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Abstract

Applications of Artificial Intelligence (AI) are rapidly increasing especially in the infrastructure
of every industry, and researchers continually try to develop new efficient AI algorithms or improve
the current ones to maximize their benefits. In this paper, we introduce a new hybrid evolutionary
algorithm, called the Memetic Programming (MP) algorithm, which hybridizes the Genetic Program-
ming (GP) algorithm with a new set of local search procedures over a tree space. Specifically, in
each generation of the MP algorithm, we use the GP strategy to generate a new population. Then,
using some local search procedures over a tree space, we try to improve promising programs from
the generated population. In addition, the MP algorithm can deal with the Automatically Defined
Function (ADF) technique that enables the algorithm to exploit the modularities in problem envi-
ronments. Through extensive numerical experiments, the proposed MP algorithm is shown to have
promising performance compared to some recent versions of the GP algorithm, especially by using
the ADF technique.

1 Introduction

Genetic Programming (GP) is one of the most well-known Artificial Intelligence (AI) algorithms [16,
17, 18, 19]. It is inspired from the biological process to produce computer programs as solutions for
a given problem. It has received a lot of attention during the last two decades and it has shown
promising performance in various applications [1, 2, 4, 6, 15, 20, 33, 34, 37]. Despite that, some important
observations have been made about a disruption effect for its main operators, i.e., crossover and mutation
[30, 31]. The main idea in those operators is to choose a node randomly from a tree and exchange the
subtree below it by a new subtree generated randomly or cut from another tree. Therefore, altering a
node high in the tree may result in serious disruption of the subtree below it. In fact, many researchers
have attempted to edit GP operators to make changes in small scales [12, 20]. Moreover, some researchers
claimed that the local search could be effective in improving the local structure of programs [12, 24].

The aim of this work is to introduce a hybrid evolutionary algorithm, called Memetic Programming
(MP) algorithm, as an improvement of the GP algorithm. The proposed algorithm hybridizes GP
with new local search procedures over a tree space to intensify promising programs generated by the
GP algorithm. These local searches are used to generate trial programs in the neighborhood of the
current one by changing it in small scales. In addition, the proposed algorithm can easily deals with the
Automatically Defined Function (ADF) technique to exploit the modularities in problem environments
[18]. We will show through numerical experiments that the proposed MP algorithm is more efficient in
finding an optimal solution than the GP algorithm especially when using the ADF technique.

The MP algorithm inherits the main idea from the Memetic Algorithms (MAs) [8, 22, 27, 28, 29] which
combine the global search characteristic of Evolutionary Algorithms (EAs) with local search techniques
to improve individual solutions obtained in the global search phase. In the field of optimization, MAs
are known as hybrid EAs that combine global and local searches by using an EA to perform exploration
while using a local search method to intensify the results obtained by EA. In fact, MAs have achieved
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Figure 1: Flowchart of GP algorithm

a great success across a wide range of problem domains such as combinatorial optimization, nonconvex
global optimization, and multi-objective optimization [21, 27, 28, 29].

The rest of the paper is organized as follows. In the next section, we introduce more details about
GP that represents the global search technique in MP. The basic procedures for stochastic local searches
over a tree space are presented in Section 3. The proposed MP algorithm is described in Section 4. In
Section 5, more explanations about the practical implementation of the MP algorithm are introduced. In
Section 6, we report numerical results for two types of benchmark problems. Finally, conclusions make
up Section 7.

2 Genetic Programming

The GP algorithm is an evolutionary algorithm (EA) inspired from the biological processes of natural
selection and survival of the fittest [16, 17, 18, 19, 20, 23]. GP evolves a population of computer
programs represented as trees to find an acceptable solution for a given problem. The first proposal of
“tree-based” genetic programming was given by Cramer [5] in 1985. This work was popularized by Koza
[16, 17, 18, 19], and subsequently, the feasibility of this approach in well-known application areas has
been demonstrated [1, 4, 6, 15, 20, 33, 34, 37]. First, the GP algorithm generates a population of random
computer programs. Each program in the population is evaluated and some good programs are selected
and recombined using the mutation and the crossover operators to breed a new population of programs.
This process of selection and recombination to breed new programs is repeated until the best program
is found. Fig. 1 represents a flowchart of the GP algorithm.

The computer programs treated in GP are represented as trees in which leaf nodes are called terminals
and internal nodes are called functions. Depending on the problem at hand, the user defines the domains
of terminals and functions. In the coding process, the tree structure of a solution should be transformed
to an executable code. Fig. 2 shows two examples of individuals represented as trees, along with their
executable codes. Actually, the tree-based representation enables the GP to evolve solutions conveniently,
and to cover a wide range of applications.

The crossover and mutation are fundamental operators in the GP algorithm and have received much
attention in the literature. A huge amount of papers and books have been published to examine effective
settings for these operators and to improve the behavior of the GP algorithm, see for example [20, 35, 37]
and the references therein. These efforts have popularized the GP algorithm and expanded the range
of GP applications. The crossover operator mates two selected trees (parents) and yields two new trees
(offsprings), while the mutation operator is applied to one tree and yields a new mutated tree. Fig. 3
illustrates an example of applying the crossover and mutation operators in GP.
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Figure 2: Examples of GP representation

Figure 3: Mutation and crossover operations in GP
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On the other hand, a number of authors have pointed out that crossover and mutation operators suffer
from some drawbacks [25, 12, 30, 31]. Altering a node high in a tree may result in serious disruption
of the subtree rooted at that node, which means GP may lose promising solutions easily. To cope with
the difficulty, there have been many attempts to edit GP operators to make changes in small scales, for
example by using natural language processing [12, 20]. In particular, the importance of local search has
been well recognized, and methods of improving the local structure of individuals have been developed
[9, 11, 24, 25, 26].

3 Local Searches over Tree Space

In this section, some local search operators over a tree space are introduced. These operators aim to
generate a new tree in a neighborhood of the current tree. We discuss two types of local searches; static
structure search and dynamic structure search [9, 10, 25, 26]. Static structure search aims to explore
the neighborhood of a tree by altering its nodes without changing its structure. On the other hand,
dynamic structure search changes the structure of a tree by expanding its terminal nodes or cutting its
subtrees. Shaking operator is shown as a static structure search, while Grafting and Pruning operators
are introduced as a dynamic structure search.

Before proceeding to the description of Shaking, Grafting and Pruning procedures, we introduce some
basic notations. For a tree X, we use |X| to denote the size of X (the number of nodes in X), l(x) the
number of leaf nodes in X, and d(X) the depth of X (the number of links in the path from the root of
X to its farthest node).

3.1 Shaking Search

Shaking search is used to generate a new tree X̃ from the current one X, by altering some nodes of X
without changing its structure. The altered nodes are replaced by alternative values, i.e., a terminal
node is replaced by a new terminal value and a function node is replaced by a new function of the same
number of arguments as the original one. Procedure 1 gives the formal description of shaking search,
where λ is a positive integer that must be determined before calling the procedure.

Procedure 1 X̃ = Shaking(X,λ)

Step 1. Set X̃ := X and set the counter j := 1.

Step 2. While j ≤ λ, repeat Steps 2.1-2.3.

2.1 Choose a node tj from X̃ randomly.

2.2 Generate an alternative randomly from the set of functions and terminals.

2.3 Update X̃ by replacing the chosen node tj by the new alternative and set j := j + 1.

Step 3. Return.

A neighborhood NS(X) of a tree X, associated with shaking search, is defined by

NS(X) =
{

X̃|X̃ = Shaking(X,λ), λ = 1, . . . , |X|
}

. (1)

3.2 Grafting Search

Grafting search is introduced to increase the variability of the search process. Using grafting search, a
new tree X̃ is generated from a tree X by replacing some of its terminals by branches of depth ζ ≥ 1.
Therefore, X and X̃ have different tree structures since |X̃| > |X|, l(X̃) > l(X), and d(X̃) ≥ d(X). The
formal description of grafting search is shown in Procedure 2, where µ and ζ are two positive integers
that must be determined before calling the procedure.

Procedure 2 X̃ = Grafting(X,µ, ζ)

Step 1. Set X̃ := X and set the counter j := 1.

Step 2. While j ≤ µ, repeat Steps 2.1-2.3.
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2.1 Generate a branch Bj of depth ζ randomly.

2.2 Choose a terminal node tj from X̃ randomly.

2.3 Update X̃ by replacing the node tj by the branch Bj and set j := j + 1.

Step 3. Return.

A neighborhood NG(X) of a tree X, associated with grafting search, is defined by

NG(X) =
{

X̃|X̃ = Grafting(X,µ, ζ),

µ = 1, . . . , l(X), ζ = 1, . . . , ζmax

}
,

(2)

where ζmax is a predetermined positive integer.

3.3 Pruning Search

In contrast to grafting search, pruning search generates an altered tree X̃ from a tree X by cutting some
of its branches of depth ζ. One may note that X and X̃ have different tree structures since |X̃| < |X|,
l(X̃) < l(X), and d(X̃) ≤ d(X). Procedure 3 gives the formal description of pruning search, where ν
and ζ are two positive integers that must be determined before calling the procedure.

Procedure 3 X̃ = Pruning(X, ν, ζ)

Step 1. Set X̃ := X and set the counter j := 1.

Step 2. While ζ ≤ d(X̃) and j ≤ ν, repeat Steps 2.1-2.3.

2.1 Choose a branch Bj of depth ζ in X̃ randomly.

2.2 Choose a terminal node tj randomly from the set of terminals.

2.3 Update X̃ by replacing the branch Bj by tj and set j := j + 1.

Step 3. Return.

A neighborhood NP (X) of a tree X, associated with pruning search, is defined by

NP (X) =
{

X̃|X̃ = Pruning(X, ν, ζ),

ν = 1, . . . , f(X), ζ = 1, . . . , d(X)
}

,
(3)

where f(X) := |X| − l(X) represents the number of functions in X.
In fact, Procedures 1-3 will behave as stochastic searches due to the random choices in Step 2 in each

procedure. In other words, by calling any of these procedures several times for the same tree X and
using the same parameters, one may get a different X̃ for each call. Fig. 4 shows examples of generating
a new tree X̃ from a tree X by applying Procedures 1-3 with λ = 2, µ = 2, ν = 3 and ζ = 1.

4 Proposed Algorithm

In this section a new hybrid evolutionary algorithm is presented as an improvement to the GP algorithm.
The proposed algorithm hybridizes GP with the local search procedures introduced in the previous
section to improve individuals generated by using GP operators. First, a new local search algorithm
over a tree space called Local Search Programming algorithm is discussed. Next, the proposed Memetic
Programming (MP) algorithm is described. The term “memetic” comes from memetic algorithms since
the MP algorithm inherits the basic idea from memetic algorithms, while the term “programming” comes
from GP since MP deals with computer programs represented by trees.

The first idea of the MP algorithm was proposed by the authors [25] in a short conference paper.
In the present paper, some procedures of the proposed algorithm are enhanced and described in more
detail, and more extensive numerical experiments are reported.
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Figure 4: Generating new trees using shaking, grafting and pruning procedures.

4.1 Local Search Programming

A local search algorithm starts with an initial solution, and subsequently applies some operators to
generate new solutions in a neighborhood of the current one. This process iterates until no better
solution can be found in the neighborhood, and then the algorithm is terminated. In this subsection,
a new local search algorithm over a tree space, called Local Search Programming (LSP) algorithm, is
proposed to find the best program in the neighborhood of the current program X. The proposed LSP
algorithm mainly uses the local search procedures described in Section 3. The details of the proposed
algorithm are shown below.

Algorithm 4 Local Search Programming

1. Initialization: Choose an initial program X, set Xbest := X and set the counter k := 0. Choose
the values of nFails and nTrs.

2. While k ≤ nFails, repeat Steps 2.1-2.5.

2.1 Static Structure Search

2.1.1 Generate a set Y={Yi| Yi=Shaking(X, i), i = 1, · · · ,nTrs}.
2.1.2 Let Ybest be the best program in the set Y.
2.1.3 If Ybest is better than X, then set X := Ybest and go back to Step 2.1.1. Otherwise, set

k := k + 1 and proceed to Step 2.2.

2.2 If X is better than Xbest, then set Xbest := X.

2.3 If k > nFails, then go to Step 3. Otherwise, proceed to Step 2.4.

2.4 Dynamic Structure Search

2.4.1 Select Grafting or Pruning procedure randomly and denote the selected one by R.
2.4.2 Generate a set Z={Zi| Zi=R(X, i, ζ), i = 1, · · · ,nTrs}.
2.4.3 Replace X by the best program in the set Z.

2.5 If X is better than Xbest, then set Xbest := X. Go back to Step 2.1.

3. Termination: Stop and return with Xbest, the best program found.

In the initialization step, Step 1, the algorithm starts with a program X that is generated randomly
or received from another algorithm. In addition, Xbest and a counter k take their initial values. In fact,
the counter k is used to count the number of non-improvements during the search process. In Step 1, the
user must choose two positive integers nFails and nTrs. Specifically, nFails is the maximum number
of non-improvements and nTrs represents the number of trial programs generated in the neighborhood
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Figure 5: The flowchart of LSP

of the current program using static and dynamic structure searches. For the shaking procedure, we put
nTrs := min(nTrs, |X|), and for the pruning procedure, we put nTrs := min(nTrs, d(X)).

Step 2 consists of five substeps 2.1-2.5. In Step 2.1, an inner loop using the shaking procedure is
iterated until it finds a better program near to X. In Step 2.1.1, the algorithm generates a set Y of trial
programs using the shaking procedure. In Steps 2.1.2 and 2.1.3, if the best program, Ybest, in Y is better
than X, then it replaces the current program X and the algorithm goes back to Step 2.1.1. Otherwise,
the algorithm updates the counter k and proceeds to Step 2.2 to update Xbest if better programs have
already been explored.

In Step 2.3, when the algorithm reaches the maximum number of non-improvements nFails, it will
stop and return with Xbest. Otherwise, it proceeds to Step 2.4 to diversify the search process using a
new program with different structure by applying either the grafting or the pruning procedure, which
is chosen randomly. In Step 2.4.2, a set Z of trial programs is generated by the selected procedure. In
Step 2.5, the algorithm replaces X by the best program in Z and goes back to Step 2.1. Finally, when
the termination condition is satisfied, the algorithm stops at Step 3 and returns with the best program
found. Fig. 5 shows the flowchart of the proposed LSP algorithm.

In Algorithm 4, the main loop starts in Step 2.1 by generating nTrs programs using the shaking
procedure. If there is no improvement occurred in the current program, then the counter k is increased
by 1, and the algorithm keeps working and generating new programs according to the following two
processes. First, the algorithm proceeds to generate two sets of nTrs programs; the first nTrs programs
are generated using the grafting or pruning procedures in Step 2.4, and the remaining nTrs programs
are generated using the shaking procedure in Step 2.1. Second, the algorithm increases the counter k
by one if no improvement occurred in the current program. These two processes are repeated as long as
the value of the counter k does not exceed the maximum value nFails. Therefore, the number of fitness
evaluations needed during a single run of the LSP algorithm varies depending on the improvement of the
current program. If the algorithm completely fails to improve the current program, then the number of
fitness evaluations consumed during the run of the algorithm is

minFitLSP = (2 nFails + 1) nTrs. (4)

In fact, the value minFitLSP represents the minimum value of the number of fitness evaluations needed
during the run of the LSP algorithm. However, if the algorithm succeeds to improve the current program,
then the number of fitness evaluations needed during the run of the LSP algorithm will exceed the value
minFitLSP .
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4.2 Memetic Programming

The main target of the MP algorithm is to improve the behavior of the GP algorithm by reducing the
disruption effect of the crossover and mutation operators. Performing a local search for some promising
programs during the search process can improve these programs. Moreover, if the search process succeeds
to reach the area near an optimal solution, then a simple local search algorithm can capture that optimal
solution easily. On the contrary, if the GP algorithm continues to be applied without the help of local
search, there is a high probability of losing such promising solutions due to the disruption effect of
crossover and mutation operators. In the MP algorithm, we use the LSP algorithm described in the
previous subsection to improve some programs chosen from the current population based on their fitness
values. The proposed MP algorithm is stated as follows:

Algorithm 5 (MP Algorithm)

1. Initialization.

1.1. Generate a random population of programs and evaluate the fitness value for each program.
Set the initial values of controlling parameters needed in the search process.

1.2. Select some promising programs according to their fitness values.

1.3. Apply the LSP algorithm, Algorithm 4, to the selected programs.

1.4. Update the controlling parameters.

2. Main Loop. Repeat the following Steps 2.1-2.6 until a termination condition is satisfied. If a
termination condition is satisfied, proceed to Step 3.

2.1. Select a set of parents from the current population, according to their fitness values.

2.2. Generate a new population using crossover and mutation operators, and evaluate the fitness
value for each program in the new population.

2.3. Select a set of promising programs according to their fitness values.

2.4. Apply the LSP algorithm, Algorithm 4, to the selected programs.

2.5. Update the controlling parameters.

2.6. Return to Step 2.1 to breed a new population.

3. Stop with the best program found.

The controlling parameters set in the Step 1.1 may store the number of generations that have been
performed, the number of fitness evaluations that have been used, the fitness value of the best program
found so far, and the number of consecutive non-improvements. These information can be used to termi-
nate the algorithm in a suitable time. Therefore, the termination conditions in the MP algorithm may
consist of one or more of the following events; reaching the highest fitness value, reaching the maximum
number of fitness evaluations, or reaching the maximum number of consecutive non-improvements for
the best program during the course of generating populations.

Step 2.2, in the main loop, generates a new population using the crossover and mutation operators as
follows: First, pick up an operator randomly from the set of reproduction (copy), crossover and mutation
operators. Second, pick up one or two program(s), depending on the selected operator, randomly from
the pool set generated in Step 2.5. Third, get new offsprings by applying the selected operator for
the selected program(s). Fourth, replace the parent(s) in the current population by the new offsprings.
Repeat these steps until all programs in the population are modified.

It is worthwhile to note that the main loop in Step 2 of Algorithm 5 can be divided into two phases, the
diversification phase in Steps 2.1-2.2 and the intensification phase in Steps 2.3-2.4. The diversification
phase follows the GP strategy, where choosing a suitable selection strategy and using the crossover
and mutation operations guarantee the diversity in the current population. On the other hand, the
intensification phase, which uses the LSP algorithm to intensify promising programs obtained in the
diversification phase, tries to catch the best solution. We note that, the MP algorithm at least behaves
like the GP algorithm in case that no improvement occurs in the intensification phase. However, in this
case the MP algorithm will be more costly than the GP algorithm, because of the computational effort
spent in the intensification phase.
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Figure 6: Example of representing a program in GP using ADF technique

4.3 Automatically Defined Functions

A program in GP is represented as a tree consisting of function and terminal nodes. The function set in
GP usually contains primitive functions chosen based on the problem itself. For example, in the symbolic
regression problem, one can use the set of binary functions {+, −, ∗, /}, while in the Boolean problems.
one can use the set of Boolean functions {AND, OR, NAND, NOR}, and so on. Using these functions
along with the set of terminals, the GP algorithm constructs and evolves programs through a set of steps.

One of important improvements of GP has been made through the use of automatically defined
functions for reusing codes [18]. The ADFs are sub-trees that can be used as functions (called defun,
subroutines, subprograms, or modules) of dummy arguments in the main tree of a program to exploit
symmetries and modularities in the problem environments. In the standard GP algorithm with the
ADF technique, each ADF is defined in a separate function-defining branch as a part of a program. In
addition, for each ADF, the user must specify the number of dummy arguments and the function set
which is allowed to contain other ADFs. The main program is defined in the result-producing branch
that yields the fitness value of this program. For each program in the population, the result-producing
branch is allowed to call functions from the function set that includes the original primitive functions as
well as the ADFs defined for this program. In fact, the ADF technique has been successful in improving
the performance of GP for a set of problems. Fig. 6 shows an example of the structure of a GP program
that contains two function-defining branches (two ADFs) and a result-producing branch.

In this subsection, we focus on the effect of using the ADF technique within the proposed MP
algorithm. In fact, the proposed MP algorithm uses the multigenic representation to express programs
in the population, where each program is represented as a tree consisting of several genes [7]. The gene
itself represents a sub-tree that consists of function and terminal nodes. Those genes in a program are
linked together by means of a suitable linking function from the function set. More details about the
representation of MP programs will be given in the next section.

Actually, the multigenic strategy enables MP to deal easily with ADFs for reusing codes. Since each
program in MP can contain more than one gene, we can adopt one or more of these genes to work as
ADF(s). In other words, each program in MP with ADFs contains two types of genes, ADF genes which
represent function-defining branches, and regular genes which represent the result-producing branches.
The result-producing branches are linked together by a suitable function to produce the final form of
the program. Fig. 7 shows an example of the structure of a MP program using the ADF technique. In
Section 5 we will show more details and explanations about implementing the ADF technique with MP.

5 Implementation of MP

In this subsection, we illustrate the details of some basic topics that are essential in the implementation
of the MP algorithm, Algorithm 5, concerning representation of individuals, selection techniques, and so
on.

5.1 Representation of Individuals

As described in the previous section, like GP, a solution generated by MP is called a program and it is
represented as a tree consisting of one or more “gene(s)”. Each gene represents a subtree consisting of
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Figure 7: Example of representing a program in MP using ADF technique

Figure 8: The tree structure and the coding representation of a solution in GP and MP

some external nodes called terminals and some internal nodes called functions. Genes inside a program
are linked together by using a suitable linking function, e.g., “+” for the symbolic regression problem, to
produce the final form of a solution. In the coding process, the tree structure of a program transforms
into an executable code called genome. In MP, we code genes using a strategy that differs from the
one used in the standard GP, where each gene is represented as a linear symbolic string composed of
terminals and functions. Fig. 8 shows tree structures along with their executable codes for a gene in the
GP and MP algorithms.

We use the following steps to generate each gene in the initial population: First, we generate a
temporary random gene consisting of two parts, head (functions and terminals) and tail (terminals
only). The length of the temporary gene is the head length hLen plus the tail length t = h(n − 1) + 1,
where n is the maximum number of arguments of the function. Second, we adjust the final form of
the gene by deleting unnecessary elements, based on the functions and terminals that are generated
randomly within the gene. In this way, we guarantee the syntactically correct structure for genes in the
initial population. For more details and examples, see [10].

Once the initial population is generated, it will be evolved and improved using the MP operations;
i.e., crossover, mutation, shaking, grafting and pruning. For each problem to solve, the sets of functions
and terminals, the number of genes, the head length hLen for the initial population, and the fitness
function must be determined before calling the algorithm. In fact, adapting each program to contain
more than one genes increases the probability of finding suitable solutions, and enables the algorithm to
deal with more complex problems [7].

5.2 Selection Techniques

The selection technique is considered a key issue in the MP algorithm as well as the GP algorithm, since
it affects other steps in a direct way. Moreover, it implicitly affects the diversity of the population since
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the best program(s) in the old population can propagate excessively and produce a lot of offsprings in
the new population, which reduces the diversity in the population [3]. In the literature, e.g., [3, 4, 13],
several selection techniques have been introduced and discussed extensively, all of which make use of the
fitness values of the current population.

The proposed MP algorithm, Algorithm 5, mainly contains two selection steps: First, Step 2.1 selects
a pool of programs to breed a new population using the crossover and mutation operators. Second, Step
2.3 (as well as Step 1.2) selects a set of promising programs to improve them by the LSP algorithm. In
our earlier paper [25], we used the roulette wheel selection in all selection steps in the old version of the
MP algorithm.

In the present paper, we use three different selection techniques that have shown promise in our
extensive numerical experiments. In Step 2.1, we use the tournament selection [13] of size 4 as the
default selection strategy, and the roulette wheel selection will be used for some special experiments, as
shown later. In Steps 1.2 and 2.3, we always select the best nLs programs from the current population,
where nLs is a positive integer less than or equal to the population size.

5.3 Crossover and Mutation

The crossover and mutation are the basic operators in EAs. Since programs are represented by trees, the
crossover is applied by choosing two programs (trees) randomly, choosing a node randomly from each
tree, and exchanging the two subtrees rooted at these two nodes to get offsprings. On the other hand,
the mutation operator is applied for one program (tree) chosen randomly from the pool set. Then, one
can get a new offspring by choosing a node randomly and exchanging the subtree rooted at this node by
a new one that is generated randomly.

The crossover and mutation operators are summarized in the following two procedures.

Procedure 6 [Y1, Y2] = Crossover(X1, X2)

Step 1. Choose a node n1 from X1 randomly.

Step 2. Choose a node n2 from X2 randomly.

Step 3. Swap the two subtrees rooted at n1 and n2, and call the new trees Y1 and Y2.

Procedure 7 [Y ] = Mutation(X)

Step 1. Choose a node n1 from X randomly.

Step 2. Generate a new subtree X̂ randomly.

Step 3. Replace the subtree rooted at n1 by X̂ and call the new tree Y .

In Step 2.2 of Algorithm 5, the MP algorithm starts with a new empty population and repeats the
following steps until the new population becomes full: First, it picks up an operator randomly from the set
of GP operators, i.e., reproduction (copy), crossover and mutation operators, based on a predetermined
probability value. Second, the algorithm picks up one or two program(s), based on the selected operator,
randomly from the pool set generated in Step 2.5. Third, the algorithm generates new offsprings by
applying the selected operator to the selected program(s). Finally, new offsprings are added to the new
population. Once the new population becomes full, it will replace the old one.

5.4 Set of Parameters

The proposed MP algorithm makes use of a set of parameters that can be classified into two types of
parameters; representation parameters and search parameters. We list these parameters in the following:

• Representation Parameters

◦ hLen: The head length for every gene generated randomly in the initial program.

◦ MaxLen: The maximum length, i.e., the number of nodes, of a gene allowed in the search process.

◦ nGenes: The number of genes in each program.

◦ ζ: The depth of branches added to and removed from a tree X in the grafting search (Procedure
2) and the pruning search (Procedure 3), respectively. Throughout this paper, we use the
branch depth ζ = 1.
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◦ LnkFun: The function used to link genes in each program.

• Search Parameters

◦ nPop: The population size.

◦ nGnrs: The maximum number of generations.

◦ nLs: The number of programs selected to apply local search procedures at the intensification
phase in Steps 2.3-2.4 in Algorithm 5.

◦ nTrs: The number of trial programs generated in the neighborhood of the selected program
using a local search procedure, i.e., shaking, grafting or pruning.

◦ nFails: The maximum number of non-improvements for each call of the LSP algorithm in Step
2.4 of the MP algorithm.

If no improvements occurs in the intensification phase in Steps 2.3-2.4 of Algorithm 5, then the
number of fitness evaluations consumed in this phase is minFitIntP = nLs (2 nFails + 1) nTrs. This is
because Algorithm 5 calls the LSP algorithm nLs times during the intensification phase in Steps 2.3-2.4,
while the number of fitness evaluations during one call of the LSP algorithm is (2 nFails + 1) nTrs,
equation (4). If the values of nLs, nFails and nTrs are large, the MP algorithm will need a lot of fitness
evaluations in the intensification phase in Steps 2.3-2.4.

Certainly, if the LSP algorithm succeeds to improve the chosen programs in Steps 2.3 of Algorithm 5,
then we do not mind the increase of the number of fitness evaluations in the intensification phase, since it
increases the probability of finding an optimal solution. On the other hand, if the LSP algorithm fails to
improve the chosen programs in Steps 2.3 of Algorithm 5, then the MP algorithm will not gain benefits
by using a large number of fitness evaluations. For that reason, we let minFitIntP be the maximum
number of fitness evaluations in the intensification phase. Specifically, we set minFitIntP = α nPop,
where α is a positive constant determined before calling the algorithm. Then the values of nLs, nTrs
and nFails must be chosen to satisfy the equation

nLs (2 nFails + 1) nTrs = α nPop. (5)

In practice, we first choose the values of nTrs and nFails, and then determine the value of nLs (from
(5)) by

nLs =
⌈ α nPop

(2 nFails + 1) nTrs

⌉
, (6)

where dxe means the smallest integer greater than or equal to x. In particular, if α = 0, then no program
will be processed by the LSP algorithm.

5.5 Building and Evolving ADFs in MP

Actually, based on the individual representation in MP, we can easily extend the MP algorithm to build
and reuse ADFs. For each program in MP, we can exploit one or more genes to work as ADF(s), which
will be created and evolved during the run of the algorithm. In addition, these ADFs will be added
automatically to the function set of other genes, the result-producing branches, in the same program
that contains these ADFs. In this case, the fitness value for a program in MP with ADFs will be
computed from the result-producing branches by linking all of them using a suitable function, e.g., a
primitive function or one of the ADFs themselves.

Suppose that {ADF1, ADF2, · · · , ADFn} is the set of ADFs used for the problem at hand, where
each ADF has its own set of dummy arguments. As in GP with ADFs, the function set used to build
the ADFs is the original function set F, and it is possible to include one or more function(s) from the
set {ADFi|i = 1, · · · , j − 1} in the body of ADFj , where j = 2, · · · , n. In addition, the function set for
result-producing branches (regular genes) is F∪{ADF1, · · · , ADFn}, while the terminal set is the original
terminal set T. Fig. 7 shows an example of the overall structure of a program in the MP algorithm using
two ADFs.

In fact, ADFs can increase the size of genes dramatically, especially if there exist several ADFs in the
body of genes. In other words, if one replaces each ADF in the body of a regular gene by its equivalent
subtree, then the number of nodes of this regular gene can increase rapidly according to the number of
ADFs in its main tree. Fig. 10 shows the actual trees of genes 3 and 4 in Fig. 9 by replacing ADF1 and
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Figure 9: Example of representing a program in MP using ADFs technique. Last two lines represent the
function and terminal sets for each gene.

Figure 10: The actual tree representations of genes 3 and 4 in Fig. 9

ADF2 by their equivalent subtrees. In Fig 9, one can notice that the number of nodes of gene 3 is 5, and
the number of nodes of gene 4 is 5. However, by replacing each ADF function by its equivalent subtree
as in Fig. 10, we can see that the actual number of nodes for genes 3 and 4 are 9 and 27, respectively.
In addition, in case of using a function from the set {AND, OR, NOR} to link genes 3 and 4 in Fig.
10, the total number of nodes in the program will be 37. On the other hand, if the LnkFun in Fig. 9 is
ADF1 or ADF2, then the total number of nodes in the program in Fig. 10 will be 93 or 103, respectively.
Therefore, the values of hLen and MaxLen parameters must be chosen small enough in case of using the
ADF technique. In this paper we set hLen := (h1, h2) and MaxLen := (m1,m2), which means hLen = h1

and MaxLen = m1 for ADFs genes, and hLen = h2 and MaxLen = m2 for regular genes.
It is important to note that special care is needed to use the crossover operator in MP with ADFs,

since each program contains two different types of genes, i.e., ADF genes and regular genes. Specifically,
we choose two parents randomly from the current population and choose a gene randomly from the first
one. If the chosen gene is an ADF gene, then we have to select the corresponding gene in the second
parent. Otherwise, we can choose any gene randomly from the set of regular genes in the second parent,
and use the crossover operator normally for the selected genes.

6 Numerical Experiments

This section discusses the performance of the MP algorithm on some well-known benchmark problems.
First, we introduce the benchmark problems under consideration in Subsection 6.1. Then, we examine
the performance of the MP algorithm through extensive experiments. In these experiments, we focus on
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the performance of the proposed MP algorithm under different environments. Specifically, we study the
performance of MP under different selection strategies and different values for the nLs, nTrs and nFails
parameters. These parameter settings are performed for the MP algorithm with and without the use of
the ADF technique.

Finally, we make a set of comparisons, between the MP algorithm and various recent versions of
the GP algorithm, to show the efficiency of the proposed MP algorithm. In fact, the proposed MP
algorithm shows promising performance compared to recent GP algorithms as we will see later. In all
the experiments, we terminate the algorithm as soon as an optimal solution with the highest fitness value
is found, or the maximum number of fitness evaluations is reached.

The computational effort (CE) has been introduced by Koza [17] to measure the computational costs
required for GP to solve a problem, and its value is based on some data collected from a set of independent
runs. The formula of CE is given as follows:

CE = min
i

I(nPop, i, z),

I(nPop, i, z) = nPop ∗ R(z) ∗ i,

R(z) =
⌈

log(1 − z)
log(1 − P (nPop, i))

⌉
,

P (nPop, i) =
Ns(i)
Nall

,

(7)

where z is positive number less than 1, Ns(i) is the number of successful independent runs up to generation
i, and Nall is the total number of runs. As in Koza [17], P (nPop, i) represents the cumulative probability
of success up to generation i, R(z) represents the number of independent runs required to produce a
solution up to generation i with probability z, and I(nPop, i, z) is the number of programs that must be
processed to get a satisfactory solution, with probability z, using population size nPop up to generation
i. All results in this paper are computed using z = 0.99 as in Koza [17].

In the MP algorithm, the number of fitness evaluations per each generation varies according to the
performance of the LSP algorithm. So we will slightly modify the definition of CE for the MP algorithm.
Specifically, we define the computational effort CE for the MP algorithm by (7), where Ns(i) is the
number of successful independent runs using up to i ∗ nPop fitness evaluations in the MP algorithm,
which is equal to the number of successful independent runs up to generation i in the GP algorithm with
fixed population size nPop.

6.1 Test Problems

We use three different benchmark problems collected from the literature. These benchmark problems
are the symbolic regression problem, the Boolean N -bit even-parity problem and the Boolean 6-Bit
multiplexer problem.

6.1.1 Symbolic Regression (SR) Problem

The symbolic regression problem is the problem of fitting a dataset {(xj1, · · · , xjm, fj)}n
j=1, by a suitable

mathematical formula g such that the absolute error

n∑
j=1

|fj − g(xj1, · · · , xjm)| (8)

is minimized.
Here, we study the performance of the MP algorithm for the multivariate polynomial (POLY-4)

f(x1, · · · , x4) = x1x2+x3x4+x1x4, see [33]. A dataset consisting of 50 fitness cases has been generated
randomly with xi ∈ [−1, +1], i = 1, 2, 3, 4. The target in the problem (which will be referred to as the
SR-POLY-4 problem in the rest of the paper) is to detect a function g(x1, x2, x3, x4) that approximates
the original polynomial POLY-4, with the minimum error, by using the dataset. The fitness value for
a program is calculated as the sum, with the sign reversed, of the absolute errors between the output
produced by a program and the desired output for each of the fitness cases. Therefore, the maximum
fitness value for this problem is 0.

14



6.1.2 The Boolean N-Bit Even-Parity Problem

The Boolean N -bit even-parity (N -BEP) function is a function of N -bit arguments, namely a0, a1, · · · , aN−1.
It returns 1 (True) if the arguments contain an even number of 1’s and it returns 0 (False) otherwise.
All 2N combinations of the arguments, along with the associated correct values of the N -BEP function,
are considered to be the fitness cases. The fitness value for a program is the number of fitness cases
where the Boolean value returned by the program for a given combination of the arguments is the correct
Boolean value. Therefore, the maximum fitness value for the N -BEP problem is 2N .

6.1.3 The Boolean 6-Bit Multiplexer Problem

An input to the Boolean N -bit multiplexer (N -BM) function consists of k “address” bits ai and 2k

“data” bits di as a string of length N = k+2k of the form a0, a1, · · · , ak−1, d0, d1, · · · , d2k−1. The value
of the N -BM function is the value (0 or 1) of the particular data bit that is singled out by the k address
bits of the multiplexer. All 2N combinations of the arguments, along with the associated correct values
of the N -BM function, are considered the fitness cases. The fitness value for a program is the number of
fitness cases where the Boolean value returned by the program for a given combination of the arguments
is the correct Boolean value. Therefore, the maximum fitness value for the N -BM problem is 2N .

6.1.4 Settings of the Test Problems

In the rest of this section, we will use the following settings, unless otherwise stated, for our test problems:

• For the SR-POLY-4 problem, the set of independent variables {x1, x2, x3, x4} is regarded as the
terminal set, and the set of functions {+,−, ∗, %} is regarded as the function set, where x%y := x
if y = 0; x%y := x/y otherwise.

• For the N -BEP problem, the set of arguments {a0, a1, · · · , aN−1} is used as the terminal set, and
the set of Boolean functions {AND, OR, NAND, NOR} is used as the function set. In fact, the
GP research community considers evolving the N -BEP function by using those Boolean functions
as a good benchmark problem for testing the efficiency of new GP techniques [17, 36].

• For the 6-BM problem, the set of arguments {a0, a1, d0, d1, d2, d3} is used as the terminal set,
and the set of Boolean functions {AND, OR, NOT, IF} is used as the function set, where IF(x, y,
z) returns y if x is true, and it returns z otherwise.

6.2 Performance Analysis

In this subsection, we study the setting of MP parameters and components, and its effect on the perfor-
mance of the MP algorithm. Specifically, we mainly focus on the selection strategy and the parameter
setting associated with the LSP algorithm, i.e., nLs, nTrs and nFails. A set of different values for each
of these parameters is chosen, and for each value, 100 independent runs are performed to compute the
average number of evaluations (AV), the computational effort (CE) and the rate of success (R). In this
subsection, the values of the parameters under consideration will be specified for each set of experiments.
The values of other parameters are set to their standard values shown in Table 1, which are determined
from our pilot experiments or the common setting in the literature.

6.2.1 Performance under Different Selection Strategies

In this set of experiments, we use the MP algorithm with two different selection strategies; the tournament
selection and the roulette wheel selection. For each selection strategy, we performed 100 independent
runs to compute the average number of evaluations (AV), the computational effort (CE) and the rate of
success (R).

The performance of the MP algorithm with these two selection strategies is shown in Table 2. From
these results, we can see that the tournament selection gives better results than the roulette wheel
selection. When the LSP algorithm is not employed, i.e., α = 0, changing the selection strategy from the
tournament to the roulette wheel caused a collapse in the rate of success, and increased the computational
efforts unreasonably, in particular, for the 6-BM problem. On the other hand, by using the LSP algorithm,
the effect of changing the selection strategy is not high compared to the previous case. Therefore, one
can conclude that the LSP algorithm increases the stability of the MP algorithm with different selection
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Table 1: The standard values of the MP parameters for the benchmark problems.
MP without ADFs MP with ADFs

Parameter SR-POLY-4 3-BEP N -BEP16BF 6-BM SR-POLY-4 N -BEP
hLen 3 3 1 3 (3,1) (3,1)
MaxLen 30 30 15 30 (7,3 (7,3)
nGenes 3 2 N 3 4 N + 1
nPop 50 500 50 500 50 250(N − 1)
nGnrs 100 100 → ∞ 100 100 → ∞
LnkFun + AND XOR IF + ADF1

Equation (6): α := 1/2, nTrs := 2 and nFails := 1
Crossover probability:= 0.9
Mutation probability:= 0.05
Reproduction (Copy) probability:= 0.05
Selection strategy: Tournament selection of size 4

Table 2: Comparison of selection strategies.
Problem α Selec. AV CE R%
SR-POLY-4 0 Tour. 2,155 7,000 72

Roul. 3,639 26,250 44
1
2 Tour. 1,165 4,400 96

Roul. 1,804 7,400 91

3-BEP 0 Tour. 19,225 60,000 80
Roul. 48,030 1,550,000 14

1
2 Tour. 15,568 54,000 90

Roul. 37,403 245,000 62

6-BM 0 Tour. 9,075 25,000 100
Roul. 49,965 21,343,500 1

1
2 Tour. 9,019 21,500 100

Roul. 41,587 350,000 50

strategies. This impressive property can save computations for learning experiments to detect desirable
environments for the problem under consideration.

6.2.2 Parameter nLs

Here, we focus on the parameter nLs, the number of programs in the population to which local search is
applied, and its effect on the performance of the MP algorithm. Different values for the constant α in (6)
are chosen, and 100 independent runs of the MP algorithm are performed for each value. Comparisons,
in terms of the average number of evaluations, the computational efforts and the rate of success, are
made for these different settings of the MP algorithm. Mainly, we focus here on four cases:

1. α = 0, which means there is no use for the LSP algorithm.

2. α = 1/2, which means the intensification phase will cost at least nPop/2 fitness evaluations for each
generation of Algorithm 5.

3. α = 1, which means the intensification phase will cost at least nPop fitness evaluations for each
generation of Algorithm 5.

4. Applying the LSP algorithm for all programs in the current population, i.e., nLs = nPop which
implies α = 5 by (5), since nFail = 2 and nTrs = 1 in Table 1.

From Table 3, we see that the LSP algorithm has great influence on the MP algorithm. It improves
performance of the MP algorithm in both the number of evaluations and the rate of success. In addition,
applying the LSP algorithm for all programs in the current population is costly in terms of AV and CE,
but it improved the rate of success. Throughout this section, we use α = 1

2 as recommended from the
results in Table 3.
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Table 3: Comparisons in terms of parameter nLs
Problem α nLs AV CE R%
SR-POLY-4 0 0 2,155 7,000 72

1
2 dnPop/10e 1,165 4,400 96
1 dnPop/5e 1,229 4,500 99
5 nPop 2,290 5,000 99

3-BEP 0 0 19,225 60,000 80
1
2 dnPop/10e 15,568 54,000 90
1 dnPop/5e 16,894 62,000 90
5 nPop 31,417 97,000 92

6-BM 0 0 9,075 25,000 100
1
2 dnPop/10e 9,019 21,500 100
1 dnPop/5e 10,118 29,000 100
5 nPop 26,653 73,000 100

Table 4: Results of the MP algorithm in terms of parameters nTrs and nFails
Parameters SR-POLY-4 3-BEP 6-BM

nTrs nFails CE R% CE R% CE R%
Without LSP 7,000 72 60,000 80 25,000 100

1 1 3,750 99 55,500 92 18,500 100
1 2 5,200 92 54,000 89 25,000 100
1 3 5,400 92 70,000 83 29,000 99
2 1 4,400 96 54,000 90 21,500 100
2 2 4,800 96 48,000 88 28,500 100
2 3 5,250 93 52,000 89 22,500 99
3 1 5,600 90 60,000 86 19,500 100
3 2 4,600 96 60,000 83 31,000 98
3 3 5,400 92 52,500 92 28,000 99
4 1 5,250 97 52,000 87 31,000 99
4 2 6,000 93 51,000 92 33,000 98
4 3 4,800 94 64,000 88 32,000 100
5 1 5,400 89 54,000 86 30,000 100
5 2 5,750 91 58,000 90 29,000 99
5 3 6,900 94 62,500 87 26,500 99

6.2.3 Parameters nTrs and nFails

We conducted experiments in which SR-POLY-4, 3-BEP and 6-BM problems were solved using the MP
algorithm without ADFs. The main parameters we focus here are the parameters nTrs and nFails. The
chosen values for these parameters are nTrs = 1, 2, 3, 4, 5 and nFails = 1, 2, 3. For each combination of
these parameter values, we performed 100 independent runs of the MP algorithm for each problem. The
results of these experiments are shown in Table 4. It is worthwhile to note that for most values of nTrs
and nFails, the use of local search helps to improve the performance of the MP algorithm; see the row
labeled ‘Without LSP’ in Table 4.

6.2.4 Parameter Setting for MP with ADFs

The previous experiments, which mainly focus on the effects of the parameters nTrs and nFails, indicate
that our results are promising compared to recent algorithm as we will see later. Nevertheless, we still
have a chance to improve further these results especially for the N -BEP problem by the use of the ADF
technique. The GP research community usually uses the ADF technique to exploit the modularity in
a problem, especially the N -BEP problem [18, 36]. Using GP with the ADF technique, Koza [18] has
succeeded to get the exact solutions for the N -BEP problem with N = 3, · · · , 11, with less CE compared
to the standard GP algorithm without the ADF technique.

What we want to show here is that the MP algorithm not only can improve the results of the standard
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Table 5: Results of MP with the ADF technique in terms of parameters nTrs and nFails.
Parameters SR-POLY-4 3-BEP

nTrs nFails CE R% CE R%
Without LSP 2,700 82 32,500 85

1 1 2,500 87 17,000 98
1 2 2,400 97 15,500 99
1 3 2,600 95 22,000 99
2 1 2,600 89 19,000 99
2 2 2,400 98 21,000 99
2 3 2,400 100 24,000 100
3 1 2,600 99 20,000 99
3 2 2,400 100 21,000 100
3 3 2,400 99 20,000 100
4 1 3,000 99 22,500 99
4 2 3,000 100 18,000 98
4 3 2,800 99 20,000 100
5 1 2,250 98 20,000 99
5 2 3,150 96 21,000 98
5 3 2,850 99 18,000 99

GP algorithm by using the new set of operations introduced in Section 3, but also can deal with the ADF
technique to represent programs more professionally to exploit the modularity in a problem. In this set
of experiments specifically, we use the MP algorithm with the ADF technique to solve the SR-POLY-4
and N -BEP problems.

For the SR-POLY-4 problem, we use the same terminal and function sets as in the previous exper-
iments. In addition, for each program in the population, an additional ADF function (gene) of two
dummy arguments is defined, evolved and included automatically in the function set for that program.
The terminal and function sets for that ADF gene (called ADF1) are {arg0, arg1} and {+, -, *, %},
respectively, while the terminal and function sets for regular genes are {x1, x2, x3, x4} and {ADF1, +,
-, *, %}, respectively.

For the N -BEP problem, we use two additional ADFs, ADF1 and ADF2, each of which has two
dummy arguments, arg0 and arg1. For each program in the population, ADF1 and ADF2 are defined,
evolved and included automatically in the function set for that program. The terminal sets for ADF1,
ADF2 and regular genes are {arg0, arg1}, {arg0, arg1} and {a0, · · · , aN−1}, respectively. The function
sets for them are {AND, OR, NAND, NOR} {ADF1, AND, OR, NAND, NOR} and {ADF1, ADF2,
AND, OR, NAND, NOR}, respectively.

In the current set of experiments, we still focus on detecting the best values of nTrs and nFails
parameters. Several values are chosen such as nTrs = 1, 2, 3, 4, 5 and nFails = 1, 2, 3, and for each
combination of these values, we performed 100 independent runs for each problem using the MP algorithm
with ADFs. Other MP parameters are shown in Table 1, while the results of this experiment is shown
in Table 5. It is clear from these results that the MP algorithm significantly reduces the computational
effort and improves the rate of success by means of ADFs.

Moreover, we performed a set of experiments to solve the 6-BM problem using the MP algorithm with
the ADF technique. Unfortunately, we could not improve the performance of the MP algorithm by using
one ADF or two ADFs. This show that the ADF technique is useful for problems which have special
characteristics, e.g., similarity and modularity. Nevertheless, our results for the 6-BM problem are still
good and competitive, without the use of the ADF technique, as we will see in the next subsection.

6.3 MP vs GP

In this subsection, we study the performance of the MP algorithm, with and without ADFs, compared
to contemporary versions of the GP algorithm.

6.3.1 The SR-POLY-4 Problem

Poli and Langdon [33] conducted a lot of numerical experiments for the SR-POLY-4 problem using the
backward-chaining GP (BC-GP) algorithm, and made a comparison between the BC-GP algorithm and

18



Figure 11: Comparison between the MP algorithm and the backward-chaining GP algorithm for the
SR-POLY-4 problem in terms of the rate of success

the standard GP algorithm. They performed 5000 independent runs to solve the SR-POLY-4 problem
using the BC-GP and standard GP algorithms without the use of ADFs, where nPop = 1, 000 and
nGnrs = 30. The results of their experiments show a good performance of the BC-GP algorithm compared
to the standard GP algorithm.

Here, we compare the results of the MP algorithm with those of the BC-GP algorithm in terms of
fitness evaluations and the rate of success. We implement the MP algorithm (without ADFs) for the SR-
POLY-4 problem three times using different population sizes. For each implementation, we performed
5000 independent runs for the MP algorithm using nTrs = 1 and nFails = 1 (as recommended from the
results in Table 4), while the other parameters are set as shown in Table 1. The results of this experiment
are summarized in Fig. 11, where the results of the BC-GP algorithm have been taken from Fig. 10 in
the original reference [33].

Fig. 11 shows that the MP algorithm significantly outperforms the BC-GP algorithm. The MP
algorithm gets the 100% success for all 5000 runs using 10,000 fitness evaluations at most, even by using
a very small population size nPop = 50. On the other hand, the BC-GP hardly succeeds to find the
exact solution for 35% of total runs by using 30,000 fitness evaluations. Poli and Langdon in the same
paper [33] repeated the same experiment using a large population size, nPop = 10, 000 and nGnrs = 30.
Then, they were able to improve their results and the rate of success reached approximately 98% after
300,000 fitness evaluations. Nevertheless, one can see that the MP algorithm is faster than the BC-GP
algorithm by more than 30 times for the SR-POLY-4 problem.

Although, for the SR-POLY-4 problem, the results of the MP algorithm with ADFs are better than
those of the MP algorithm without ADFs, we did not try to compare the MP algorithm with ADFs and
the BC-GP algorithm. This is because the BC-GP algorithm did not use the idea of ADFs, so it would
not be a fair comparison if we used ADFs in the MP algorithm.

6.3.2 The N-BEP Problem

Walker and Miller [36] conducted a lot of numerical experiments to show the performance of the Cartesian
GP (CGP) algorithm and the Embedded CGP (ECGP) algorithm. The ECGP algorithm generalizes
the CGP algorithm by utilizing the automatic module acquisition technique to automatically build and
evolve modules. Walker and Miller [36] reported good results for several test problems, compared to
the standard GP algorithm and several contemporary algorithms. Here, we are interested in comparing
their results for the Boolean even parity problems with the results of the MP algorithm for the same
problems.

Walker and Miller [36] used the Embedded Cartesian GP (ECGP) algorithm to solve the N -BEP
problem using the set of Boolean functions {AND, OR, NAND, NOR} as the function set, and the set
of arguments {a0, · · · , aN−1} as the terminal set. For each of the N -BEP problems with N = 3, · · · , 8,
they performed 50 independent runs with nGnrs → ∞, i.e., for each run the algorithm works until the
exact solution was found.

Walker and Miller [36] measure the performance of the ECGP algorithm in terms of CE and other
statistical measures. Undoubtedly, the results of Walker and Miller [36] for the N -BEP problem are
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Table 6: The CE for the standard GP, ECGP and MP algorithms for the N -BEP problem
GP ECGP MP

N with ADFs with modules with ADFs
3 64,000 37,446 17,000
4 176,000 201,602 22,500
5 464,000 512,002 42,000
6 1,344,000 978,882 77,500
7 - 1,923,842 108,000
8 - 4,032,002 178,500

Table 7: The ME, MAD and IQR for the ECGP and MP algorithms for the N -BEP problem
ECGP with modules MP with ADFs

N ME MAD IQR ME MAD IQR
3 5,931 3,804 10,372 4,795 1,268 3,030
4 37,961 21,124 49,552 6,611 2,460 4,919
5 108,797 45,402 98,940 13,597 3,034 6,041
6 227,891 85,794 190,456 23,574 6,631 13,261
7 472,227 312,716 603,643 37,012 11,341 20,493
8 745,549 500,924 1,108,934 57,603 18,095 34,437

significant, as they showed through several comparisons with other extensions of the GP algorithms.
Our target here is to make a comparison between the ECGP algorithm (with modules) and the MP
algorithm with ADFs for the N -BEP problem with N = 3, · · · , 8.

For the N -BEP problem, We have used the MP algorithm with two ADFs, ADF1 and ADF2, each of
which has two dummy arguments, arg0 and arg1. For each program in the population, ADF1 and ADF2

are defined, evolved and included automatically to the function set for that program. The terminal sets
for ADF1, ADF2 and regular genes are {arg0, arg1}, {arg0, arg1} and {a0, a1, · · · , aN−1}, respectively,
while the function sets for them are {AND, OR, NAND, NOR} {ADF1, AND, OR, NAND, NOR} and
{ADF1, ADF2, AND, OR, NAND, NOR}, respectively.

We performed 50 independent runs for the N -BEP problem with N = 3, · · · , 8, using nTrs = 1 and
nFails = 2, and the values of the remaining parameters are shown in Table 1. A comparison, in terms
of CE, between the ECGP algorithm (with modules) and the MP algorithm with ADFs are presented in
Table 6. In addition, Table 7 shows additional comparisons between ECGP and MP, in terms of median
(ME) number of evaluations, median absolute deviation (MAD), and interquartile range (IQR). All the
results for the standard GP algorithm and the ECGP algorithm shown in Tables 6 and 7 have been taken
from [36]. It is clear from Tables 6 and 7 that the MP algorithm with ADFs outperforms the standard
GP algorithm and the ECGP algorithm.

The results for the N -BEP problem encouraged us to tackle higher order even parity problems. In
fact, we have succeeded to find the exact solution for the N -BEP problem with N = 3, · · · , 15 using a
reasonable number of fitness evaluations. We believe that we still have a chance to solve the N -BEP
problem with N > 15 using the MP algorithm with ADFs. Because of the exponential increase of fitness
cases, 2N , it become very difficult to compute the fitness function values for all fitness cases when N
increases. In the future work, we wish to find another way to compute the fitness function values faster
for large N .

6.3.3 The N-BEP Problem with 16 Boolean Functions

Poli and Page [32] introduced various extensions of the GP algorithm by using new search operators
and a new node representation together with a tree evaluation method known as sub-machine-code GP.
The sub-machine-code GP technique allows the parallel evaluation of 32 or 64 fitness cases per program
execution, which gives their algorithms the ability to evaluate the fitness values faster than the usual
way. Poli and Page [32] succeeded to solve the N -BEP problems, up to N = 22, with the function set
consisting of all 16 Boolean functions of two arguments [32].

Poli and Page [32] conducted experiments to show the performance of their algorithms on the N -BEP
problem with N = 3, · · · , 6, using a small population size, nPop = 50. They performed 50 independent
runs for each problem to compute the CE of their algorithms using the set of all 16 Boolean functions
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Table 8: The CE for the standard GP, GP-UX, GP-SUX and MP algorithms using the 16 boolean
functions of 2 arguments for the N -BEP problems

N GP GP-UX GP-SUX MP
3 5,550 850 900 300
4 11,250 4,200 2,250 550
5 - - - 1,800
6 - 34,850 17,000 3,200
7 - - - 6,800
8 - - - 18,000

of two arguments as the function set.
In our experiments, we compare results of the MP algorithm with those appeared in [32] for the

N -BEP problem with N = 3, · · · , 6. We performed 50 independent runs for each N -BEP problem with
N = 3, · · · , 8, using the same function set and the population size as those used by Poli and Page [32].
The parameter values for the MP algorithm are shown in Table 1, while nTrs = 2 and nFails = 1.
The results are shown in Table 8, where the results of the standard GP, the GP-UX and the GP-SUX
algorithms are taken from Poli and Page [32].

From the results in Table 8, it is clear that the MP algorithm outperforms other algorithms. As
a matter of fact, the high performance of the MP algorithm and other algorithms comes from the
modularity of the problem itself. The Boolean even parity functions are compactly represented using
XOR and XNOR Boolean functions [36]. Therefore, by adjusting the function set to contain XOR and
XNOR functions, all versions of the GP algorithm can find the exact solution for the N -BEP problem
easily. In particular, since the MP algorithm expresses a solution with more than one genes and uses the
Boolean function XOR to link these genes, it is possible to find the exact solution of the N -BEP problem
easily and fast. On the other hand, with the ADF technique, it is quite likely that the Boolean functions
XOR and XNOR are constructed as ADFs by using {AND, OR, NAND, NOR}, which facilitates the
mission of the algorithm.

6.3.4 The 6-BM Problem

Poli and Page [32] also conducted a set of experiments on the 6-BM problem to study the performance
of the standard GP, GP-UX and GP-SUX algorithms in terms of the CE. They used the set of all 256
Boolean functions of three arguments [32]. Indeed, our results for the 6-BM problem in Table 4 seem to
outperform their results shown in Table 2 in their paper [32]. However, we do not consider that this is
a fair comparison, since the function set used for the MP algorithm is not the same as the one used for
their algorithms.

Jackson [14] introduced a new technique to detect dormant nodes in GP programs and to prevent
the neutral crossover process. A dormant node is a node in a program that does not contribute to
the fitness value of the program. When the crossover operator switches a subtree rooted at a dormant
node in a program, the resulting child will have the same fitness value as the parent, and this process is
called a fitness-preserving crossover (FPC) [14]. Jackson [14] states that preventing the FPC improves
the performance of GP in at least three ways; improving the execution efficiency, increasing the rate of
success, and simplifying evolved programs.

Jackson [14] carried out a set of experiments on the 6-BM problem using the standard GP algorithm
with and without preventing FPCs. For each algorithm, 100 independent runs were made using nPop =
500 and nGnrs = 50. A comparison between these two versions of the GP algorithm was made in terms
of the CE and the rate of success. In fact, as reported in [14], GP with preventing FPCs improved the
CE and the rate of success for all test problems, except the 6-BM problem. For the 6-BM problem, the
GP algorithm with preventing FPCs succeeded to reduce the CE, but it failed to improve the rate of
success.

Table 9 shows a comparison between the MP algorithm and standard GP algorithm with and without
preventing FPCs. We implemented the MP algorithm using different values for the parameters nPop and
nGnrs. For each implementation, we performed 100 independent runs to compute the CE and the rate of
success. The parameter values for the MP algorithm are nTrs = 1, nFails = 1 and the other parameters
are set as shown in Table 1. The values of the parameters nPop and nGnrs are shown in Table 9 with the
corresponding results of the MP algorithm. The results of GP with and without preventing FPCs are
taken from the original paper [14]. As observed in Table 9, the MP algorithm outperforms the standard
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Table 9: The CE and the rate of success for the standard GP algorithm, with and without preventing
FPCs, and the MP algorithm for the 6-BM problem

Algorithm nPop nGnrs CE R%
GP 500 50 44,000 68
GP, preventing FPCs 500 50 38,500 65
MP 500 50 18,000 100
MP 250 100 23,250 98
MP 100 250 29,400 87
MP 50 500 37,800 74

GP algorithm with and without preventing FPCs in terms of both the CE and the rate of success.

7 Conclusions

We have proposed the MP algorithm that hybridizes the GP algorithm with a new set of local search
procedures over a tree space to intensify promising programs generated by the GP algorithm. Its per-
formance has been tested through extensive numerical experiments for some benchmark problems. The
results of these experiments have shown that the MP algorithm outperforms the standard GP algorithm
and recent versions of GP algorithm at least for the considered benchmark problems. In addition, we
have shown that the MP algorithm can deal easily with the ADF technique to exploit the modularities
in problem environments.
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