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Abstract

We present an SOR-type algorithm and a Jacobi-type algorithm that can
effectively be applied to the `1-`2 problem by exploiting its special structure.
The algorithms are globally convergent and can be implemented in a particularly
simple manner. Relations with coordinate minimization methods are discussed.
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1 Introduction

The purpose of this short article is to draw the reader’s attention to the fact that

the so-called `1-`2 problem can effectively be solved by iterative methods of SOR- or

Jacobi-type by way of Fenchel duality. The `1-`2 problem is to find a vector x ∈ Rn

that solves the following nonsmooth convex optimization problem:

min
x∈Rn

f(Ax) + g(x), (1)

where f : Rm → R and g : Rn → R are defined by

f(s) =
1

2
‖s− b‖2

H ,

g(x) = τ‖x‖1,

respectively, and A ∈ Rm×n, b ∈ Rm, τ > 0. Moreover, ‖ · ‖1 denotes the `1 norm

in Rn and ‖ · ‖H is the norm in Rm defined by ‖s‖H =
√

sT Hs with a symmetric
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positive definite matrix H ∈ Rm×m. When H = I, the norm ‖ · ‖H reduces to the `2,

or Euclidean, norm ‖ · ‖2. This problem has recently drawn much attention in various

application areas such as signal and image reconstruction and restoration [14].

The Fenchel dual [11] of problem (1) is stated as

min
y∈Rm

f ∗(−y) + g∗(AT y), (2)

where f ∗ : Rm → R and g∗ : Rn → R ∪ {+∞} are the conjugate functions of f and g,

respectively, and are given by

f ∗(y) =
1

2
‖y + Hb‖2

H−1 − 1

2
‖Hb‖2

H−1 ,

g∗(t) =

{
0 if t ∈ S := {t ∈ Rn | ‖t‖∞ ≤ τ}
+∞ otherwise.

Therefore, ignoring the constant term, we may rewrite the dual problem (2) as follows:

min
1

2
‖y −Hb‖2

H−1

s.t. −τe ≤ AT y ≤ τe,
(3)

where e = (1, 1, . . . , 1)T ∈ Rn. In the following, we denote the columns of matrix A

by ai ∈ Rm, i = 1, . . . , n, which will be assumed to be nonzero throughout the paper.

Then the constraints of problem (3) can be represented as

−τ ≤ (ai)T y ≤ τ, i = 1, . . . , n. (4)

It may be worth mentioning that the above pair of dual problems can be derived

in another way. First note that the KKT conditions for problem (3) can be written as

H−1y − b + Aξ − Aη = 0, (5)

0 ≤ ξ ⊥ −AT y + τe ≥ 0, (6)

0 ≤ η ⊥ AT y + τe ≥ 0, (7)

where ξ and η denote the Lagrange multipliers associated with the right-hand and the

left-hand inequality constraints in (3), respectively, and a ⊥ b means vectors a and b

are orthogonal. By (5), we have

y = −HA(ξ − η) + Hb. (8)
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This along with (6) and (7) yields

0 ≤ ξ ⊥ AT HA(ξ − η)− AT Hb + τe ≥ 0, (9)

0 ≤ η ⊥ −AT HA(ξ − η) + AT Hb + τe ≥ 0. (10)

It is then easy to observe that (9) and (10) comprise the KKT conditions for the

following convex quadratic program:

min
1

2
(A(ξ − η)− b)T H(A(ξ − η)− b) + τeT (ξ + η)

s.t. ξ ≥ 0, η ≥ 0.
(11)

It is not difficult to verify that any optimal solution of this problem satisfies

ξiηi = 0, i = 1, . . . , n.

Therefore, by letting

x = ξ − η, (12)

problem (11) can be rewritten as

min
x∈Rn

1

2
(Ax− b)T H(Ax− b) + τeT |x|,

where |x| := (|x1|, . . . , |xn|)T . This is precisely problem (1).

Note that the dual problem (3) has a unique optimal solution, whereas the primal

problem (1) has an optimal solution but it is not necessarily unique. From (8) and

(12), optimal solutions of problems (1) and (3) are related by

y = H(b− Ax). (13)

A few words about notation: We let ei denote the ith unit vector in Rn, i.e., the

ith column of the n × n identity matrix. The median of three real numbers α, β, γ is

denoted by mid{α, β, γ}.

2 Algorithms

Hildreth’s algorithm [6] and its Successive Over-Relaxation (SOR) modification [8] are

classical iterative methods for solving strictly convex quadratic programming problems

with inequality constraints. These methods use the rows of the constraint matrix
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just one at a time and act upon the problem data directly without modifying the

original matrix in the course of the iterations; hence the name “row-action methods” [2].

This type of algorithms can be viewed as particular realizations of matrix splitting

algorithms for linear complementarity problems, and their convergence properties have

extensively been studied under general settings; see, e.g., [4, 7, 9, 10].

The quadratic program (3) has particular constraints that consist of pairs of linear

inequalities, which we call interval constraints. The above-mentioned methods [6, 8]

may naturally be applied to problems with interval constraints by treating each pair of

inequalities as two separate inequalities. However this is by no means the best strategy.

By exploiting the special feature of interval constraints, Herman and Lent [5] developed

an extension of Hildreth’s algorithm to deal with a pair of inequalities directly, see

also [3]. Subsequently, an SOR version of the row-action method for interval constraints

was presented in [12]. Moreover, a parallel Jacobi-type modification of the row-action

method for interval constraints was proposed in [13].

In the following two subsections, we describe the SOR-type algorithm [12] and the

Jacobi-type method [13], both of which fully exploit the special feature of the problem

with interval constraints.

2.1 SOR-type algorithm

The SOR-type algorithm for solving (3) is stated as follows [12]:

Algorithm 1.

Initialization: Let (y(0), x(0)) := (Hb, 0) ∈ Rm ×Rn and choose a relaxation parameter

ω ∈ (0, 2).

Iteration k: Choose an index ik ∈ {1, . . . , n} according to some rule and let

αik := (aik)T Haik ,

∆(k) :=
τ − (aik)T y(k)

αik

,

Γ(k) :=
−τ − (aik)T y(k)

αik

,

c(k) := mid
(
x

(k)
ik

, ω∆(k), ωΓ(k)
)
,

x(k+1) := x(k) − c(k)eik ,

y(k+1) := y(k) + c(k)Haik .

Note that αik are all positive, since H is positive definite and aik 6= 0 by assumption.
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Moreover, it is easily seen that Γ(k) < ∆(k) for all k.

The algorithm generates two sequences {y(k)} ⊆ Rm and {x(k)} ⊆ Rn. It can easily

be shown that they are related by the formula

y(k) = H(b− Ax(k)), k = 0, 1, 2, . . . (14)

Under the assumption that the selection of indices {ik} follows the almost cyclic rule,

i.e., there exists an integer N > 0 such that {1, 2, . . . , n} ⊆ {ik, ik+1, . . . , ii+N} for all

k, it is shown that the whole sequence {y(k)} converges to the unique solution y∗ of

problem (3) [12, Theorem 4.3] and the rate of convergence is N -step linear in the sense

that, for some constant ρ ∈ (0, 1), the inequality

‖y(k+N) − y∗‖G ≤ ρ ‖y(k) − y∗‖G

holds for all k large enough [12, Theorem 4.4]. In view of the relations (13) and (14), we

can deduce that any accumulation point of the sequence {x(k)} is an optimal solution

of problem (1).

2.2 Jacobi-type algorithm

The Jacobi-type algorithm for solving (3) is stated as follows [13]:

Algorithm 2.

Initialization: Let (y(0), x(0)) := (Hb, 0) ∈ Rm ×Rn and choose a relaxation parameter

ω > 0.

Iteration k: (i) For i = 1, . . . , n, let

αi := (ai)T Hai,

∆
(k)
i :=

τ − (ai)T y(k)

αi

,

Γ
(k)
i :=

−τ − (ai)T y(k)

αi

,

c
(k)
i := mid

(
x

(k)
i , ω∆

(k)
i , ωΓ

(k)
i

)
.

(ii) Let

x
(k+1)
i := x

(k)
i − c

(k)
i , i = 1, . . . , n,

y(k+1) := y(k) + H

n∑
i=1

c
(k)
i ai.
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Note that we always have αi > 0 and Γ
(k)
i < ∆

(k)
i , i = 1, . . . , n. Moreover, step (i) can

be implemented in parallel for i = 1, . . . , n. Like Algorithm 1, this algorithm generates

two sequences {y(k)} ⊆ Rm and {x(k)} ⊆ Rn, which satisfy

y(k) = H(b− Ax(k)), k = 0, 1, 2, . . . (15)

Let

αij := (ai)T Haj, i, j = 1, . . . , n (i 6= j),

θi :=
2

αi

n∑

j=1,j 6=i

|αij|, i = 1, . . . , n,

and define

ω̄i := min

{
1

θi

,
3

2 + θi

}
, i = 1, . . . , n,

ω̄ := min
1≤i≤n

ω̄i.

It is shown [13, Theorem 3.8] that if the relaxation parameter ω is chosen to satisfy the

condition ω ∈ (0, ω̄), then the sequence {y(k)} generated by the Jacobi-type algorithm

converges to the unique solution y∗ of problem (3). Moreover, from the relations (13)

and (15), any accumulation point of the sequence {x(k)} is an optimal solution of

problem (1).

3 Discussion

It is well-known that the so-called row-action methods are ‘dual’ to the coordinate

minimization methods, which search for a next iterate along some coordinate selected

possibly in an almost cyclic manner. In fact, for a given x(k), the exact minimizer of the

objective function f(Ax) + g(x) of problem (1) along the ith coordinate can explicitly

be computed as x(k) − c(k)ei, where

c(k) = mid

(
x

(k)
i ,

τ − (ai)T H(b− Ax(k))

(ai)T Hai
,
−τ − (ai)T H(b− Ax(k))

(ai)T Hai

)
.

In view of the relation (14), we find that the (exact) coordinate minimization method

for problem (1) is equivalent to Algoruthm 1 with relaxation parameter ω = 1.

Coordinate minimization methods for nonsmooth optimization problems have been

studied by a number of authors. Auslender [1, Chapter VI, Section 1] established
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convergence of the method with relaxation parameter ω ∈ (0, 2) by assuming the

objective function is strongly convex. Note, however, that the last assumption is not

satisfied by problem (1).

Tseng [15] studied a (block) coordinate descent method for solving a nonsmooth

optimization problem of the form:

min
x∈Rn

f(x) +
J∑

j=1

fj(x
j),

where xj ∈ Rnj are sub-vectors that compose the vector x ∈ Rn, i.e., n = n1 + · · ·+nJ ,

f is a smooth function and fj are nonsmooth convex functions. Tseng and Yun [17]

considered the problem

min
x∈Rn

f(x) + P (x),

where f is a smooth function and P is a nonsmooth convex function, and propose

(block) coordinate descent methods with some stepsize rule based on a descent con-

dition. The above two problems contain problem (1) as a special case. In [15, 17],

without assuming the function f to be convex, it is shown that the (block) coordinate

descent methods generate a sequence {x(k)} whose accumulation point is a stationary

point of the corresponding minimization problem. For related results, see [16, 18].

4 Conclusion

We have presented an SOR-type algorithm and a Jacobi-type algorithm for solving the

`1-`2 problem. These algorithms exploit the special structure of the problem and can

be implemented in a very simple manner. The algorithms generate two sequences; one

is convergent to the unique optimal solution of the dual problem, while any accumu-

lation point of the other sequence is an optimal solution of the original `1-`2 problem.

Moreover, the convergence rate of the algorithms is linear as observed in the numerical

results reported in [12, 13] for convex quadratic programs with interval constraints.
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