3.1)

where Âij ∈ Rmi×mj (j ∈ I−i) are matrices involving uncertainties.
(ii) Player i takes a mixed strategy, i.e.,

Si =
{
xi ∈ Rmi

∣∣ xi ≥ 0, 1>mi
xi = 1

}
, (3.2)

where 1mi denotes (1, 1, . . . , 1)> ∈ Rmi .
(iii) mi ≥ 3 for all i ∈ I.

We call Âij a cost matrix. Note that these matrices correspond to the parameters ûi involved in the cost
functions of game (2.2), i.e.,

ûi = vec
[
Âi1 . . . , ÂiN

]
∈ Rmim,

where vec denotes the vectorization operator that creates an nm-dimensional vector [(pc
1)

> · · · (pc
m)>]> from

a matrix P ∈ <n×m with column vectors pc
1, . . . , p

c
m ∈ Rn.

For the robust Nash equilibrium problem with the above cost functions and strategy sets, Nishimura
et al. [18] show that it can be reformulated as an SOCCP under the assumption that the players can exactly
estimate either the opponents’ strategies or their own cost matrices. In this subsection, we consider the
more general case where both of them are uncertain. We first establish the existence of a robust Nash
equilibrium, and then, show that the robust Nash equilibrium problem can be reformulated as an SDCP.
To this end, we make the following assumption.

Assumption C. For each i ∈ I, the uncertainty sets Xi(·) and Ui are given as follows:

(a) Xi(x−i) =
∏

j∈I−i
Xij(xj), where Xij(xj) := {xj + δxij | ‖δxij‖ ≤ σij , 1>mj

δxj = 0 (j ∈ I−i)} for some
nonnegative scalars σij.

(b) Ui =
∏

j∈I−i
Dij, where Dij := {Aij + δAij ∈ Rmi×mj | ‖δAij‖F ≤ ρij} for some nonnegative scalars

ρij. Moreover, Aii + ρiiI is symmetric and positive semidefinite.

Assumption C claims that Xij(xj) is the closed sphere with center xj and radius σij in the subspace
{x ∈ Rmj | 1>mj

x = 0}, and Dij is also the closed sphere with center Aij and radius ρij in Rmi×mi . Note

*2 Although we can include the additional linear term c>x in (3.1), we suppress it for simplicity.

6



that Assumption C is weaker than the assumptions in Nishimura et al. [18]. Indeed, Assumption C with
either ρij = 0 or σij = 0 for all (i, j) ∈ I × I corresponds to the assumptions in [18].

Under Assumption C, we rewrite each player’ optimization problem (2.4). Note that the worst cost
function f̃i can be written as

f̃i(xi, x−i)

= max

 1
2
(xi)>Âiix

i +
∑

j∈I−i

(xi)>Âij x̂
j Âii ∈ Dii,

Âij ∈ Dij , x̂j ∈ Xij(xj) (j ∈ I−i)


= max

{
1
2
(xi)>Âiix

i Âii ∈ Dii

}
+

∑
j∈I−i

max
{

(xi)>Âij x̂
j Âij ∈ Dij , x̂

j ∈ Xij(xj)
}

=
1
2
(xi)>(Aii + ρiiI)xi +

∑
j∈I−i

max
{

(x̂j)>Â>
ijx

i Âij ∈ Dij , x̂
j ∈ Xij(xj)

}
, (3.3)

where the last equality holds since

max
{

1
2
(xi)>Âiix

i Âii ∈ Dii

}
=

1
2
(xi)>Aiix

i + max
{

1
2
(xi)>δAiix

i ‖δAii‖ ≤ ρii

}
=

1
2
(xi)>Aiix

i + max
{

1
2
(xi ⊗ xi) vec(δAii) ‖δAii‖ ≤ ρii

}
=

1
2
(xi)>Aiix

i +
1
2
ρii‖xi‖2

=
1
2
(xi)>(Aii + ρiiI)xi.

Hence, each player’s optimization problem (2.4) can be rewritten as follows:

minimize
xi

1
2
(xi)>(Aii + ρiiI)xi +

∑
j∈I−i

max
{

(x̂j)>Â>
ijx

i Âij ∈ Dij , x̂
j ∈ Xij(xj)

}
subject to 1>mi

xi = 1, xi ≥ 0.

(3.4)

Now we show the existence of a robust Nash equilibrium under Assumption C.

Theorem 3.1. Suppose that the cost functions and the strategy sets are given by (3.1) and (3.2), respectively.
Suppose further that Assumption C holds. Then, there exists at least one robust Nash equilibrium.

Proof. It suffices to show that the worst cost function f̃i and the strategy set Si satisfy the three conditions
given in Theorem 2.2. Si is obviously nonempty, convex and compact from (3.2). f̃i is continuous from (3.3),
[3, Theorem 1.4.16] and the continuity of the set-valued mapping Xij . Moreover, from (3.3), Aii + ρiiI º 0,
and [8, Proposition 1.2.4(c)], f̃i(·, x−i) is convex for arbitrarily fixed x−i ∈ S−i.

Next we show that problem (3.4) can be rewritten as an SDP. We note that problem (3.4) has a
structure analogous to problem (2.6), and Xij(xj) and Dij satisfy Assumption B. Indeed, Xij(xj) can be
constructed by means of some vectors γijk (k = 1, . . . ,mj − 1) which form orthogonal bases of the subspace
{x | 1>mj

x = 0} with ‖γijk‖ = σij for all k, i.e., Xij(xj) = {x̂j | x̂j = xj +
∑mj−1

k=1 vij
k γijk, (vij

k )>vij
k ≤ 1}.
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Thus, by Theorem 2.4, problem (3.4) can be rewritten as the following SDP:

minimize
xi,α−i,β−i,λ−i

1
2
(xi)>(Aii + ρiiI)xi −

∑
j∈I−i

λij

subject to
[

P ij
0 (xi) qij(xi, xj)

qij(xi, xj)> rij(xi, xj) − λij

]
º αij

[
P ij

1 0
0 1

]
+ βij

[
P ij

2 0
0 1

]
, (j ∈ I−i)

α−i := (αij)j∈I−i ∈ RN−1
+ , β−i := (βij)j∈I−i ∈ RN−1

+ ,

λ−i := (λij)j∈I−i ∈ RN−1,

1>mi
xi = 1, xi ≥ 0,

(3.5)

where

P ij
0 (xi) := −1

2

[
0 ρij(Γ>

ij((x
i)> ⊗ Imj ))

>

ρijΓ>
ij((x

i)> ⊗ Imj ) 0

]
,

qij(xi, xj) := −1
2

[
ρij((xi)> ⊗ Imj )

>xj

Γ>
ijA

>
ijx

i

]
, rij(xi, xj) := −(xj)>A>

ijx
i,

P ij
1 :=

[
−Imimj 0

0 0

]
, P ij

2 :=
[
0 0
0 −Imj−1

]
,

Γij :=
[
γij1 · · · γij(mj−1)

]
.

(3.6)

Finally, we show that the robust Nash equilibrium problem reduces to an SDCP. Since the semidefinite
constraints in (3.5) are linear with respect to xi, α−i, β−i and λ−i, we can rewrite the constraints as

mi∑
k=1

xi
kM ij

k (xj) + λijM
ij
λ º αijM

ij
α + βijM

ij
β , (j ∈ I−i),

where M ij
k (xj) ∈ Smj(mi+1) (k = 1, . . . ,mi), M ij

λ ,M ij
α , and M ij

β ∈ Smj(mi+1) are defined by

M ij
k (xj) :=

[
P ij

0 (e(mi)
k ) qij(e(mi)

k , xj)
qij(e(mi)

k , xj)> rij(e(mi)
k , xj)

]
(k = 1, . . . ,mi),

M ij
λ := −e

(mj(mi+1)+1)

mj(mi+1)+1

(
e
(mj(mi+1)+1)

mj(mi+1)+1

)>
, M ij

α :=
[
P ij

1 0
0 1

]
, M ij

β :=
[
P ij

2 0
0 1

]
.

Then, the Karush-Kuhn-Tucker (KKT) conditions for (3.5) are given by

((Aii + ρiiI)xi)k −
∑

j∈I−i

〈
M ij

k (xj), Zij
〉
− (µi

x)k + νi = 0, (k = 1, . . . ,mi),〈
M ij

α , Zij
〉
− (µi

α)j = 0, (j ∈ I−i),〈
M ij

β , Zij
〉
− (µi

β)j = 0, (j ∈ I−i),〈
M ij

λ , Zij
〉

+ 1 = 0, (j ∈ I−i),〈 m1∑
k=1

xi
kM ij

k (xj) + λijM
ij
λ − αijM

ij
α − βijM

ij
β , Zij

〉
= 0,

(µi
α)>α−i = 0, (µi

β)>β−i = 0, (µi
x)>xi = 0,

mi∑
k=1

xi
kM ij

k (xj) + λijM
ij
λ º αijM

ij
α + βijM

ij
β , (j ∈ I−i),

1>mi
xi = 1, xi ≥ 0, α−i ≥ 0, β−i ≥ 0,

Zij º 0, µi
x ≥ 0, µi

α ≥ 0, µi
β ≥ 0,

where Zij ∈ Smj(mi+1), µi
x ∈ Rmi , µi

α, µi
β ∈ RN−1 and νi ∈ R are Lagrange multipliers. Eliminating µi

x, µi
α
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and µi
β , we obtain the following conditions for each i ∈ I:

Smi(mj+1)
+ 3 Zij ⊥

mi∑
k=1

xi
kM ij

k (xj) + λijM
ij
λ − αijM

ij
α − βijM

ij
β ∈ Smi(mj+1)

+ (j ∈ I−i),

Rmi
+ 3 xi ⊥

((
(Aii + ρiiI)xi

)
k
−

∑
j∈I−i

〈
M ij

k (xj), Zij
〉

+ νi
)

k=1,...,mi

∈ Rmi ,

RN−1
+ 3 α−i ⊥

(〈
M ij

α , Zij
〉)

j∈I−i
∈ RN−1

+ , RN−1
+ 3 β−i ⊥

(〈
M ij

β , Zij
〉)

j∈I−i
∈ RN−1

+ ,〈
M ij

λ , Zij
〉

= −1 (j ∈ I−i), 1>mi
xi = 1.

(3.7)

Since the above KKT conditions hold for all players simultaneously, the robust Nash equilibrium problem
can be reformulated as the problem of finding (xi, α−i, β−i, λ−i, (Zij)j∈I−i , ν

i)i∈I that satisfies (3.7) for all
i ∈ I. Thus, we obtain the following theorem.

Theorem 3.2. Suppose that the cost functions and the strategy sets are given by (3.1) and (3.2), respec-
tively. Suppose further that Assumption C holds. Then, x is a robust Nash equilibrium if and only if
(xi, α−i, β−i, λ−i, (Zij)j∈I−i , ν

i)i∈I solves SDCP (3.7).

4 Numerical example

In this section, we solve a robust Nash equilibrium problem with uncertainties in both the cost matri-
ces and the opponents’ strategies, by using the SDCP reformulation approach proposed in Section 3. In
particular, by changing the size of uncertainty sets, we observe the behavior of equilibria. For solving the
reformulated SDCPs, we apply the Fischer-Burmeister type merit function approach proposed by Yamashita
and Fukushima [20]. In minimizing the merit function, we use fminunc in MATLAB Optimization toolbox.
All programs are coded in MATLAB 7.4.0 and run on a machine with Intel R© Core 2 DUO 3.00GHz CPU
and 3.20GB memories.

We consider the two-person robust Nash equilibrium problem where the cost functions and the strategy
sets are given by (3.1) and (3.2), respectively. We also suppose that Assumption C holds with

A11 =

[ 6 2 −1
2 5 0
−1 0 8

]
, A12 =

[5 −12 0
2 1 1
4 3 1

]
,

A22 =

[ 4 −1 2
−1 6 −1
2 1 9

]
, A21 =

[ 1 −2 −1
3 1 −2

−11 6 −4

]
,

ρ11 = ρ12 = ρ21 = ρ22 = ρ, and σ12 = σ21 = σ. If (ρ, σ) = (0, 0), then we have the ordinary Nash
equilibrium problem with Âij and x̂j (i, j = 1, 2) in (3.1) replaced by Aij and xj , respectively. The Nash
equilibrium of this game is

(
x1

Nash, x2
Nash

)
=

(
(0.6203, 0.1020, 0.2777), (0.0000, 0.0748, 0.9252)

)
.

First, we fix ρ = 1 and vary σ from 0 to 1 to observe the behavior of robust Nash equilibria. Table 1 and
Figure 1 show the values and the trajectories of obtained robust Nash equilibria, respectively. In Figure 1,
two large gray circles represent the Nash equilibria with (ρ, σ) = (0, 0), and white circles represent the
robust Nash equilibrium with ρ = 1 and σ = 0, 0.1, 0.2, . . . , 0.9, 1.0. We can observe that, when σ is small,
player 1 tends to choose strategy 1,*3 since he knows that player 2 chooses strategy 1 with low possibility
(i.e., x2

1 is small) and the first row vector of A12 contains small values (A12)12 = −12 and (A12)13 = 0.
However, as σ increases, player 1 tends to choose strategy 2 instead of strategy 1 because of the following
facts:

*3 In other words, x1
1 is larger than x1

2 and x1
3 at the robust Nash equilibria.
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Table. 1 Robust Nash equilibria with various choices of σ

ρ σ player 1 player 2

1 0 (0.5930, 0.1625, 0.2445) (0.0717, 0.1560, 0.7723)

1 0.1 (0.4664, 0.2961, 0.2375) (0.3424, 0.2184, 0.4392)

1 0.2 (0.3202, 0.4353, 0.2444) (0.5592, 0.2489, 0.1919)

1 0.5 (0.0710, 0.6500, 0.2790) (0.6834, 0.2260, 0.0905)

1 1.0 (0.0000, 0.7349, 0.2651) (0.7470, 0.1506, 0.1024)(0; 0; 1)

(0; 1; 0)(1; 0; 0)
(13; 0; 23)(23; 0; 13)

(0; 13; 23)(0; 23; 13)
(23; 13; 0) (13; 23; 0)

player 2player 1
x2Nash

x1Nash
Fig. 1 Trajectory of robust Nash equilibria with various choices of σ

(i) (A11)22 is smaller than (A11)11 and (A11)33;
(ii) the largest component of the second row vector of A12 is smaller than the largest components of the

first and the third row vectors, i.e., (A12)21 < (A12)11, (A12)31.

Particularly, the fact (ii) is characteristic of the robust Nash equilibrium. When σ is large, player 1 cannot
estimate the effect of player 2’s strategy. He therefore chooses his strategy by taking all unfavorable cases
into consideration. Indeed, if player 2 chooses a large value for x2

1, then it is unfavorable for player 1 since
the first column vector of A12 is (5, 2, 4)>, which is bigger than the other two column vectors.

Next, we fix σ = 0.01 and vary ρ from 0 to 30. Table 2 and Figure 2 show the values and the trajectories
of obtained robust Nash equilibria, respectively. In Figure 2, two large gray circles represent the Nash
equilibrium with (ρ, σ) = (0, 0), and white circles represent the robust Nash equilibria with σ = 0.01 and
ρ = 0, 1, 2, 3, 5, 10, 20, 30. In contrast with the previous result, we can observe that the both players’
robust Nash equilibria approach (1/3, 1/3, 1/3) as ρ increases. This is a convincing result since, when ρ is
very large, each player can hardly evaluate his cost function, and hence takes the three pure strategies with
almost equal probability so as to mitigate the damage due to the worst possible case.

5 Concluding remarks

In this paper, using the SDP reformulation technique for robust LP, we have showed that the robust
Nash equilibrium problem reduces to an SDCP under the assumption that both the opponents’ strategies and
each player’s cost parameters belong to Euclidean uncertainty sets. We have also provided some numerical
examples to show the validity of the SDCP reformulation and the behavior of robust Nash equilibria.
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Table. 2 Robust Nash equilibria with various choices of ρ

ρ σ player 1 player 2

0 0.01 (0.6194, 0.1040, 0.2766) (0.0000, 0.0838, 0.9162)

1 0.01 (0.5811, 0.1750, 0.2439) (0.0985, 0.1623, 0.7393)

2 0.01 (0.5377, 0.2256, 0.2365) (0.2039, 0.1936, 0.6024)

5 0.01 (0.4773, 0.2747, 0.2479) (0.2913, 0.2492, 0.4594)

10 0.01 (0.4313, 0.2990, 0.2696) (0.3200, 0.2854, 0.3945)

30 0.01 (0.3754, 0.3206, 0.3039) (0.3322, 0.3172, 0.3505)(0; 0; 1)

(0; 1; 0)(1; 0; 0)
(13; 0; 23)(23; 0; 13)

(0; 13; 23)(0; 23; 13)
(23; 13; 0) (13; 23; 0)

player 2
player 1

x2Nash
x1Nash

Fig. 2 Trajectory of robust Nash equilibria with various choices of ρ

We still have some future issues to be addressed. In this paper, we have reformulated the robust Nash
equilibrium problem as a nonlinear SDCP. Since many efficient algorithms have been proposed for linear
SDCPs, it would be more meritorious to reformulate the robust Nash equilibrium problem as a linear SDCP.
Also, it is a challenging subject to extend the SDCP reformulation results to the ellipsoidal uncertainty case,
since condition (2.9) is no longer guaranteed when the uncertainty sets are ellipsoidal.
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